On compressible pairings and their computation

Michael Naehrig

Eindhoven Institute for the Protection of Systems and Information
Technische Universiteit Eindhoven
michael@cryptojedi.org
$\mathrm{TU} / \mathrm{e}=$

AfricaCrypt 2008, Casablanca, 13 June 2008

... joint work with
Paulo S. L. M. Barreto (University of São Paulo)
and Peter Schwabe (TU Eindhoven)

What is a pairing?

What is a pairing?

What is a pairing?

A pairing is a non-degenerate, bilinear map

$$
e: G_{1} \times G_{2} \rightarrow G_{3},
$$

where G_{1}, G_{2} are additive groups and G_{3} is written multiplicatively.

What is a pairing?

A pairing is a non-degenerate, bilinear map

$$
e: G_{1} \times G_{2} \rightarrow G_{3},
$$

where G_{1}, G_{2} are additive groups and G_{3} is written multiplicatively.

- Non-degenerate:
for all $\mathcal{O} \neq P \in G_{1}$ there is a $Q \in G_{2}$ s.t. $e(P, Q) \neq 1$, for all $\mathcal{O} \neq Q \in G_{2}$ there is a $P \in G_{1}$ s.t. $e(P, Q) \neq 1$.
- Bilinear: for $P_{1}, P_{2} \in G_{1} ; Q_{1}, Q_{2} \in G_{2}$ we have

$$
\begin{aligned}
e\left(P_{1}+P_{2}, Q_{1}\right) & =e\left(P_{1}, Q_{1}\right) e\left(P_{2}, Q_{1}\right), \\
e\left(P_{1}, Q_{1}+Q_{2}\right) & =e\left(P_{1}, Q_{1}\right) e\left(P_{1}, Q_{2}\right) .
\end{aligned}
$$

It follows: $e(a P, b Q)=e(P, Q)^{a b}=e(b P, a Q)$.

What can be done with pairings?

Pairings on elliptic curves can be used,

- as a means to attack DL-based cryptography on groups of points on elliptic curves,
- or to construct crypto systems with certain special properties:
- One-round tripartite key agreement,
- Identity-based key agreement,
- Identity-based encryption (IBE),
- Hierarchical IBE (HIDE),
- Short signatures (BLS).
- much more ...

Elliptic curves

Let $p>3$ be a prime, \mathbb{F}_{p} the finite field with p elements and

$$
E: Y^{2}=X^{3}+A X+B
$$

an elliptic curve over \mathbb{F}_{p}.

Elliptic curves

Let $p>3$ be a prime, \mathbb{F}_{p} the finite field with p elements and

$$
E: Y^{2}=X^{3}+A X+B
$$

an elliptic curve over \mathbb{F}_{p}.

- $E\left(\mathbb{F}_{p}\right)=\left\{(x, y) \in \mathbb{F}_{p}^{2}: y^{2}=x^{3}+A x+B\right\} \cup\{\mathcal{O}\}$ is the group of \mathbb{F}_{p}-rational points on E.
Let $n=\# E\left(\mathbb{F}_{p}\right)$ be its order.

Elliptic curves

Let $p>3$ be a prime, \mathbb{F}_{p} the finite field with p elements and

$$
E: Y^{2}=X^{3}+A X+B
$$

an elliptic curve over \mathbb{F}_{p}.

- $E\left(\mathbb{F}_{p}\right)=\left\{(x, y) \in \mathbb{F}_{p}^{2}: y^{2}=x^{3}+A x+B\right\} \cup\{\mathcal{O}\}$ is the group of \mathbb{F}_{p}-rational points on E.
Let $n=\# E\left(\mathbb{F}_{p}\right)$ be its order.
- Let $r \neq p$ be a large prime dividing n.

Elliptic curves

Let $p>3$ be a prime, \mathbb{F}_{p} the finite field with p elements and

$$
E: Y^{2}=X^{3}+A X+B
$$

an elliptic curve over \mathbb{F}_{p}.

