Pairing-Friendly Elliptic Curves of Prime Order

Michael Naehrig

Lehrstuhl für Theoretische Informationstechnik
RWTH Aachen University mnaehrig@ti.rwth-aachen.de

rwowitelil

Oberseminar Computer Security, b-it
Bonn, 12.01.2006

- This is joint work with

Paulo S. L. M. Barreto

pbarreto@larc.usp.br
(University of São Paulo, Brazil).

Outline

- What are pairing-friendly curves?
- Constructing pairing-friendly curves (review)
- Curves of prime order and embedding degree $k=12$
- Notes on efficient implementation
- Open problems

Elliptic Curves

- Let \mathbb{F}_{q} be a finite field, $q=p^{f}, p>3$, $\overline{\mathbb{F}}_{q}$ an algebraic closure of \mathbb{F}_{q}.
- For $a, b \in \mathbb{F}_{q}$ consider solutions (x, y) in $\overline{\mathbb{F}}_{q}^{2}$ of

$$
y^{2}=x^{3}+a x+b
$$

Elliptic Curves

- Let \mathbb{F}_{q} be a finite field, $q=p^{f}, p>3$, $\overline{\mathbb{F}}_{q}$ an algebraic closure of \mathbb{F}_{q}.
- For $a, b \in \mathbb{F}_{q}$ consider solutions (x, y) in $\overline{\mathbb{F}}_{q}^{2}$ of

$$
y^{2}=x^{3}+a x+b .
$$

- An elliptic curve over \mathbb{F}_{q} is a set

$$
E=\left\{(x, y) \in \overline{\mathbb{F}}_{q}^{2} \mid y^{2}=x^{3}+a x+b\right\} \cup\{\mathcal{O}\},
$$

where $a, b \in \mathbb{F}_{q}$ and the discriminant $\Delta \neq 0$,
$\Delta=-16\left(4 a^{3}+27 b^{2}\right)$.

Elliptic Curves

- Let \mathbb{F}_{q} be a finite field, $q=p^{f}, p>3$, $\overline{\mathbb{F}}_{q}$ an algebraic closure of \mathbb{F}_{q}.
- For $a, b \in \mathbb{F}_{q}$ consider solutions (x, y) in $\overline{\mathbb{F}}_{q}^{2}$ of

$$
y^{2}=x^{3}+a x+b .
$$

- An elliptic curve over \mathbb{F}_{q} is a set

$$
E=\left\{(x, y) \in \overline{\mathbb{F}}_{q}^{2} \mid y^{2}=x^{3}+a x+b\right\} \cup\{\mathcal{O}\},
$$

where $a, b \in \mathbb{F}_{q}$ and the discriminant $\Delta \neq 0$,
$\Delta=-16\left(4 a^{3}+27 b^{2}\right)$.

- $j=-1728(4 a)^{3} / \Delta$ is the j-invariant of E.

Rational Points on Elliptic Curves

- For an extension $L \supseteq \mathbb{F}_{q}$

$$
E(L)=\left\{(x, y) \in L^{2} \mid y^{2}=x^{3}+a x+b\right\} \cup\{\mathcal{O}\}
$$

is called the set of L-rational points on E.

Rational Points on Elliptic Curves

- For an extension $L \supseteq \mathbb{F}_{q}$

$$
E(L)=\left\{(x, y) \in L^{2} \mid y^{2}=x^{3}+a x+b\right\} \cup\{\mathcal{O}\}
$$

is called the set of L-rational points on E.

- Let $n=\# E\left(\mathbb{F}_{q}\right)$ be the number of \mathbb{F}_{q}-rational points.

Rational Points on Elliptic Curves

- For an extension $L \supseteq \mathbb{F}_{q}$

$$
E(L)=\left\{(x, y) \in L^{2} \mid y^{2}=x^{3}+a x+b\right\} \cup\{\mathcal{O}\}
$$

is called the set of L-rational points on E.

- Let $n=\# E\left(\mathbb{F}_{q}\right)$ be the number of \mathbb{F}_{q}-rational points.
- Hasse's inequality states that

$$
n=q+1-t,|t| \leq 2 \sqrt{q}
$$

Rational Points on Elliptic Curves

- For an extension $L \supseteq \mathbb{F}_{q}$

$$
E(L)=\left\{(x, y) \in L^{2} \mid y^{2}=x^{3}+a x+b\right\} \cup\{\mathcal{O}\}
$$

is called the set of L-rational points on E.

