How to Construct Pairing-Friendly Curves

Michael Naehrig

Lehrstuhl für Theoretische Informationstechnik RWTH Aachen University mnaehrig@ti.rwth-aachen.de

LARC, USP São Paulo, 28.09.2007

Motivation

Pairings on elliptic curves are used in cryptology,

Motivation

Pairings on elliptic curves are used in cryptology,

 as a means to attack cryptography based on elliptic curves, to analyse the discrete logarithm problem on elliptic curves,

Motivation

Pairings on elliptic curves are used in cryptology,

- as a means to attack cryptography based on elliptic curves, to analyse the discrete logarithm problem on elliptic curves,
- or to construct crypto systems with certain special properties:
 - One-round tripartite key agreement,
 - Identity Based Encryption (IBE),
 - Hierarchical IBE (HIDE),
 - Short signatures (BLS).

What is a Pairing?

A pairing is a non-degenerate, bilinear map

 $e: G_1 \times G_2 \to G_3,$

where G_1, G_2 are additive groups and G_3 is written multiplicatively.

What is a Pairing?

A pairing is a non-degenerate, bilinear map

 $e:G_1\times G_2\to G_3,$

where G_1, G_2 are additive groups and G_3 is written multiplicatively.

- Non-degenerate: for every O ≠ P ∈ G₁ there exists a Q ∈ G₂ s.t. e(P,Q) ≠ 1.
- ▶ Bilinear: for $P_1, P_2 \in G_1, Q_1, Q_2 \in G_2$ we have

$$\begin{array}{rcl} e(P_1+P_2,Q_1) &=& e(P_1,Q_1)e(P_2,Q_1),\\ e(P_1,Q_1+Q_2) &=& e(P_1,Q_1)e(P_1,Q_2). \end{array}$$

It follows: $e(aP, bQ) = e(P, Q)^{ab} = e(bP, aQ)$.

An *elliptic curve* E over a field K (char(K) ≠ 2, 3) is the set of solutions in K² of an equation

$$y^2 = x^3 + ax + b,$$

where $a, b \in K$ and $\Delta = -16(4a^3 + 27b^2) \neq 0$, together with some point \mathcal{O} at infinity.

An *elliptic curve* E over a field K (char(K) ≠ 2,3) is the set of solutions in K² of an equation

$$y^2 = x^3 + ax + b,$$

where $a, b \in K$ and $\Delta = -16(4a^3 + 27b^2) \neq 0$, together with some point \mathcal{O} at infinity.

► Here: K = F_p for a prime p > 3. For a field extension F_{pf} the set

$$E(\mathbb{F}_{p^f}) = \{(x, y) \in \mathbb{F}_{p^f}^2 \mid y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\}$$

is called the set of \mathbb{F}_{p^f} -rational points on E.

An *elliptic curve* E over a field K (char(K) ≠ 2,3) is the set of solutions in K² of an equation

$$y^2 = x^3 + ax + b,$$

where $a, b \in K$ and $\Delta = -16(4a^3 + 27b^2) \neq 0$, together with some point \mathcal{O} at infinity.

► Here: K = F_p for a prime p > 3. For a field extension F_{pf} the set

$$E(\mathbb{F}_{p^f}) = \{(x, y) \in \mathbb{F}_{p^f}^2 \mid y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\}$$

is called the set of \mathbb{F}_{p^f} -rational points on E.

► The set E(F_{pf}) is an abelian group. We write + for the group law. The neutral element is the point O.

► The group E(𝔽_p) is finite. The number of points in the group is

$$#E(\mathbb{F}_p) = n = p + 1 - t,$$

where $|t| \le 2\sqrt{p}$. The number *t* is called the *trace of Frobenius*.

► The group E(𝔽_p) is finite. The number of points in the group is

$$#E(\mathbb{F}_p) = n = p + 1 - t,$$

where $|t| \le 2\sqrt{p}$. The number t is called the *trace of Frobenius*.

► For an integer m the points of order dividing m are called m-torsion points. The set of m-torsion points in E(F_{pf}) is denoted by

$$E(\mathbb{F}_{p^f})[m] = \{ P \in E(\mathbb{F}_{p^f}) \mid [m]P = \mathcal{O} \}.$$

► For a large prime divisor r of n we define the embedding degree to be the smallest integer k s.t. r | p^k - 1.

- ► For a large prime divisor r of n we define the embedding degree to be the smallest integer k s.t. r | p^k 1.
- ► All *r*-torsion points of the curve are contained in $E(\mathbb{F}_{p^k})$.

