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Motivation

Pairings on elliptic curves are used in cryptology,

I as a means to attack cryptography based on elliptic curves,
to analyse the discrete logarithm problem on elliptic curves,

I or to construct crypto systems with certain special
properties:

I One-round tripartite key agreement,
I Identity Based Encryption (IBE),
I Hierarchical IBE (HIDE),
I Short signatures (BLS).
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What is a Pairing?

A pairing is a non-degenerate, bilinear map

e : G1 ×G2 → G3,

where G1, G2 are additive groups and G3 is written
multiplicatively.

I Non-degenerate: for every O 6= P ∈ G1 there exists a
Q ∈ G2 s.t. e(P,Q) 6= 1.

I Bilinear: for P1, P2 ∈ G1, Q1, Q2 ∈ G2 we have

e(P1 + P2, Q1) = e(P1, Q1)e(P2, Q1),
e(P1, Q1 + Q2) = e(P1, Q1)e(P1, Q2).

It follows: e(aP, bQ) = e(P,Q)ab = e(bP, aQ).
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Mathematical Background: Elliptic Curves

I An elliptic curve E over a field K (char(K) 6= 2, 3) is the set
of solutions in K

2 of an equation

y2 = x3 + ax + b,

where a, b ∈ K and ∆ = −16(4a3 + 27b2) 6= 0, together with
some point O at infinity.

I Here: K = Fp for a prime p > 3. For a field extension Fpf

the set

E(Fpf ) = {(x, y) ∈ F2
pf | y2 = x3 + ax + b} ∪ {O}

is called the set of Fpf -rational points on E.

I The set E(Fpf ) is an abelian group. We write + for the
group law. The neutral element is the point O.
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Mathematical Background: Elliptic Curves

I The group E(Fp) is finite. The number of points in the
group is

#E(Fp) = n = p + 1− t,

where |t| ≤ 2
√

p. The number t is called the trace of
Frobenius.

I For an integer m the points of order dividing m are called
m-torsion points. The set of m-torsion points in E(Fpf ) is
denoted by

E(Fpf )[m] = {P ∈ E(Fpf ) | [m]P = O}.
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Mathematical Background: The Tate Pairing

I For a large prime divisor r of n we define the embedding
degree to be the smallest integer k s.t. r | pk − 1.

I All r-torsion points of the curve are contained in E(Fpk).
I The Tate Pairing is a map

τ : E(Fpk)[r]× E(Fpk)/rE(Fpk) → F∗
pk/(F∗

pk)r.

I In practice one uses the reduced Tate Pairing:

e : E(Fp)[r]× E(Fpk) → µr,

where µr ⊂ F∗
pk is the group of r-th roots of unity.

I We obtain a unique pairing value in µr by computing

τ(P,Q)
pk−1

r . This is called the final exponentiation.
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Requirements

e : E(Fp)[r]× E(Fpk) → µr ⊂ F∗
pk

We are looking for

I a prime p

I and an elliptic curve E/Fp,
I whose group order n has a large prime divisor r

(optimal: n = r),
I s. t. the embedding degree k is small.

Problem: For a random curve, k is enormous.

How can we find pairing-friendly elliptic curves?
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Supersingular Curves

I An elliptic curve is called supersingular, iff t ≡ 0 (mod p).
Otherwise it is called ordinary.

I Supersingular elliptic curves have an embedding degree
k ≤ 6.

I For p ≥ 5 it even holds: k ≤ 2.
(Since |t| ≤ 2

√
p, we have t = 0 and thus n = p + 1, so

n | p2 − 1.)
I But, k = 6 or even k = 2 might be too small and some

people don’t like supersingular curves.
I We focus on the construction of ordinary curves
I whose group order n is prime, i.e. r = n.
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Conditions
Fix a suitable value for k and find primes r, p and a number n
with the following conditions:

I n = #E(Fp) = p + 1− t, |t| ≤ 2
√

p,
I r | n,
I r | pk − 1,
I t2 − 4p = DV 2, D,V ∈ Z, D squarefree, |D| small enough.

The last condition ensures that the curve can be constructed
using the CM method. Today we will treat CM as a black box.

I r | pk − 1 can be replaced by r | Φk(p), where Φk(X) is the
k-th cyclotomic polynomial, since

Xk − 1 =
∏
d|k

Φd(X).

Φk has degree ϕ(k) < k.
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MNT curves

Miyaji, Nakabayashi and Takano (MNT, 2001) give
parametrisations of p and t as polynomials in Z[u] s.t.

n(u) | Φk(p(u)).

The method yields ordinary elliptic curves of prime order
(r = n) with embedding degree k = 3, 4, 6.

k p(u) t(u)
3 12u2 − 1 −1± 6u
4 u2 + u + 1 −u or u + 1
6 4u2 + 1 1± 2u
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MNT curves

Let’s compute an MNT curve. Take k = 6, i.e. we parameterise

p(u) = 4u2 + 1, t(u) = 2u + 1.

