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What is a pairing?
A pairing is a non-degenerate, bilinear map

e : G1 ×G2 → G3,

where G1, G2 are additive groups and G3 is written
multiplicatively.

I Non-degenerate:
for all O 6= P ∈ G1 there is a Q ∈ G2 s.t. e(P,Q) 6= 1,
for all O 6= Q ∈ G2 there is a P ∈ G1 s.t. e(P,Q) 6= 1.

I Bilinear: for P1, P2 ∈ G1;Q1, Q2 ∈ G2 we have

e(P1 + P2, Q1) = e(P1, Q1)e(P2, Q1),

e(P1, Q1 +Q2) = e(P1, Q1)e(P1, Q2).

It follows: e(aP, bQ) = e(P,Q)ab = e(bP, aQ).
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What can be done with pairings?

Pairings on elliptic curves can be used,

I as a means to attack DL-based cryptography on
groups of points on elliptic curves,

I or to construct crypto systems with certain special
properties:

I One-round tripartite key agreement,
I Identity-based key agreement,
I Identity-based encryption (IBE),
I Hierarchical IBE (HIDE),
I Short signatures (BLS).
I much more ...



Elliptic curves
Let p > 3 be a prime, Fp the finite field with p elements and

E : Y 2 = X3 + AX +B

an elliptic curve over Fp.

I E(Fp) = {(x, y) ∈ F2
p : y2 = x3 + Ax+B} ∪ {O} is the

group of Fp-rational points on E.
Let n = #E(Fp) be its order.

I Let r 6= p be a large prime dividing n.
I The embedding degree of E with respect to r is the

smallest integer k s.t.

r | pk − 1 or equivalently r | Φk(p),

where Φk is the k-th cyclotomic polynomial.
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Elliptic curve group law

•R

• P

lR,P

vR+P

•−(R + P )

R + P•



The reduced Tate pairing
The reduced Tate pairing is a map

e : E(Fp)[r]×G2 → µr ⊂ F∗
pk ,

(P,Q) 7→ fr,P (Q)
pk−1

r .

I We take G1 = E(Fp)[r] as the r-torsion subgroup of
the group E(Fp), i.e. all points of order dividing r.

I G2 ⊆ E(Fpk) is a subgroup of order r of the group of
Fpk-rational points on E.

I G3 = µr ⊂ F∗
pk is the group of r-th roots of unity.

I We obtain a unique pairing value in µr by raising
fr,P (Q) to the power of pk−1

r
. This is called the final

exponentiation.
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Computing pairings (Miller’s algorithm)

Input: P ∈ E(Fp)[r], Q ∈ E(Fpk), r = (rm, . . . , r0)2

Output: fr,P (Q)
R← P , f ← 1
for (i← m− 1; i ≥ 0; i−−) do

f ← f 2 lR,R(Q)

v[2]R(Q)

R← [2]R
if (ri = 1) then

f ← f
lR,P (Q)

vR+P (Q)

R← R + P
end if

end for
return f



Compression of pairing values

Pairing values are r-th roots of unity.
I The size of r is about that of p or less.
I There are at most r different pairing values.
I Representation in F∗

pk is redundant.
I It should be possible to have smaller representation.

Since r | Φk(p) pairing values lie in certain subgroups of
F∗

pk (called algebraic tori).
I Granger, Page and Stam (2006) show how to use this

fact to compress pairing values after the final
exponentiation.

I One can do implicit multiplications in the compressed
form.
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Compressing certain field elements
Let k be even, q = pk/2, Fq = Fpk/2 and Fq2 = Fpk where

Fq2 = Fq(σ) = Fq[X]/(X2 − ξ).

I We write an element a ∈ Fq2 as

a = a0 + a1σ, where a0, a1 ∈ Fq.

I Raising such an element to the power of q − 1 we
obtain

aq−1 = (a0 + a1σ)q−1 =
(a0 + a1σ)q

a0 + a1σ
=
a0 − a1σ

a0 + a1σ
.

I We can represent the power by just one element
â ∈ Fq. For a1 6= 0 we have â = a0/a1, i.e.

(a0 + a1σ)q−1 =
a0/a1 − σ
a0/a1 + σ

=
â− σ
â+ σ

.
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The final exponentiation
The exponent of the final exponentiation is

pk − 1

r
=
q2 − 1

r
= (q − 1)

q + 1

r
.