- ► For a large prime divisor r of n we define the embedding degree to be the smallest integer k s.t. r | p^k 1.
- ► All *r*-torsion points of the curve are contained in E(F_{pk}).
- The Tate Pairing is a map

$$\tau: E(\mathbb{F}_{p^k})[r] \times E(\mathbb{F}_{p^k})/rE(\mathbb{F}_{p^k}) \to \mathbb{F}_{p^k}^*/(\mathbb{F}_{p^k}^*)^r.$$

- ► For a large prime divisor r of n we define the embedding degree to be the smallest integer k s.t. r | p^k 1.
- All *r*-torsion points of the curve are contained in $E(\mathbb{F}_{p^k})$.
- The Tate Pairing is a map

$$\tau: E(\mathbb{F}_{p^k})[r] \times E(\mathbb{F}_{p^k})/rE(\mathbb{F}_{p^k}) \to \mathbb{F}_{p^k}^*/(\mathbb{F}_{p^k}^*)^r.$$

In practice one uses the reduced Tate Pairing:

$$e: E(\mathbb{F}_p)[r] \times E(\mathbb{F}_{p^k}) \to \mu_r,$$

where $\mu_r \subset \mathbb{F}_{p^k}^*$ is the group of *r*-th roots of unity.

- ► For a large prime divisor r of n we define the embedding degree to be the smallest integer k s.t. r | p^k 1.
- All *r*-torsion points of the curve are contained in $E(\mathbb{F}_{p^k})$.
- The Tate Pairing is a map

$$\tau: E(\mathbb{F}_{p^k})[r] \times E(\mathbb{F}_{p^k})/rE(\mathbb{F}_{p^k}) \to \mathbb{F}_{p^k}^*/(\mathbb{F}_{p^k}^*)^r.$$

In practice one uses the reduced Tate Pairing:

$$e: E(\mathbb{F}_p)[r] \times E(\mathbb{F}_{p^k}) \to \mu_r,$$

where $\mu_r \subset \mathbb{F}_{n^k}^*$ is the group of *r*-th roots of unity.

• We obtain a unique pairing value in μ_r by computing $\tau(P,Q)^{\frac{p^k-1}{r}}$. This is called the *final exponentiation*.

$$e: E(\mathbb{F}_p)[r] \times E(\mathbb{F}_{p^k}) \to \mu_r \subset \mathbb{F}_{p^k}^*$$

We are looking for

$$e: E(\mathbb{F}_p)[r] \times E(\mathbb{F}_{p^k}) \to \mu_r \subset \mathbb{F}_{p^k}^*$$

We are looking for

 \blacktriangleright a prime p

$$e: E(\mathbb{F}_p)[r] \times E(\mathbb{F}_{p^k}) \to \mu_r \subset \mathbb{F}_{p^k}^*$$

We are looking for

- \blacktriangleright a prime p
- and an elliptic curve E/\mathbb{F}_p ,
- whose group order n has a large prime divisor r (optimal: n = r),

$$e: E(\mathbb{F}_p)[r] \times E(\mathbb{F}_{p^k}) \to \mu_r \subset \mathbb{F}_{p^k}^*$$

We are looking for

- \blacktriangleright a prime p
- and an elliptic curve E/\mathbb{F}_p ,
- whose group order n has a large prime divisor r (optimal: n = r),
- ▶ s. t. the embedding degree *k* is small.

$$e: E(\mathbb{F}_p)[r] \times E(\mathbb{F}_{p^k}) \to \mu_r \subset \mathbb{F}_{p^k}^*$$

We are looking for

- \blacktriangleright a prime p
- and an elliptic curve E/\mathbb{F}_p ,
- whose group order n has a large prime divisor r (optimal: n = r),
- ▶ s. t. the embedding degree *k* is small.

Problem: For a random curve, k is enormous.

How can we find pairing-friendly elliptic curves?

► An elliptic curve is called *supersingular*, iff $t \equiv 0 \pmod{p}$. Otherwise it is called *ordinary*.

- ► An elliptic curve is called *supersingular*, iff $t \equiv 0 \pmod{p}$. Otherwise it is called *ordinary*.
- ► Supersingular elliptic curves have an embedding degree k ≤ 6.

- ► An elliptic curve is called *supersingular*, iff $t \equiv 0 \pmod{p}$. Otherwise it is called *ordinary*.
- ► Supersingular elliptic curves have an embedding degree k ≤ 6.
- For $p \ge 5$ it even holds: $k \le 2$. (Since $|t| \le 2\sqrt{p}$, we have t = 0 and thus n = p + 1, so $n \mid p^2 - 1$.)

- ► An elliptic curve is called *supersingular*, iff $t \equiv 0 \pmod{p}$. Otherwise it is called *ordinary*.
- ► Supersingular elliptic curves have an embedding degree k ≤ 6.
- For $p \ge 5$ it even holds: $k \le 2$. (Since $|t| \le 2\sqrt{p}$, we have t = 0 and thus n = p + 1, so $n \mid p^2 - 1$.)
- ► But, k = 6 or even k = 2 might be too small and some people don't like supersingular curves.