I Then we have

n(u) = p(u) + 1− t(u) = 4u2 − 2u + 1.

I We may now plug in integer values for u until we find u0 s.t.
p(u0) and n(u0) are both prime.

I Example: u0 = 2 yields p(u0) = 17 and n(u0) = 13.
I But we only have parameters, we do not have the curve.
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MNT curves

In order to construct the curve via the CM method we need to
find solutions to the norm equation

t2 − 4p = DV 2,

and |D| needs to be small.

I Let’s get back to the example k = 6. We compute

t(u)2 − 4p(u) = (2u + 1)2 − 4(4u2 + 1) = −12u2 + 4u− 3.

I Therefore the norm equation becomes

−12u2 + 4u− 3 = DV 2.

I For u0 = 2 we obtain DV 2 = −43, here |D| is too large.
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MNT curves

Maybe we first should find solutions to the norm equation. Let’s
transform the equation:

I Start with
−12u2 + 4u− 3 = DV 2.

I Multiply by -3 to get

36u2 − 12u + 9 = −3DV 2.

I Complete the square:

(6u− 1)2 + 8 = −3DV 2.

I Actually we need to solve (replace 6u− 1 by x, V by y)

x2 + 3Dy2 = −8.
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MNT curves

How can we solve the equation x2 + 3Dy2 = −8 ?

I Theorem: If d is a positive squarefree integer then the
equation

x2 − dy2 = 1

has infinitely many solutions. There is a solution (x1, y1)
such that every solution has the form ±(xm, ym) where

xm + ym

√
d = (x1 + y1

√
d)m, m ∈ Z.

I So if d = −3D is positive and squarefree, we can compute
infinitely many solutions to our equation if we find a
solution (x1, y1).

I Use Cornacchia’s algorithm to find a single solution.
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MNT curves
Consider the field Q(

√
d) ⊆ C.

I The norm of α = x + y
√

d ∈ Q(
√

d) is defined to be

N(α) = αα = (x + y
√

d)(x− y
√

d) = x2 − dy2

so x2 − dy2 is the norm of the element x + y
√

d.
I We are actually looking for an element of norm -8.
I The norm is multiplicative:

N(αβ) = N(α)N(β).

I We need to find only one element α of norm -8, then the
infinitely many elements βm = xm + ym

√
d of norm 1 will
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MNT curves

Back to the example: Choose D = −11, so d = 33.
I The equation becomes

x2 − 33y2 = −8.

I A solution is (5, 1). The corresponding element of Q(
√

33)
is 5 +

√
33.

I A solution to
x2 − 33y2 = 1

is (23, 4) with corresponding element 23 + 4
√

33.
I The elements

(5 +
√

33)(23 +
√

33)m

all have norm -8, thus yield solutions to the original norm
equation.
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We now can compute many solutions to the equation
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MNT curves
And compute back to find solutions for the original equation
−12u2 + 4u− 3 = DV 2. Remember x = 6u− 1
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MNT curves

We hope that some of the values for u give p(u) and n(u)
prime.

I We are lucky. The value u = 3 gives

p(u) = 37, n(u) = 31, t(u) = 7.

I Giving the parameters p = 37, n = 31, D = −11 to the CM
black box, we obtain the curve

E : y2 = x3 + 13x + 11

over the field F37 with 37 elements.
I The curve has 31 points and embedding degree k = 6.
I Every point on the curve is a generator, since the order of

the group is prime. The point (1, 5) for example lies on the
curve.
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Generalisation of the MNT approach

We need to find parametrisations for p and n such that

n(u) | Φk(p(u)).

A result by Galbraith, McKee and Valença (2004) helps when p
is parametrised as a quadratic polynomial.

I Lemma: Let p(u) ∈ Q[u] be a quadratic polynomial, ζk a
primitive k-th root of unity in C. Then

Φk(p(u)) = n1(u)n2(u)

for irreducible polynomials n1(u), n2(u) ∈ Q[u] of degree
ϕ(k), if and only if the equation

p(z) = ζk

has a solution in Q(ζk).
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Larger embedding degree

The MNT results can be obtained by applying this lemma. But
we get more:

I For k = 12 we get the following

Φ12(6u2) = n(u)n(−u),

where n(u) = 36u4 + 36u3 + 18u2 + 6u + 1.
I This does not help, since 6u2 can never be a prime.
I But since n = p + 1− t we have p ≡ t− 1 (mod n), which

means that

n | Φk(p) ⇐⇒ n | Φk(t− 1).