- $E\left(\mathbb{F}_{p}\right)=\left\{(x, y) \in \mathbb{F}_{p}^{2}: y^{2}=x^{3}+A x+B\right\} \cup\{\mathcal{O}\}$ is the group of \mathbb{F}_{p}-rational points on E. Let $n=\# E\left(\mathbb{F}_{p}\right)$ be its order.
- Let $r \neq p$ be a large prime dividing n.
- The embedding degree of E with respect to r is the smallest integer k s.t.

$$
r \mid p^{k}-1 \quad \text { or equivalently } \quad r \mid \Phi_{k}(p)
$$

where Φ_{k} is the k-th cyclotomic polynomial.

Elliptic curve group law

The reduced Tate pairing

The reduced Tate pairing is a map

$$
\begin{aligned}
e: E\left(\mathbb{F}_{p}\right)[r] \times G_{2} & \rightarrow \mu_{r} \subset \mathbb{F}_{p^{k}}^{*}, \\
(P, Q) & \mapsto f_{r, P}(Q)^{\frac{p^{k}-1}{r}} .
\end{aligned}
$$

The reduced Tate pairing

The reduced Tate pairing is a map

$$
\begin{aligned}
e: E\left(\mathbb{F}_{p}\right)[r] \times G_{2} & \rightarrow \mu_{r} \subset \mathbb{F}_{p^{k}}^{*}, \\
(P, Q) & \mapsto f_{r, P}(Q)^{\frac{p^{k}-1}{r}} .
\end{aligned}
$$

- We take $G_{1}=E\left(\mathbb{F}_{p}\right)[r]$ as the r-torsion subgroup of the group $E\left(\mathbb{F}_{p}\right)$, i.e. all points of order dividing r.
- $G_{2} \subseteq E\left(\mathbb{F}_{p^{k}}\right)$ is a subgroup of order r of the group of $\mathbb{F}_{p^{k}}$-rational points on E.
- $G_{3}=\mu_{r} \subset \mathbb{F}_{p^{k}}^{*}$ is the group of r-th roots of unity.

The reduced Tate pairing

The reduced Tate pairing is a map

$$
\begin{aligned}
e: E\left(\mathbb{F}_{p}\right)[r] \times G_{2} & \rightarrow \mu_{r} \subset \mathbb{F}_{p^{k}}^{*}, \\
(P, Q) & \mapsto f_{r, P}(Q)^{\frac{p^{k}-1}{r}} .
\end{aligned}
$$

- We take $G_{1}=E\left(\mathbb{F}_{p}\right)[r]$ as the r-torsion subgroup of the group $E\left(\mathbb{F}_{p}\right)$, i.e. all points of order dividing r.
- $G_{2} \subseteq E\left(\mathbb{F}_{p^{k}}\right)$ is a subgroup of order r of the group of $\mathbb{F}_{p^{k}}$-rational points on E.
- $G_{3}=\mu_{r} \subset \mathbb{F}_{p^{k}}^{*}$ is the group of r-th roots of unity.
- We obtain a unique pairing value in μ_{r} by raising $f_{r, P}(Q)$ to the power of $\frac{p^{k}-1}{r}$. This is called the final exponentiation.

Computing pairings (Miller's algorithm)

Input: $P \in E\left(\mathbb{F}_{p}\right)[r], Q \in E\left(\mathbb{F}_{p^{k}}\right), r=\left(r_{m}, \ldots, r_{0}\right)_{2}$
Output: $f_{r, P}(Q)$
$R \leftarrow P, f \leftarrow 1$
for $(i \leftarrow m-1 ; i \geq 0 ; i--)$ do
$f \leftarrow f^{2} \frac{l_{R, R}(Q)}{v_{[2] R}(Q)}$
$R \leftarrow[2] R$
if $\left(r_{i}=1\right)$ then

$$
f \leftarrow f \frac{l_{R, P}(Q)}{v_{R+P}(Q)}
$$

$$
R \leftarrow R+P
$$

end if
end for
return f

Compression of pairing values

Pairing values are r-th roots of unity.

- The size of r is about that of p or less.
- There are at most r different pairing values.
- Representation in $\mathbb{F}_{p^{k}}^{*}$ is redundant.
- It should be possible to have smaller representation.