- ► An elliptic curve is called *supersingular*, iff $t \equiv 0 \pmod{p}$. Otherwise it is called *ordinary*.
- ► Supersingular elliptic curves have an embedding degree k ≤ 6.
- For $p \ge 5$ it even holds: $k \le 2$. (Since $|t| \le 2\sqrt{p}$, we have t = 0 and thus n = p + 1, so $n \mid p^2 - 1$.)
- ► But, k = 6 or even k = 2 might be too small and some people don't like supersingular curves.
- We focus on the construction of ordinary curves
- whose group order n is prime, i.e. r = n.

Fix a suitable value for k and find primes r, p and a number n with the following conditions:

Fix a suitable value for k and find primes r, p and a number n with the following conditions:

Fix a suitable value for k and find primes r, p and a number n with the following conditions:

•
$$n = \#E(\mathbb{F}_p) = p + 1 - t, |t| \le 2\sqrt{p},$$

$$\triangleright r \mid n$$
,

$$\blacktriangleright r \mid p^k - 1,$$

▶ $t^2 - 4p = DV^2$, $D, V \in \mathbb{Z}$, D squarefree, |D| small enough.

The last condition ensures that the curve can be constructed using the CM method. Today we will treat CM as a black box.

Fix a suitable value for k and find primes r, p and a number n with the following conditions:

$$\blacktriangleright \ n = \#E(\mathbb{F}_p) = p + 1 - t, \ |t| \le 2\sqrt{p},$$

- $\triangleright r \mid n$,
- ► $r \mid p^k 1$,

▶ $t^2 - 4p = DV^2$, $D, V \in \mathbb{Z}$, D squarefree, |D| small enough.

The last condition ensures that the curve can be constructed using the CM method. Today we will treat CM as a black box.

▶ $r \mid p^k - 1$ can be replaced by $r \mid \Phi_k(p)$, where $\Phi_k(X)$ is the *k*-th cyclotomic polynomial, since

$$X^k - 1 = \prod_{d|k} \Phi_d(X).$$

 Φ_k has degree $\varphi(k) < k$.

Miyaji, Nakabayashi and Takano (MNT, 2001) give parametrisations of p and t as polynomials in $\mathbb{Z}[u]$ s.t.

 $n(u) \mid \Phi_k(p(u)).$

The method yields ordinary elliptic curves of prime order (r = n) with embedding degree k = 3, 4, 6.

Miyaji, Nakabayashi and Takano (MNT, 2001) give parametrisations of p and t as polynomials in $\mathbb{Z}[u]$ s.t.

 $n(u) \mid \Phi_k(p(u)).$

The method yields ordinary elliptic curves of prime order (r = n) with embedding degree k = 3, 4, 6.

k	p(u)	t(u)
3	$12u^2 - 1$	$-1\pm 6u$
4	$u^2 + u + 1$	-u or $u+1$
6	$4u^2 + 1$	$1\pm 2u$

Let's compute an MNT curve. Take k = 6, i.e. we parameterise

$$p(u) = 4u^2 + 1, t(u) = 2u + 1.$$

Let's compute an MNT curve. Take k = 6, i.e. we parameterise

$$p(u) = 4u^2 + 1, t(u) = 2u + 1.$$

Then we have

$$n(u) = p(u) + 1 - t(u) = 4u^2 - 2u + 1.$$

Let's compute an MNT curve. Take k = 6, i.e. we parameterise

$$p(u) = 4u^2 + 1, t(u) = 2u + 1.$$

Then we have

$$n(u) = p(u) + 1 - t(u) = 4u^2 - 2u + 1.$$

- ► We may now plug in integer values for u until we find u₀ s.t. p(u₀) and n(u₀) are both prime.
- Example: $u_0 = 2$ yields $p(u_0) = 17$ and $n(u_0) = 13$.

Let's compute an MNT curve. Take k = 6, i.e. we parameterise

$$p(u) = 4u^2 + 1, t(u) = 2u + 1.$$

Then we have

$$n(u) = p(u) + 1 - t(u) = 4u^2 - 2u + 1.$$

- ► We may now plug in integer values for u until we find u₀ s.t. p(u₀) and n(u₀) are both prime.
- Example: $u_0 = 2$ yields $p(u_0) = 17$ and $n(u_0) = 13$.
- But we only have parameters, we do not have the curve.

In order to construct the curve via the CM method we need to find solutions to the norm equation

$$t^2 - 4p = DV^2,$$

and |D| needs to be small.

In order to construct the curve via the CM method we need to find solutions to the norm equation

$$t^2 - 4p = DV^2,$$

and |D| needs to be small.

