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Elliptic Curves

> Let F, be a finite field, ¢ = p/, p > 3,
IF, an algebraic closure of F,.

» For a,b € IF, consider solutions (z,y) in Fz of
y? =23 + ax +b.
» An elliptic curve over I, is a set
E={(z,y) EFz | y* =2® + ax + b} U{O},

where a, b € F, and the discriminant A # 0,
A = —16(4a® + 270%).
» j = —1728(4a)?/A is the j-invariant of E.
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Rational Points on Elliptic Curves

» For an extension L DO I,
E(L)={(z,y) € L* | y* = 2* + az + b} U {O}

is called the set of L-rational points on E.
» Let n = #E(F,) be the number of F -rational points.
» Hasse’s inequality states that

n=q+1—t [t| <2/4.

» t is the trace of the Frobenius endomorphism ¢,
(¢q = (2, y) = (29, y7)).
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The Group Law

» E(L) is an abelian group.
» Let P = (21,y1) and Q = (z2,y2) be points in E(L).
Point addition is defined as follows.
» P+0O=0+P=P,

> _P:(:CIJ_yl)s
» if P# —Qlet P+ Q = (z3,y3), then

x3 = AN —x— 2,
yzs = (z1 —x3)\ — 11,
where

)\_{ (yl_y2)/(x1_$2)’ IfP#Qa
(323 + a)/2y1, if P=Q.
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Elliptic Curve Cryptography

» Find a cyclic subgroup
(G) < E(F,)

with large prime order r = ord(G) and use it for
DL-based crypto.

» The size of r should be at least 160 bits s.t. the
ECDLP is considered to be hard.

» The most efficient case occurs when n = #E(F,) is
prime itself or is almost prime, i. e.

p = log(q)/log(r) ~ 1.
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Torsion Points

» LetmeZ, Pe L.
» Ifm >0letm|]P =P+ P+---+ P (mtimes).
» Ifm < 0let [m]P = [-m](—P).
» [0]P = 0.
» E(L)im] ={P € E(L) | [m]P = O} is the set of
m-torsion points in E(L).
» If pt m we have E|[m] = Z/mZ x Z/mZ.

Lemma: (Balasubramanian-Koblitz, 1998)
Let r be prime, r | n, rtq— 1, p # r. Then:

Er)CE[Fu) < r|¢" —1.
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The Embedding Degree

» The smallest such £ is called embedding degree.

» Let G € E(F,) s.t. r = ord(G) is a large prime. Then
(G) has embedding degree £, if
| gF -1,
» r{qgt—1for0<i<k.

» kis usually very large.
(Balasubramanian-Koblitz, 1998)

» Note that the conditions mean that sz contains the
set i, of r-th roots of unity.
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The Tate Pairing

» The Tate pairing is a map
Tt E(Fg)[r] x E(Fge)/rE(Fgp) — Foo/(Fe)",

which is bilinear and nondegenerate.

» To obtain a unique representative raise 7, to the
power (¢* —1)/r.

» Under certain circumstances one may take E(F)[r]
as a set of representatives for the second argument.

» For applications the first argument is usually
restricted to E(FF,)[r].

» Obtain the modified Tate pairing

e E(F)[r] x E(Fy)[r] — py C Fi.
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Pairing-Based Cryptography

» First cryptographic use of pairings were the MOV/FR
attacks on the ECDLP (1993).

» But there are lots of constructive applications, e.g.
» tripartite key agreement (Joux, 2000),
» identity-based encryption (Boneh-Franklin, 2001),
» short signatures (Boneh-Lynn-Shacham, 2001).

» Prerequisite: We need suitable elliptic curves to
practically implement pairings.
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Pairing-Friendly Curves

» An elliptic curve is pairing-friendly if it contains a
subgroup (G) C E(F,) of (large) prime order » and
embedding degree k£ where k is

» small enough that arithmetic on F . is feasible,
i.e. we can efficiently compute the Tate pairing
(— Miller’s algorithm),

» large enough that the DLP on sz is about as
intractable as the ECDLP on E(F,)[r],

i.e. the MOV/FR attack is not feasible.

» What are good values for k£?

» How can we construct curves with good k?
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The Problem

» The short signatures proposed by
Boneh-Lynn-Shacham (2001) have length log(q).

» Compare this to DSA signatures (length 320 bits,
security level 2048 e.g.).

» One gets signatures of length 2048/k. To achieve
short signatures we need k > 6.

» Boneh-Lynn-Shacham (2001)

» Original challenge: how to build pairing-friendly
curves with £ > 6?

