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» Non-degenerate:
forall O # P € Gy thereisa @ € Gy s.t. e(P, Q) # 1,
forall O # Q € Gy thereisa P € Gy s.t. e(P, Q) # 1.

» Bilinear: for P, P, € G1; Q1,2 € G5 we have

e(PL+ P,Q1) = e(Pr,Q1)e(P, Q1),
e(P, Q1+ Q2) = e(P,Q1)e(Pr,Q2).

It follows: e(aP,bQ) = e(P, Q)% = e(bP, aQ).



What can be done with pairings?

Pairings on elliptic curves can be used,

» as a means to attack DL-based cryptography on
groups of points on elliptic curves,

» or to construct crypto systems with certain special
properties:

>

vV vV v v v

One-round tripartite key agreement,
Identity-based key agreement,
Identity-based encryption (IBE),
Hierarchical IBE (HIDE),

Short signatures (BLS).

much more ...
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Elliptic curves

Let p > 3 be a prime, F, the finite field with p elements and
E:Y?=X*+AX+B

an elliptic curve over I,,.
> BE(F,) ={(z,y) € F}:y* = 2° + Av + B} U{O} is the
group of F,-rational points on E.
Let n = #E(F,) be its order.

» Let r # p be a large prime dividing n.

» The embedding degree of E with respect to r is the
smallest integer £ s.t.

r|pF—1 orequivalently r|®.(p),

where @, is the k-th cyclotomic polynomial.



Elliptic curve group law
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The reduced Tate pairing
The reduced Tate pairing is a map

e: B(F,)[r] x Gy — p, CFy,

pF-1

(PvQ) = fr,P(Q) "o

» We take G, = E(F,)[r] as the r-torsion subgroup of
the group E(F,), i.e. all points of order dividing r.

» Gy C E(F,) is a subgroup of order r of the group of
[F,--rational points on E.

> Gy = pp C I, is the group of r-th roots of unity.

» We obtain a unique pairing value in p,. by raising
fr.p(Q) to the power of 1# This is called the final
exponentiation.



Computing pairings (Miller’s algorithm)

Input: Pc EF,)[r],Q € E(Fyr),r = (rm,...,70)2
Output: f, »(Q)

R—P, f—1

for(z<—m—1 z>0;i——)d0

l
foreed
R — 2]R
if (r;, = 1) then
R )
R+~ R+ P
end if
end for

return f
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Compression of pairing values

Pairing values are r-th roots of unity.
» The size of r is about that of p or less.
There are at most r different pairing values.
Representation in IE‘;k is redundant.
» It should be possible to have smaller representation.

Since r | ®,(p) pairing values lie in certain subgroups of
B (called algebraic tori).
» Granger, Page and Stam (2006) show how to use this
fact to compress pairing values after the final
exponentiation.

» One can do implicit multiplications in the compressed
form.

v

v



Compressing certain field elements
Let k be even, ¢ = p*/%, F, = F,.,» and F2 = F,« where
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» We write an element a € F» as
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Compressing certain field elements
Let k be even, ¢ = p*/%, F, = F,.,» and F2 = F,« where

Fpz = Fy(0) = F,[X]/(X* — €).

q

» We write an element a € F» as
a = ag+ a0, where ag,a; € F,.
» Raising such an element to the power of ¢ — 1 we
obtain
ag+a10)?  ag— a0
ag + a0 ag + a0
» We can represent the power by just one element
a € F,. Fora; # 0 we have a = ag/ay, i.e.

a?™!

. Wjar—o0 a—o0

q_ —_— h— .
(a0 +ar0) ap/a;+o a+o




The final exponentiation
The exponent of the final exponentiation is

= (-

r r r
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The final exponentiation
The exponent of the final exponentiation is

= :(q—l)q+1-

r r r

» Thus
k_4q 2,4 at+l
e(P.Q) = frp( @ = fup(@ = (fr(@")
» We can do the (¢ — 1) part by just one field inversion
inF,. Write f,. p(Q) = f = fo + fi0, we can compute
the compressed value of f, p(Q)4! = f! as

f=folfr.
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Multiplication of compressed elements
We would like to do implicit multiplication of compressed
elements. How can we find ab from @ and 5? We have
—o b—0 ab—o

a+o b+to abto

» Computing the above fraction explicitly gives
ab = (ab+ €)/(a+ b).

» Squaring an element is

o~

a? = (a* +€)/(2a) = a/2 + £/2a.

» Inversion is just
a1 =—a.
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Compressed final exponentiation

We can compress the final exponentiation by
» computing f,.p(Q)?! in compressed form

» and carrying out the rest of the exponentiation with
implicit square-and-multiply.

But there is still full IF,» arithmetic in Miller’s algorithm to
compute f, p(Q).

Can we do the whole pairing computation in compressed
form?



Miller’s algorithm revisited

Input: Pc E(F,)[r],Q € E(F,), 7= (Tm, ...

Output: f, »(Q)
R—P,f—1
for (i —m—1;i>0;, :——) do
f—f*1rr(Q)
R — 2]R
if (r;, = 1) then
)
R— R+ P
end if
end for
return f



Compressed pairing computation

To do the whole pairing computation in compressed form
keep the variable f in compressed shape,
do the exponentiation to ¢ — 1

and compress all values of line functions before the
Miller loop.
Multiplications of elements in F . are replaced by
implicit multiplications of compressed elements in
F /2.

p

v

v

v
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Compressed pairings on BN curves

A BN curve is an elliptic curve with equation
E:Y’=X*+B

defined over F, where p = 36u* + 36u® + 24u? + 6u + 1.
» The number n of F,-rational points is prime (r = n).
» The embedding degree of F is k = 12.

» BN curves have a twist of degree 6 which makes
arithmetic in GG, easier and leads to special shape of
line functions.

» Pairing values lie in Fie.



Compressed pairings on BN curves

» Split up the final exponentiation as

p12_1
r

4 2
— 1
S PR Lt e

» Do similar tricks as shown before to reduce an F -
element to two F,: elements.

» The compressed representation of the powered line
functions iy (Q)"*~V@*+1) are a pair (co, c1) € F2,
with

2
co = (1_—%1/@}) (yu — Azy), ¢ = (15—3@3/@}) Azg.



Avoid finite field inversions

Finite field inversions can be completely avoided by using
‘projective’ representation for compressed elements.

» Aninversion in F,- can be done by an inversion in I,
and some [F,-multiplications.

» |f we store one more F,-element we can put all
inversions into that additional coordinate.

» Can compute compressed pairings using 5 instead of
12 IF,-elements.

» No finite field inversions needed at all.



Timing results

Timing results are given for a C-implementation of
pairings on the curve E : y? = z3 + 24 over FF,, where

p = 82434016654300679721217353503190038836571781
811386228921167322412819029493183 (256 bits)
Miller Loop | Final Exp.
Tate 23,350,000 | 9,320,000
Compressed Tate 40,650,000 | 11,540,000
Ate 13,520,000 | 9,320,000
Optimal Ate 6,750,000 | 9,320,000
Generalized Eta 17,370,000 | 9,320,000
Compressed generalized Eta | 30,220,000 | 11,540,000

...in terms of CPU cycles on an Intel Core2 Duo T7500.




Conclusion

In this paper we have
» shown how to do pairing computation with
compressed finite field elements,
» demonstrated that finite field inversions can be
completely avoided during pairing computation,
» implemented compressed pairings and compared
them to non-compressed pairings.
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Thank you for your attention!