• Let's get back to the example k = 6. We compute

$$t(u)^{2} - 4p(u) = (2u+1)^{2} - 4(4u^{2}+1) = -12u^{2} + 4u - 3.$$

In order to construct the curve via the CM method we need to find solutions to the norm equation

$$t^2 - 4p = DV^2,$$

and |D| needs to be small.

• Let's get back to the example k = 6. We compute

$$t(u)^{2} - 4p(u) = (2u+1)^{2} - 4(4u^{2}+1) = -12u^{2} + 4u - 3.$$

Therefore the norm equation becomes

$$-12u^2 + 4u - 3 = DV^2.$$

In order to construct the curve via the CM method we need to find solutions to the norm equation

$$t^2 - 4p = DV^2,$$

and |D| needs to be small.

• Let's get back to the example k = 6. We compute

$$t(u)^{2} - 4p(u) = (2u+1)^{2} - 4(4u^{2}+1) = -12u^{2} + 4u - 3.$$

Therefore the norm equation becomes

$$-12u^2 + 4u - 3 = DV^2.$$

For $u_0 = 2$ we obtain $DV^2 = -43$, here |D| is too large.

Maybe we first should find solutions to the norm equation. Let's transform the equation:

Maybe we first should find solutions to the norm equation. Let's transform the equation:

Start with

$$-12u^2 + 4u - 3 = DV^2.$$

Maybe we first should find solutions to the norm equation. Let's transform the equation:

Start with

$$-12u^2 + 4u - 3 = DV^2.$$

Multiply by -3 to get

$$36u^2 - 12u + 9 = -3DV^2.$$

Maybe we first should find solutions to the norm equation. Let's transform the equation:

Start with

$$-12u^2 + 4u - 3 = DV^2.$$

Multiply by -3 to get

$$36u^2 - 12u + 9 = -3DV^2.$$

Complete the square:

$$(6u-1)^2 + 8 = -3DV^2.$$

Maybe we first should find solutions to the norm equation. Let's transform the equation:

Start with

$$-12u^2 + 4u - 3 = DV^2.$$

Multiply by -3 to get

$$36u^2 - 12u + 9 = -3DV^2.$$

Complete the square:

$$(6u-1)^2 + 8 = -3DV^2.$$

• Actually we need to solve (replace 6u - 1 by x, V by y)

$$x^2 + 3Dy^2 = -8.$$

How can we solve the equation $x^2 + 3Dy^2 = -8$?

How can we solve the equation $x^2 + 3Dy^2 = -8$?

Theorem: If d is a positive squarefree integer then the equation

$$x^2 - dy^2 = 1$$

has infinitely many solutions. There is a solution (x_1, y_1) such that every solution has the form $\pm(x_m, y_m)$ where

$$x_m + y_m \sqrt{d} = (x_1 + y_1 \sqrt{d})^m, \ m \in \mathbb{Z}.$$

How can we solve the equation $x^2 + 3Dy^2 = -8$?

Theorem: If d is a positive squarefree integer then the equation

$$x^2 - dy^2 = 1$$

has infinitely many solutions. There is a solution (x_1, y_1) such that every solution has the form $\pm(x_m, y_m)$ where

$$x_m + y_m \sqrt{d} = (x_1 + y_1 \sqrt{d})^m, \ m \in \mathbb{Z}.$$

So if *d* = −3*D* is positive and squarefree, we can compute infinitely many solutions to our equation if we find a solution (*x*₁, *y*₁).

How can we solve the equation $x^2 + 3Dy^2 = -8$?

Theorem: If d is a positive squarefree integer then the equation

$$x^2 - dy^2 = 1$$

has infinitely many solutions. There is a solution (x_1, y_1) such that every solution has the form $\pm(x_m, y_m)$ where

$$x_m + y_m \sqrt{d} = (x_1 + y_1 \sqrt{d})^m, \ m \in \mathbb{Z}.$$

- So if *d* = −3*D* is positive and squarefree, we can compute infinitely many solutions to our equation if we find a solution (*x*₁, *y*₁).
- Use Cornacchia's algorithm to find a single solution.

Consider the field $\mathbb{Q}(\sqrt{d}) \subseteq \mathbb{C}$.

Consider the field $\mathbb{Q}(\sqrt{d}) \subseteq \mathbb{C}$.

 \blacktriangleright The norm of $\alpha = x + y\sqrt{d} \in \mathbb{Q}(\sqrt{d})$ is defined to be

$$N(\alpha) = \alpha \overline{\alpha} = (x + y\sqrt{d})(x - y\sqrt{d}) = x^2 - dy^2$$

so $x^2 - dy^2$ is the norm of the element $x + y\sqrt{d}$.

Consider the field $\mathbb{Q}(\sqrt{d}) \subseteq \mathbb{C}$.