Compression of pairing values

Pairing values are r-th roots of unity.

- The size of r is about that of p or less.
- There are at most r different pairing values.
- Representation in $\mathbb{F}_{p^{k}}^{*}$ is redundant.
- It should be possible to have smaller representation.

Since $r \mid \Phi_{k}(p)$ pairing values lie in certain subgroups of $\mathbb{F}_{p^{k}}^{*}$ (called algebraic tori).

- Granger, Page and Stam (2006) show how to use this fact to compress pairing values after the final exponentiation.
- One can do implicit multiplications in the compressed form.

Compressing certain field elements

Let k be even, $q=p^{k / 2}, \mathbb{F}_{q}=\mathbb{F}_{p^{k / 2}}$ and $\mathbb{F}_{q^{2}}=\mathbb{F}_{p^{k}}$ where

$$
\mathbb{F}_{q^{2}}=\mathbb{F}_{q}(\sigma)=\mathbb{F}_{q}[X] /\left(X^{2}-\xi\right) .
$$

- We write an element $a \in \mathbb{F}_{q^{2}}$ as

$$
a=a_{0}+a_{1} \sigma, \text { where } a_{0}, a_{1} \in \mathbb{F}_{q} .
$$

Compressing certain field elements

Let k be even, $q=p^{k / 2}, \mathbb{F}_{q}=\mathbb{F}_{p^{k / 2}}$ and $\mathbb{F}_{q^{2}}=\mathbb{F}_{p^{k}}$ where

$$
\mathbb{F}_{q^{2}}=\mathbb{F}_{q}(\sigma)=\mathbb{F}_{q}[X] /\left(X^{2}-\xi\right)
$$

- We write an element $a \in \mathbb{F}_{q^{2}}$ as

$$
a=a_{0}+a_{1} \sigma, \text { where } a_{0}, a_{1} \in \mathbb{F}_{q}
$$

- Raising such an element to the power of $q-1$ we obtain

$$
a^{q-1}=\left(a_{0}+a_{1} \sigma\right)^{q-1}=\frac{\left(a_{0}+a_{1} \sigma\right)^{q}}{a_{0}+a_{1} \sigma}=\frac{a_{0}-a_{1} \sigma}{a_{0}+a_{1} \sigma}
$$

Compressing certain field elements

Let k be even, $q=p^{k / 2}, \mathbb{F}_{q}=\mathbb{F}_{p^{k / 2}}$ and $\mathbb{F}_{q^{2}}=\mathbb{F}_{p^{k}}$ where

$$
\mathbb{F}_{q^{2}}=\mathbb{F}_{q}(\sigma)=\mathbb{F}_{q}[X] /\left(X^{2}-\xi\right)
$$

- We write an element $a \in \mathbb{F}_{q^{2}}$ as

$$
a=a_{0}+a_{1} \sigma, \text { where } a_{0}, a_{1} \in \mathbb{F}_{q}
$$

- Raising such an element to the power of $q-1$ we obtain

$$
a^{q-1}=\left(a_{0}+a_{1} \sigma\right)^{q-1}=\frac{\left(a_{0}+a_{1} \sigma\right)^{q}}{a_{0}+a_{1} \sigma}=\frac{a_{0}-a_{1} \sigma}{a_{0}+a_{1} \sigma} .
$$

- We can represent the power by just one element $\hat{a} \in \mathbb{F}_{q}$. For $a_{1} \neq 0$ we have $\hat{a}=a_{0} / a_{1}$, i.e.

$$
\left(a_{0}+a_{1} \sigma\right)^{q-1}=\frac{a_{0} / a_{1}-\sigma}{a_{0} / a_{1}+\sigma}=\frac{\hat{a}-\sigma}{\hat{a}+\sigma}
$$