We might as well parametrise t(u)− 1 = 6u2.
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BN curves

BN curves (Barreto, N., 2005) have embedding degree k = 12.
Choose

n(u) = 36u4 + 36u3 + 18u2 + 6u + 1,

p(u) = 36u4 + 36u3 + 24u2 + 6u + 1.

We then have t(u) = 6u2 + 1,

n(u) | Φ12(p(u))

and
t(u)2 − 4p(u) = −3(6u2 + 4u + 1)2,

i. e. the conditions are satisfied in Z[u] (as polynomials).



BN curves

I Since the norm equation is of the required form with
D = −3 already as polynomials, there is no need to solve
an equation as in the MNT case.

I Only try different values for u until p(u) and n(u) are prime.

I Since D = −3 always, there is no need to use the CM
method, since such curves always have the form

y2 = x3 + b.

I We only need to try different values for b until the curve has
the right order.

I It is very easy to find BN curves of a certain bitsize.
I And they have many advantages for efficient

implementation of pairings.
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A BN curve with 256 bits

The curve
E : y2 = x3 + 3

over Fp with

p = 115792089236777279154921612155485810787
751121520685114240643525203619331750863

has

n = 115792089236777279154921612155485810787
410839153764967643444263417404280302329

points and embedding degree k = 12. The group E(Fp) is
generated by (1, 2).
(u = −7530851732707558283,
t = 340282366920146597199261786215051448535)



Freeman curves

Freeman curves (2006) have embedding degree k = 10.
Choose

n(u) = 25u4 + 25u3 + 15u2 + 5u + 1,

p(u) = 25u4 + 25u3 + 25u2 + 10u + 3.

We then have t(u) = 10u2 + 5u + 3,

n(u) | Φ10(p(u))

and
t(u)2 − 4p(u) = −(15u2 + 10u + 3).

To solve the norm equation we also need to solve a Pell
equation as in the classical MNT case.



Pairing-friendly elliptic curves

There are methods for constructing pairing-friendly elliptic
curves with a prime order group of rational points in the
following cases:

k ∈ {3, 4, 6}: Miyaji, Nakabayashi, Takano (2001),
k = 10: Freeman (2006),
k = 12: Barreto, N. (2005).

For all other embedding degrees there are methods to
construct pairing-friendly elliptic curves, but the groups of
rational points are no longer of prime order.

For an overview see the ”Taxonomy of pairing-friendly elliptic
curves” (Freeman, Scott, Teske, 2006).
http://eprint.iacr.org/2006/372
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Outlook: Hyperelliptic curves

A hyperelliptic curve C of genus g over Fp is given by an
equation

C : y2 + h(x)y = f(x),

where h(x), f(x) ∈ Fp[x] s. t. deg(f) = 2g + 1 and deg(h) ≤ g.

For cryptographic applications we are interested in the group
JC(Fp) (Jacobian variety). Algorithms for pairing computation
are similar to those for elliptic curves.

Why hyperelliptic curves?
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Outlook: Hyperelliptic curves

Frey, Lange: ”Fast Bilinear Maps from the Tate-Lichtenbaum
Pairing on Hyperelliptic Curves” (2006).

”Our method speeds up the pairing computation by a factor of
about g ... Thus there is no gain for elliptic curves but for
hyperelliptic curves ...”

”Our paper is a purely theoretical one due to the lack of
satisfying non-supersingular curves ...”
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Requirements

We look for

I a prime p

I and a hyperelliptic curve C/Fp,
I s. t. the group order of JC(Fp) has a large prime divisor r

I and the embedding degree k is small.

Embedding degree is defined as for elliptic curves.
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Group order

The group order of JC(Fp) is

n = #JC(Fp) = P (1),

where

P (X) = X4 + a1X
3 + a2X

2 + pa1X + p2,

n = 1 + a1 + a2 + pa1 + p2,

P (X) = X6 + a1X
5 + a2X

4 + a3X
3 + pa2X

2 + p2a1X + p3,

n = 1 + a1 + a2 + a3 + pa2 + p2a1 + p3

for g = 2 and g = 3 respectively. We have ai ∈ Z.
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Conditions

As in the case for elliptic curves we fix k and try to find primes p
and r and a potential group order n, s. t.

I n = P (1),
I r | n,
I r | Φk(p).

How can we construct a hyperelliptic curve with given group
order? Is there also a CM method?

There is a CM method, but everything is much more
complicated. To go into the details would take at least one more
hour...
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”Pairing-friendly” curves for g = 2

Freeman (2007) proposes an algorithm to construct
hyperelliptic curves of genus g = 2 which have arbitrary
embedding degree.

Unfortunately log(n)/ log(r) ≈ 8, which is very
disadvantageous.

Open Problem 1: Find a construction for pairing-friendly genus
2 curves with smaller log(n)/ log(r).

Open Problem 2: Find pairing-friendly curves of genus 3 and 4.
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Questions?

Thank you for your attention!