» Modified challenge: how to build pairing-friendly
curves of prime order with & > 6?

» Suggested lower bound: £ = 10.
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Find parameters for suitable curves.
Fix a value for k, e.g. k =10 or k = 12.
We need curves with
1. n prime,
2. n=q+1—1t |t| <24,
8. nlg¢t—1,butnfqg —1foro<i<k.
Since X* — 1 = [, ®a(X) the last condition is
equivalent to

v

v

n | ®x(q), but nt ®4(q) ford < k.

v

Look for divisors of ®,(q).
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» If suitable parameters are found, try to construct a
curve with those parameters.
Use the CM method.

» The goal:
Given p, n (p > 3 prime) find a,b € F, s.t.
the elliptic curve E : y? = 2% +ax + b
has order #E(F,) =n
(and trace of the Frobenius t = p + 1 — n).

» Prerequisite:
The CM norm equation DV? = 4p — ¢*> must be
satisfied with moderate CM discriminant D.
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Complex Multiplication (Some Details)

» Compute square-free factorisation DV? = 4p — 2,
if D > 3 the constructed curve will have order
p+1++t.

» compute the Hilbert class polynomial Hp(z),
» find a root j of Hp(z) (mod p).

» The root j is the j-invariant of a curve where
» if j=0thena =0, if j = 1728 then b = 0,
» otherwise a = 3c and b = 2¢ with ¢ = Ji/(1728—j).

» Check the order. If wrong, select another curve (by
choosing a different root j or a twist of the curve).



Conditions

Required conditions for constructing pairing-friendly
curves of prime order:

1. n prime,
2. n=p+1—t,|t| <2,/p,
3. n| ®x(p), but nt &4(p) for 0 < d < k,

4. DV? = 4p — 2 for moderate D.
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The MNT Construction

» Miyaji-Nakabayashi-Takano (2001)
use the fact that n | ®,(p) to parametrise p, n and ¢.
» For example k£ = 6:
parametrise p(u) = 4u? + 1 and t(u) = 1 + 2u.
Find u € Z s.t. both p(u) and n(u) = p(u) + 1 — t(u)
are prime.

» Use CM to construct the curve,
for k € {3,4,6} the CM norm equation reduces to a
Pell equation DV? = 4n(u) — (t(u) — 2)%.

» Restriction: unable to handle larger k&
(norm equation at least quartic).
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» Restriction: usually p = logr/iogr ~ 2.
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Some Constructions

» Barreto-Lynn-Scott (2002), Brezing-Weng (2003)
» For certain values of k£ and D there exist closed-form
parametrisations for families of curves with known

equations.
(9. k=23and D =3,0ork=2"7and D = 7)

» Advantages: p closer to 1.
(best case: p =2 for k =8 and D = 3)

» Limitations: solutions known only for small D and
curve order always composite (p still 'large’).
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Extending the MNT Approach

» Galbraith-McKee-Valenca (2004)
start from the property n | ®,(p) and parametrise p(u)
such that
P (p(u)) = na(u)nz(u).

Lemma:
Let £ € N, ¢, € C a primitive k-th root of unity, p(u) € Q[u]
a quadratic polynomial. Then

D (p(u)) = m(u)ng(u)

for irreducible polynomials n,,n, € Q[u| of degree ¢(k), if
and only if p(z) = (j has a solution in Q(¢;). Otherwise
O (p(u)) is irreducible.
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Extending the MNT Approach

» Leads to conditions on quadratic p(u) s.t. the factors
of ®,(p(u)) are quartic for k € {5, 8,10, 12}.
For example k = 10: p(u) = 10u? + 5u + 2,
k= 12: p(u) = 2u? or p(u) = 6u?.

» Result: families of genus 2 curves similar to MNT
elliptic curves.

» NB: p(u) must be a prime (or prime power).

» Some conditions cannot lead to solutions:

for k = 12 the parametrisation p(u) = 6u? will never
produce a prime power.

» How about changing the strategy?
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» Start from n | &, (t(u) — 1) and parametrise t(u) s.t.
O (t(u) — 1) splits into quartic factors ny (u)na(u).

» The only restriction on ¢(u) is the Hasse bound. Since
n(u) is quartic, t(u) must be at most quadratic for
k€ {5,8,10,12}.

» Most conditions do not lead to a favourable
factorisation of the norm equation

DV? = 4n(u) — (t(u) — 2)2

» But...



New Curves

» The condition ¢(u) = 6u® + 1 does lead to a
favourable factorisation for £ = 12.