The final exponentiation

The exponent of the final exponentiation is

$$
\frac{p^{k}-1}{r}=\frac{q^{2}-1}{r}=(q-1) \frac{q+1}{r}
$$

- Thus

$$
e(P, Q)=f_{r, P}(Q)^{\frac{p^{k}-1}{r}}=f_{r, P}(Q)^{\frac{q^{2}-1}{r}}=\left(f_{r, P}(Q)^{q-1}\right)^{\frac{q+1}{r}}
$$

The final exponentiation

The exponent of the final exponentiation is

$$
\frac{p^{k}-1}{r}=\frac{q^{2}-1}{r}=(q-1) \frac{q+1}{r}
$$

- Thus

$$
e(P, Q)=f_{r, P}(Q)^{\frac{p^{k}-1}{r}}=f_{r, P}(Q)^{\frac{q^{2}-1}{r}}=\left(f_{r, P}(Q)^{q-1}\right)^{\frac{q+1}{r}} .
$$

- We can do the ($q-1$) part by just one field inversion in \mathbb{F}_{q}. Write $f_{r, P}(Q)=f=f_{0}+f_{1} \sigma$, we can compute the compressed value of $f_{r, P}(Q)^{q-1}=f^{q-1}$ as

$$
\hat{f}=f_{0} / f_{1} .
$$

Multiplication of compressed elements

 We would like to do implicit multiplication of compressed elements. How can we find $\widehat{a b}$ from \hat{a} and \hat{b} ? We have$$
\frac{\hat{a}-\sigma}{\hat{a}+\sigma} \cdot \frac{\hat{b}-\sigma}{\hat{b}+\sigma}=\frac{\widehat{a b}-\sigma}{\widehat{a b}+\sigma}
$$

Multiplication of compressed elements

We would like to do implicit multiplication of compressed elements. How can we find $\widehat{a b}$ from \hat{a} and \hat{b} ? We have

$$
\frac{\hat{a}-\sigma}{\hat{a}+\sigma} \cdot \frac{\hat{b}-\sigma}{\hat{b}+\sigma}=\frac{\widehat{a b}-\sigma}{\widehat{a b}+\sigma} .
$$

- Computing the above fraction explicitly gives

$$
\widehat{a b}=(\hat{a} \hat{b}+\xi) /(\hat{a}+\hat{b}) .
$$

- Squaring an element is

$$
\widehat{a^{2}}=\left(\hat{a}^{2}+\xi\right) /(2 \hat{a})=\hat{a} / 2+\xi / 2 \hat{a} .
$$

- Inversion is just

$$
\widehat{a^{-1}}=-\hat{a} .
$$

Compressed final exponentiation

We can compress the final exponentiation by

- computing $f_{r, P}(Q)^{q-1}$ in compressed form
- and carrying out the rest of the exponentiation with implicit square-and-multiply.

Compressed final exponentiation

We can compress the final exponentiation by

- computing $f_{r, P}(Q)^{q-1}$ in compressed form
- and carrying out the rest of the exponentiation with implicit square-and-multiply.

But there is still full $\mathbb{F}_{p^{k}}$ arithmetic in Miller's algorithm to compute $f_{r, P}(Q)$.

Can we do the whole pairing computation in compressed form?

Miller's algorithm revisited

Input: $P \in E\left(\mathbb{F}_{p}\right)[r], Q \in E\left(\mathbb{F}_{p^{k}}\right), r=\left(r_{m}, \ldots, r_{0}\right)_{2}$
Output: $f_{r, P}(Q)$

$$
\begin{aligned}
& R \leftarrow P, f \leftarrow 1 \\
& \text { for }(i \leftarrow m-1 ; i \geq 0 ; i--) \text { do } \\
& \quad f \leftarrow f^{2} \cdot l_{R, R}(Q) \\
& \quad R \leftarrow[2] R \\
& \quad \text { if }\left(r_{i}=1\right) \text { then } \\
& \quad f \leftarrow f \cdot l_{R, P}(Q) \\
& \quad R \leftarrow R+P \\
& \quad \text { end if } \\
& \text { end for } \\
& \text { return } f
\end{aligned}
$$

Compressed pairing computation

To do the whole pairing computation in compressed form

- keep the variable f in compressed shape,
- do the exponentiation to q - 1
- and compress all values of line functions before the Miller loop.
- Multiplications of elements in $\mathbb{F}_{p^{k}}$ are replaced by implicit multiplications of compressed elements in $\mathbb{F}_{p^{k / 2}}$.