 \blacktriangleright The norm of $\alpha = x + y\sqrt{d} \in \mathbb{Q}(\sqrt{d})$ is defined to be

$$N(\alpha) = \alpha \overline{\alpha} = (x + y\sqrt{d})(x - y\sqrt{d}) = x^2 - dy^2$$

so $x^2 - dy^2$ is the norm of the element $x + y\sqrt{d}$.

We are actually looking for an element of norm -8.

Consider the field $\mathbb{Q}(\sqrt{d}) \subseteq \mathbb{C}$.

 \blacktriangleright The norm of $\alpha = x + y\sqrt{d} \in \mathbb{Q}(\sqrt{d})$ is defined to be

$$N(\alpha) = \alpha \overline{\alpha} = (x + y\sqrt{d})(x - y\sqrt{d}) = x^2 - dy^2$$

so $x^2 - dy^2$ is the norm of the element $x + y\sqrt{d}$.

- We are actually looking for an element of norm -8.
- The norm is multiplicative:

$$N(\alpha\beta) = N(\alpha)N(\beta).$$

Consider the field $\mathbb{Q}(\sqrt{d}) \subseteq \mathbb{C}$.

• The norm of $\alpha = x + y\sqrt{d} \in \mathbb{Q}(\sqrt{d})$ is defined to be

$$N(\alpha) = \alpha \overline{\alpha} = (x + y\sqrt{d})(x - y\sqrt{d}) = x^2 - dy^2$$

so $x^2 - dy^2$ is the norm of the element $x + y\sqrt{d}$.

- We are actually looking for an element of norm -8.
- The norm is multiplicative:

$$N(\alpha\beta) = N(\alpha)N(\beta).$$

▶ We need to find only one element α of norm -8, then the infinitely many elements $\beta_m = x_m + y_m \sqrt{d}$ of norm 1 will help us to find infinitely many elements of norm -8:

$$N(\alpha\beta_m) = N(\alpha)N(\beta_m) = -8 \cdot 1 = -8.$$

Back to the example: Choose D = -11, so d = 33.

The equation becomes

$$x^2 - 33y^2 = -8.$$

Back to the example: Choose D = -11, so d = 33.

The equation becomes

$$x^2 - 33y^2 = -8.$$

A solution is (5,1). The corresponding element of Q(√33) is 5 + √33.

Back to the example: Choose D = -11, so d = 33.

The equation becomes

$$x^2 - 33y^2 = -8.$$

- A solution is (5,1). The corresponding element of Q(√33) is 5 + √33.
- A solution to

$$x^2 - 33y^2 = 1$$

is (23,4) with corresponding element $23 + 4\sqrt{33}$.

Back to the example: Choose D = -11, so d = 33.

The equation becomes

$$x^2 - 33y^2 = -8.$$

- A solution is (5,1). The corresponding element of Q(√33) is 5 + √33.
- A solution to

$$x^2 - 33y^2 = 1$$

is (23,4) with corresponding element $23 + 4\sqrt{33}$.

The elements

$$(5+\sqrt{33})(23+\sqrt{33})^m$$

all have norm -8, thus yield solutions to the original norm equation.

We now can compute many solutions to the equation $x^2 - 33y^2 = -8$.

We now can compute many solutions to the equation $x^2 - 33y^2 = -8$.

$$\begin{array}{rcl} (5+\sqrt{33})(23+\sqrt{33})^{-5} &=& -76495073+13316083\sqrt{33}\\ (5+\sqrt{33})(23+\sqrt{33})^{-4} &=& -1663723+289617\sqrt{33}\\ (5+\sqrt{33})(23+\sqrt{33})^{-3} &=& -36185+6299\sqrt{33}\\ (5+\sqrt{33})(23+\sqrt{33})^{-2} &=& -787+137\sqrt{33}\\ (5+\sqrt{33})(23+\sqrt{33})^{-1} &=& -17+3\sqrt{33}\\ (5+\sqrt{33})(23+\sqrt{33})^0 &=& 5+\sqrt{33}\\ (5+\sqrt{33})(23+\sqrt{33})^1 &=& 247+43\sqrt{33}\\ (5+\sqrt{33})(23+\sqrt{33})^2 &=& 11357+1977\sqrt{33}\\ (5+\sqrt{33})(23+\sqrt{33})^2 &=& 11357+1977\sqrt{33}\\ (5+\sqrt{33})(23+\sqrt{33})^3 &=& 522175+90899\sqrt{33}\\ (5+\sqrt{33})(23+\sqrt{33})^4 &=& 24008693+4179377\sqrt{33} \end{array}$$

And compute back to find solutions for the original equation $-12u^2 + 4u - 3 = DV^2$. Remember x = 6u - 1

And compute back to find solutions for the original equation $-12u^2 + 4u - 3 = DV^2$. Remember x = 6u - 1

$lphaeta^i$	u	V
$-76495073 + 13316083\sqrt{33}$	12749179	13316083
$-1663723 + 289617\sqrt{33}$	-2124863	289617
$-36185 + 6299\sqrt{33}$	6031	6299
$-787 + 137\sqrt{33}$	-131	137
$-17 + 3\sqrt{33}$	3	3
$5 + \sqrt{33}$	1	1
$247 + 43\sqrt{33}$	-41	43
$11357 + 1977\sqrt{33}$	1893	1977
$522175 + 90899\sqrt{33}$	-87029	90899
$24008693 + 4179377\sqrt{33}$	4001449	4179377

We hope that some of the values for u give $p(\boldsymbol{u})$ and $\boldsymbol{n}(\boldsymbol{u})$ prime.