I Thus

e(P,Q) = fr,P (Q)
pk−1

r = fr,P (Q)
q2−1

r =
(
fr,P (Q)q−1

) q+1
r
.

I We can do the (q − 1) part by just one field inversion
in Fq. Write fr,P (Q) = f = f0 + f1σ, we can compute
the compressed value of fr,P (Q)q−1 = f q−1 as

f̂ = f0/f1.
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Multiplication of compressed elements
We would like to do implicit multiplication of compressed
elements. How can we find âb from â and b̂? We have

â− σ
â+ σ

· b̂− σ
b̂+ σ

=
âb− σ
âb+ σ

.

I Computing the above fraction explicitly gives

âb = (âb̂+ ξ)/(â+ b̂).

I Squaring an element is

â2 = (â2 + ξ)/(2â) = â/2 + ξ/2â.

I Inversion is just
â−1 = −â.
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â−1 = −â.



Compressed final exponentiation

We can compress the final exponentiation by
I computing fr,P (Q)q−1 in compressed form
I and carrying out the rest of the exponentiation with

implicit square-and-multiply.

But there is still full Fpk arithmetic in Miller’s algorithm to
compute fr,P (Q).

Can we do the whole pairing computation in compressed
form?
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Miller’s algorithm revisited

Input: P ∈ E(Fp)[r], Q ∈ E(Fpk), r = (rm, . . . , r0)2

Output: fr,P (Q)
R← P , f ← 1
for (i← m− 1; i ≥ 0; i−−) do

f ← f 2 · lR,R(Q)
R← [2]R
if (ri = 1) then

f ← f · lR,P (Q)
R← R + P

end if
end for
return f



Compressed pairing computation

To do the whole pairing computation in compressed form
I keep the variable f in compressed shape,
I do the exponentiation to q − 1

I and compress all values of line functions before the
Miller loop.

I Multiplications of elements in Fpk are replaced by
implicit multiplications of compressed elements in
Fpk/2.



Compressed pairings on BN curves

A BN curve is an elliptic curve with equation

E : Y 2 = X3 +B

defined over Fp where p = 36u4 + 36u3 + 24u2 + 6u+ 1.
I The number n of Fp-rational points is prime (r = n).
I The embedding degree of E is k = 12.
I BN curves have a twist of degree 6 which makes

arithmetic in G2 easier and leads to special shape of
line functions.

I Pairing values lie in F∗
p12.



Compressed pairings on BN curves

I Split up the final exponentiation as

p12 − 1

r
= (p6 − 1)(p2 + 1)

p4 − p2 + 1

r
.

I Do similar tricks as shown before to reduce an Fp12

element to two Fp2 elements.
I The compressed representation of the powered line

functions lU,V (Q)(p6−1)(p2+1) are a pair (c0, c1) ∈ F2
p2

with

c0 =

( −ζ3
1− ζ2

3

y−1
Q′

)
(yU −λxU), c1 =

(
ζ2
3

1− ζ2
3

y−1
Q′

)
λxQ′ .



Avoid finite field inversions

Finite field inversions can be completely avoided by using
’projective’ representation for compressed elements.

I An inversion in Fp2 can be done by an inversion in Fp

and some Fp-multiplications.
I If we store one more Fp-element we can put all

inversions into that additional coordinate.
I Can compute compressed pairings using 5 instead of

12 Fp-elements.
I No finite field inversions needed at all.



Timing results
Timing results are given for a C-implementation of
pairings on the curve E : y2 = x3 + 24 over Fp where

p = 82434016654300679721217353503190038836571781

811386228921167322412819029493183 (256 bits)

Miller Loop Final Exp.
Tate 23,350,000 9,320,000
Compressed Tate 40,650,000 11,540,000
Ate 13,520,000 9,320,000
Optimal Ate 6,750,000 9,320,000
Generalized Eta 17,370,000 9,320,000
Compressed generalized Eta 30,220,000 11,540,000

. . . in terms of CPU cycles on an Intel Core2 Duo T7500.



Conclusion

In this paper we have
I shown how to do pairing computation with

compressed finite field elements,
I demonstrated that finite field inversions can be

completely avoided during pairing computation,
I implemented compressed pairings and compared

them to non-compressed pairings.



Last slide

Find a C-implementation of compressed pairings on BN
curves as well as lots of other variants of pairings (based
on GMP) on

http://www.cryptojedi.org/crypto/

Find pictures of Casablanca at
http://www.cryptojedi.org/gallery/

Thank you for your attention!
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