Compressed pairings on BN curves

A $B N$ curve is an elliptic curve with equation

$$
E: Y^{2}=X^{3}+B
$$

defined over \mathbb{F}_{p} where $p=36 u^{4}+36 u^{3}+24 u^{2}+6 u+1$.

- The number n of \mathbb{F}_{p}-rational points is prime $(r=n)$.
- The embedding degree of E is $k=12$.
- BN curves have a twist of degree 6 which makes arithmetic in G_{2} easier and leads to special shape of line functions.
- Pairing values lie in $\mathbb{F}_{p^{12}}^{*}$.

Compressed pairings on BN curves

- Split up the final exponentiation as

$$
\frac{p^{12}-1}{r}=\left(p^{6}-1\right)\left(p^{2}+1\right) \frac{p^{4}-p^{2}+1}{r} .
$$

- Do similar tricks as shown before to reduce an $\mathbb{F}_{p^{12}}$ element to two $\mathbb{F}_{p^{2}}$ elements.
- The compressed representation of the powered line functions $l_{U, V}(Q)^{\left(p^{6}-1\right)\left(p^{2}+1\right)}$ are a pair $\left(c_{0}, c_{1}\right) \in \mathbb{F}_{p^{2}}^{2}$ with

$$
c_{0}=\left(\frac{-\zeta_{3}}{1-\zeta_{3}^{2}} y_{Q^{\prime}}^{-1}\right)\left(y_{U}-\lambda x_{U}\right), c_{1}=\left(\frac{\zeta_{3}^{2}}{1-\zeta_{3}^{2}} y_{Q^{\prime}}^{-1}\right) \lambda x_{Q^{\prime}} .
$$

Avoid finite field inversions

Finite field inversions can be completely avoided by using 'projective' representation for compressed elements.

- An inversion in $\mathbb{F}_{p^{2}}$ can be done by an inversion in \mathbb{F}_{p} and some \mathbb{F}_{p}-multiplications.
- If we store one more \mathbb{F}_{p}-element we can put all inversions into that additional coordinate.
- Can compute compressed pairings using 5 instead of $12 \mathbb{F}_{p}$-elements.
- No finite field inversions needed at all.

Timing results

Timing results are given for a C-implementation of pairings on the curve $E: y^{2}=x^{3}+24$ over \mathbb{F}_{p} where

$$
\begin{aligned}
p= & 82434016654300679721217353503190038836571781 \\
& 811386228921167322412819029493183 \quad(256 \text { bits })
\end{aligned}
$$

	Miller Loop	Final Exp.
Tate	$23,350,000$	$9,320,000$
Compressed Tate	$40,650,000$	$11,540,000$
Ate	$13,520,000$	$9,320,000$
Optimal Ate	$6,750,000$	$9,320,000$
Generalized Eta	$17,370,000$	$9,320,000$
Compressed generalized Eta	$30,220,000$	$11,540,000$

... in terms of CPU cycles on an Intel Core2 Duo T7500.

Conclusion

In this paper we have

- shown how to do pairing computation with compressed finite field elements,
- demonstrated that finite field inversions can be completely avoided during pairing computation,
- implemented compressed pairings and compared them to non-compressed pairings.

Last slide

Find a C-implementation of compressed pairings on BN curves as well as lots of other variants of pairings (based on GMP) on
http://www.cryptojedi.org/crypto/

Last slide

Find a C-implementation of compressed pairings on BN curves as well as lots of other variants of pairings (based on GMP) on
http://www.cryptojedi.org/crypto/

Find pictures of Casablanca at http://www.cryptojedi.org/gallery/

Last slide

Find a C-implementation of compressed pairings on BN curves as well as lots of other variants of pairings (based on GMP) on
http://www.cryptojedi.org/crypto/

Find pictures of Casablanca at http://www.cryptojedi.org/gallery/

Thank you for your attention!