We hope that some of the values for u give $p(\boldsymbol{u})$ and $\boldsymbol{n}(\boldsymbol{u})$ prime.

▶ We are lucky. The value u = 3 gives

$$p(u) = 37, \ n(u) = 31, \ t(u) = 7.$$

We hope that some of the values for u give p(u) and n(u) prime.

• We are lucky. The value u = 3 gives

$$p(u) = 37, \ n(u) = 31, \ t(u) = 7.$$

► Giving the parameters p = 37, n = 31, D = -11 to the CM black box, we obtain the curve

$$E: y^2 = x^3 + 13x + 11$$

over the field \mathbb{F}_{37} with 37 elements.

We hope that some of the values for u give p(u) and n(u) prime.

• We are lucky. The value u = 3 gives

$$p(u) = 37, \ n(u) = 31, \ t(u) = 7.$$

► Giving the parameters p = 37, n = 31, D = -11 to the CM black box, we obtain the curve

$$E: y^2 = x^3 + 13x + 11$$

over the field \mathbb{F}_{37} with 37 elements.

• The curve has 31 points and embedding degree k = 6.

We hope that some of the values for u give p(u) and n(u) prime.

• We are lucky. The value u = 3 gives

$$p(u) = 37, \ n(u) = 31, \ t(u) = 7.$$

► Giving the parameters p = 37, n = 31, D = -11 to the CM black box, we obtain the curve

$$E: y^2 = x^3 + 13x + 11$$

over the field \mathbb{F}_{37} with 37 elements.

- The curve has 31 points and embedding degree k = 6.
- ► Every point on the curve is a generator, since the order of the group is prime. The point (1,5) for example lies on the curve.

Generalisation of the MNT approach

We need to find parametrisations for p and n such that

 $n(u) \mid \Phi_k(p(u)).$

Generalisation of the MNT approach

We need to find parametrisations for p and n such that

 $n(u) \mid \Phi_k(p(u)).$

A result by Galbraith, McKee and Valença (2004) helps when p is parametrised as a quadratic polynomial.

Generalisation of the MNT approach

We need to find parametrisations for p and n such that

 $n(u) \mid \Phi_k(p(u)).$

A result by Galbraith, McKee and Valença (2004) helps when p is parametrised as a quadratic polynomial.

Lemma: Let p(u) ∈ ℚ[u] be a quadratic polynomial, ζ_k a primitive k-th root of unity in ℂ. Then

$$\Phi_k(p(u)) = n_1(u)n_2(u)$$

for irreducible polynomials $n_1(u), n_2(u) \in \mathbb{Q}[u]$ of degree $\varphi(k)$, if and only if the equation

$$p(z) = \zeta_k$$

has a solution in $\mathbb{Q}(\zeta_k)$.

Larger embedding degree

The MNT results can be obtained by applying this lemma. But we get more:

Larger embedding degree

The MNT results can be obtained by applying this lemma. But we get more:

For k = 12 we get the following

$$\Phi_{12}(6u^2) = n(u)n(-u),$$

where $n(u) = 36u^4 + 36u^3 + 18u^2 + 6u + 1$.

Larger embedding degree

The MNT results can be obtained by applying this lemma. But we get more:

For k = 12 we get the following

$$\Phi_{12}(6u^2) = n(u)n(-u),$$

where $n(u) = 36u^4 + 36u^3 + 18u^2 + 6u + 1$.

• This does not help, since $6u^2$ can never be a prime.

Larger embedding degree

The MNT results can be obtained by applying this lemma. But we get more:

For k = 12 we get the following

$$\Phi_{12}(6u^2) = n(u)n(-u),$$

where $n(u) = 36u^4 + 36u^3 + 18u^2 + 6u + 1$.

- This does not help, since $6u^2$ can never be a prime.
- ▶ But since n = p + 1 t we have $p \equiv t 1 \pmod{n}$, which means that

$$n \mid \Phi_k(p) \iff n \mid \Phi_k(t-1).$$

We might as well parametrise $t(u) - 1 = 6u^2$.