Oy (t(u) — 1) = n(u)n(—u).
» Parameters:

n(u) = 36u*+ 36u® + 18u? + 6u + 1
p(u) = 36u? + 36u® + 24u* + 6u + 1
DV? = dp—t* =3(6u® + 4du+ 1)?

NB:u € Z\ {0} (positive or negative values).



New Curves

» Since D = 3, the curve equation has the form
E(F,) :y* =2 +b,

with b > 0 adjusted to attain the right order.
(A simple sequential search quickly finds a
suitable b.)

» NB: the method always produces p =1 (mod 3)
(no supersingular curves).



Twisted Pairings

» For ordinary curves there are no distortion maps.



Twisted Pairings

» For ordinary curves there are no distortion maps.

» There exists a sextic twist £'(F,2) and an injective
group homomorphism

Y : E'(Fp2) — E(Fpe2).



Twisted Pairings

» For ordinary curves there are no distortion maps.

» There exists a sextic twist £'(F,2) and an injective
group homomorphism

Y : E'(Fp2) — E(Fpe2).
» Define a twisted pairing

¢: E(F,) x E'Fy) — Fyo,  e(P,Q) = e(P,(Q)).



Twisted Pairings

» For ordinary curves there are no distortion maps.

» There exists a sextic twist £'(F,2) and an injective
group homomorphism

Y : E'(Fp2) — E(Fpe2).
» Define a twisted pairing
é: E(F,) x E'(Fye) =, é(P,Q) = e(P,9(Q)).

» The field arithmetic needed for non-pairing
operations is restricted to ..

» The homomorphism is only needed when actually
computing pairings.



Twisted Pairings

» Let X° — ¢ be an irreducible polynomial in [ X].
Represent F .2 as F2 [ X]/(X°® — €).
Any element in F .2 has the form
as2® 4+ a2t + a3z 4+ as2® + a1z + ao for a root z of
X6 — ¢,
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Twisted Pairings

» Let X% — ¢ be an irreducible polynomial in F2 [ X].
Represent F .2 as F2 [ X]/(X°® — €).
Any element in F .2 has the form
a5z’ + agzt + a3z + as2® + a1z + ao for a root z of
X6 — ¢,

» The twistis £’ : y? = 2 + b/E.

» Let (2/,y') € E'(F,2). The mapping

¢ . ((L’l,y/) — (Z2$,,Z3y/)

does not incur any multiplication overhead and
produces sparse elements of .-



Compressed Pairings

» Pairing compression is possible with ratio 3 in a way
that naturally integrates with point compression.

» Instead of reducing a point (+/,y') € E'(F,2) to its
xz-coordinate, discard it and keep only the
y-coordinate. Recovering («',y') creates ambiguity
between three possible values of 2.



Compressed Pairings

» Pairing compression is possible with ratio 3 in a way
that naturally integrates with point compression.

» Instead of reducing a point (+/,y') € E'(F,2) to its
xz-coordinate, discard it and keep only the
y-coordinate. Recovering («',y') creates ambiguity
between three possible values of 2.

» The three points that share the same y-coordinate
are conjugates, as are the pairing values computed
on them (provided the points are n-torsion points).

» The trace of all three pairing values is the same F .
value.



Point Compression

» Discard one more bit of ¢/, i.e. do not distinguish
between ¢’ and —y/.

» Keep only the information to represent an
equivalence class {(z/, +v'), (G2/, +v'), (32’ +y') }.
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Point Compression

» Discard one more bit of ¢/, i.e. do not distinguish
between ¢’ and —y/.

» Keep only the information to represent an
equivalence class {(z/, +v'), (G2/, +v'), (32’ +y') }.

» The [F2-traces of the pairing values of all six points in
the class are equal.

» Obtain a unique compressed pairing value over F,:.

» Represent points in £'(F,) with less than log(p*) bits.
» Pairing compression with ratio : may be possible.



Open Problems

v

How to build pairing-friendly curves of genus
g € {1,2,3,4} and prime order for k/g < 32 and
¢(k) > 4 over afield F,?

v

Are there any real security problems with small D?
Can we handle really large D?

v

How are the special primes distributed? Are there
infinitely many?



If you are interested ...

» Curve Database:
http://www.ti.rwth-aachen.de/ “mnaehrig
Lots of examples of bitsizes 160, 192, 224,..., 512
and program to compute curve of chosen bitsize.

» Paulo Barreto’s Pairing-Based Crypto Lounge:
http://paginas.terra.com.br/informatica/
paulobarreto/pblounge.html