BN curves (Barreto, N., 2005) have embedding degree k = 12. Choose

$$\begin{aligned} n(u) &= 36u^4 + 36u^3 + 18u^2 + 6u + 1, \\ p(u) &= 36u^4 + 36u^3 + 24u^2 + 6u + 1. \end{aligned}$$

We then have $t(u) = 6u^2 + 1$,

 $n(u) \mid \Phi_{12}(p(u))$

and

$$t(u)^{2} - 4p(u) = -3(6u^{2} + 4u + 1)^{2},$$

i. e. the conditions are satisfied in $\mathbb{Z}[u]$ (as polynomials).

- Since the norm equation is of the required form with D = −3 already as polynomials, there is no need to solve an equation as in the MNT case.
- Only try different values for u until p(u) and n(u) are prime.

- Since the norm equation is of the required form with D = −3 already as polynomials, there is no need to solve an equation as in the MNT case.
- Only try different values for u until p(u) and n(u) are prime.
- Since D = −3 always, there is no need to use the CM method, since such curves always have the form

$$y^2 = x^3 + b.$$

We only need to try different values for b until the curve has the right order.

- Since the norm equation is of the required form with D = −3 already as polynomials, there is no need to solve an equation as in the MNT case.
- Only try different values for u until p(u) and n(u) are prime.
- Since D = −3 always, there is no need to use the CM method, since such curves always have the form

$$y^2 = x^3 + b.$$

- We only need to try different values for b until the curve has the right order.
- It is very easy to find BN curves of a certain bitsize.
- And they have many advantages for efficient implementation of pairings.

A BN curve with 256 bits

The curve

$$E: y^2 = x^3 + 3$$

over \mathbb{F}_p with

p = 115792089236777279154921612155485810787751121520685114240643525203619331750863

has

n = 115792089236777279154921612155485810787410839153764967643444263417404280302329

points and embedding degree k = 12. The group $E(\mathbb{F}_p)$ is generated by (1, 2).

(u = -7530851732707558283,

t = 340282366920146597199261786215051448535)

Freeman curves

Freeman curves (2006) have embedding degree k = 10. Choose

$$n(u) = 25u^4 + 25u^3 + 15u^2 + 5u + 1,$$

$$p(u) = 25u^4 + 25u^3 + 25u^2 + 10u + 3.$$

We then have $t(u) = 10u^2 + 5u + 3$,

 $n(u) \mid \Phi_{10}(p(u))$

and

$$t(u)^{2} - 4p(u) = -(15u^{2} + 10u + 3).$$

To solve the norm equation we also need to solve a Pell equation as in the classical MNT case.

Pairing-friendly elliptic curves

There are methods for constructing pairing-friendly elliptic curves with a prime order group of rational points in the following cases:

 $k \in \{3, 4, 6\}$: Miyaji, Nakabayashi, Takano (2001), k = 10: Freeman (2006), k = 12: Barreto, N. (2005).

Pairing-friendly elliptic curves

There are methods for constructing pairing-friendly elliptic curves with a prime order group of rational points in the following cases:

$k \in \{3, 4, 6\}$:	Miyaji, Nakabayashi, Takano (2001),
k = 10:	Freeman (2006),
k = 12:	Barreto, N. (2005).

For all other embedding degrees there are methods to construct pairing-friendly elliptic curves, but the groups of rational points are no longer of prime order.

For an overview see the "Taxonomy of pairing-friendly elliptic curves" (Freeman, Scott, Teske, 2006). http://eprint.iacr.org/2006/372

A *hyperelliptic curve* C of genus g over \mathbb{F}_p is given by an equation

$$C: y^2 + h(x)y = f(x),$$

where $h(x), f(x) \in \mathbb{F}_p[x]$ s. t. $\deg(f) = 2g + 1$ and $\deg(h) \le g$.

A *hyperelliptic curve* C of genus g over \mathbb{F}_p is given by an equation

$$C: y^2 + h(x)y = f(x),$$

where $h(x), f(x) \in \mathbb{F}_p[x]$ s. t. $\deg(f) = 2g + 1$ and $\deg(h) \le g$.

For cryptographic applications we are interested in the group $J_C(\mathbb{F}_p)$ (Jacobian variety). Algorithms for pairing computation are similar to those for elliptic curves.

A *hyperelliptic curve* C of genus g over \mathbb{F}_p is given by an equation

$$C: y^2 + h(x)y = f(x),$$

where $h(x), f(x) \in \mathbb{F}_p[x]$ s. t. $\deg(f) = 2g + 1$ and $\deg(h) \leq g$.

For cryptographic applications we are interested in the group $J_C(\mathbb{F}_p)$ (Jacobian variety). Algorithms for pairing computation are similar to those for elliptic curves.

Why hyperelliptic curves?

Frey, Lange: "Fast Bilinear Maps from the Tate-Lichtenbaum Pairing on Hyperelliptic Curves" (2006).

Frey, Lange: "Fast Bilinear Maps from the Tate-Lichtenbaum Pairing on Hyperelliptic Curves" (2006).

"Our method speeds up the pairing computation by a factor of about g ... Thus there is no gain for elliptic curves but for hyperelliptic curves ..."

Frey, Lange: "Fast Bilinear Maps from the Tate-Lichtenbaum Pairing on Hyperelliptic Curves" (2006).

"Our method speeds up the pairing computation by a factor of about g ... Thus there is no gain for elliptic curves but for hyperelliptic curves ..."

"Our paper is a purely theoretical one due to the lack of satisfying non-supersingular curves ..."

We look for

We look for

 \blacktriangleright a prime p

We look for

- \blacktriangleright a prime p
- and a hyperelliptic curve C/\mathbb{F}_p ,
- ▶ s. t. the group order of $J_C(\mathbb{F}_p)$ has a large prime divisor r

We look for

- a prime p
- and a hyperelliptic curve C/\mathbb{F}_p ,
- ▶ s. t. the group order of $J_C(\mathbb{F}_p)$ has a large prime divisor r
- ▶ and the embedding degree *k* is small.

We look for

- a prime p
- and a hyperelliptic curve C/\mathbb{F}_p ,
- ▶ s. t. the group order of $J_C(\mathbb{F}_p)$ has a large prime divisor r
- ▶ and the embedding degree *k* is small.

Embedding degree is defined as for elliptic curves.

Group order

The group order of $J_C(\mathbb{F}_p)$ is

$$n = \#J_C(\mathbb{F}_p) = P(1),$$

where

$$P(X) = X^{4} + a_{1}X^{3} + a_{2}X^{2} + pa_{1}X + p^{2},$$

$$P(X) = X^{6} + a_{1}X^{5} + a_{2}X^{4} + a_{3}X^{3} + pa_{2}X^{2} + p^{2}a_{1}X + p^{3},$$

for g = 2 and g = 3 respectively. We have $a_i \in \mathbb{Z}$.

Group order

The group order of $J_C(\mathbb{F}_p)$ is

$$n = \#J_C(\mathbb{F}_p) = P(1),$$

where

$$P(X) = X^{4} + a_{1}X^{3} + a_{2}X^{2} + pa_{1}X + p^{2},$$

$$n = 1 + a_{1} + a_{2} + pa_{1} + p^{2},$$

$$P(X) = X^{6} + a_{1}X^{5} + a_{2}X^{4} + a_{3}X^{3} + pa_{2}X^{2} + p^{2}a_{1}X + p^{3},$$

$$n = 1 + a_{1} + a_{2} + a_{3} + pa_{2} + p^{2}a_{1} + p^{3}$$

for g = 2 and g = 3 respectively. We have $a_i \in \mathbb{Z}$.

As in the case for elliptic curves we fix k and try to find primes p and r and a potential group order n, s. t.

As in the case for elliptic curves we fix k and try to find primes p and r and a potential group order n, s. t.

- ▶ n = P(1),
- ▶ *r* | *n*,
- ► $r \mid \Phi_k(p)$.

As in the case for elliptic curves we fix k and try to find primes p and r and a potential group order n, s. t.

- ▶ n = P(1),
- ▶ *r* | *n*,
- ► $r \mid \Phi_k(p)$.

How can we construct a hyperelliptic curve with given group order? Is there also a CM method?

As in the case for elliptic curves we fix k and try to find primes p and r and a potential group order n, s. t.

- ▶ n = P(1),
- ▶ *r* | *n*,
- ► $r \mid \Phi_k(p)$.

How can we construct a hyperelliptic curve with given group order? Is there also a CM method?

There is a CM method, but everything is much more complicated. To go into the details would take at least one more hour...

Freeman (2007) proposes an algorithm to construct hyperelliptic curves of genus g = 2 which have arbitrary embedding degree.

Freeman (2007) proposes an algorithm to construct hyperelliptic curves of genus g = 2 which have arbitrary embedding degree.

Unfortunately $\log(n)/\log(r) \approx 8$, which is very disadvantageous.

Freeman (2007) proposes an algorithm to construct hyperelliptic curves of genus g = 2 which have arbitrary embedding degree.

Unfortunately $\log(n)/\log(r) \approx 8$, which is very disadvantageous.

Open Problem 1: Find a construction for pairing-friendly genus 2 curves with smaller $\log(n)/\log(r)$.

Freeman (2007) proposes an algorithm to construct hyperelliptic curves of genus g = 2 which have arbitrary embedding degree.

Unfortunately $\log(n)/\log(r) \approx 8$, which is very disadvantageous.

Open Problem 1: Find a construction for pairing-friendly genus 2 curves with smaller $\log(n)/\log(r)$.

Open Problem 2: Find pairing-friendly curves of genus 3 and 4.

Questions?

Thank you for your attention!