- Let $n=\# E\left(\mathbb{F}_{q}\right)$ be the number of \mathbb{F}_{q}-rational points.
- Hasse's inequality states that

$$
n=q+1-t,|t| \leq 2 \sqrt{q}
$$

- t is the trace of the Frobenius endomorphism ϕ_{q} $\left(\phi_{q}:(x, y) \mapsto\left(x^{q}, y^{q}\right)\right)$.

The Group Law

- $E(L)$ is an abelian group.
- Let $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ be points in $E(L)$. Point addition is defined as follows.

The Group Law

- $E(L)$ is an abelian group.
- Let $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ be points in $E(L)$. Point addition is defined as follows.
- $P+\mathcal{O}=\mathcal{O}+P=P$,

The Group Law

- $E(L)$ is an abelian group.
- Let $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ be points in $E(L)$. Point addition is defined as follows.
- $P+\mathcal{O}=\mathcal{O}+P=P$,
- $-P=\left(x_{1},-y_{1}\right)$,

The Group Law

- $E(L)$ is an abelian group.
- Let $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ be points in $E(L)$. Point addition is defined as follows.
- $P+\mathcal{O}=\mathcal{O}+P=P$,
- $-P=\left(x_{1},-y_{1}\right)$,
- if $P \neq-Q$ let $P+Q=\left(x_{3}, y_{3}\right)$, then

$$
\begin{aligned}
x_{3} & =\lambda^{2}-x_{1}-x_{2} \\
y_{3} & =\left(x_{1}-x_{3}\right) \lambda-y_{1}
\end{aligned}
$$

where

$$
\lambda= \begin{cases}\left(y_{1}-y_{2}\right) /\left(x_{1}-x_{2}\right), & \text { if } P \neq Q \\ \left(3 x_{1}^{2}+a\right) / 2 y_{1}, & \text { if } P=Q\end{cases}
$$

Elliptic Curve Cryptography

- Find a cyclic subgroup

$$
\langle G\rangle \leq E\left(\mathbb{F}_{q}\right)
$$

with large prime order $r=\operatorname{ord}(G)$ and use it for DL-based crypto.

Elliptic Curve Cryptography

- Find a cyclic subgroup

$$
\langle G\rangle \leq E\left(\mathbb{F}_{q}\right)
$$

with large prime order $r=\operatorname{ord}(G)$ and use it for DL-based crypto.

- The size of r should be at least 160 bits s.t. the ECDLP is considered to be hard.

Elliptic Curve Cryptography

- Find a cyclic subgroup

$$
\langle G\rangle \leq E\left(\mathbb{F}_{q}\right)
$$

with large prime order $r=\operatorname{ord}(G)$ and use it for DL-based crypto.

- The size of r should be at least 160 bits s.t. the ECDLP is considered to be hard.
- The most efficient case occurs when $n=\# E\left(\mathbb{F}_{q}\right)$ is prime itself or is almost prime, i. e.

$$
\rho=\log (q) / \log (r) \approx 1
$$

Torsion Points

- Let $m \in \mathbb{Z}, P \in E$.
- If $m>0$ let $[m] P=P+P+\cdots+P$ (m times).
- If $m<0$ let $[m] P=[-m](-P)$.
- $[0] P=\mathcal{O}$.

Torsion Points

- Let $m \in \mathbb{Z}, P \in E$.
- If $m>0$ let $[m] P=P+P+\cdots+P$ (m times).
- If $m<0$ let $[m] P=[-m](-P)$.
- $[0] P=\mathcal{O}$.
- $E(L)[m]=\{P \in E(L) \mid[m] P=\mathcal{O}\}$ is the set of m-torsion points in $E(L)$.

Torsion Points

- Let $m \in \mathbb{Z}, P \in E$.
- If $m>0$ let $[m] P=P+P+\cdots+P$ (m times).
- If $m<0$ let $[m] P=[-m](-P)$.
- $[0] P=\mathcal{O}$.
- $E(L)[m]=\{P \in E(L) \mid[m] P=\mathcal{O}\}$ is the set of m-torsion points in $E(L)$.
- If $p \nmid m$ we have $E[m] \cong \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}$.

Torsion Points

- Let $m \in \mathbb{Z}, P \in E$.
- If $m>0$ let $[m] P=P+P+\cdots+P$ (m times).
- If $m<0$ let $[m] P=[-m](-P)$.
- $[0] P=\mathcal{O}$.
- $E(L)[m]=\{P \in E(L) \mid[m] P=\mathcal{O}\}$ is the set of m-torsion points in $E(L)$.
- If $p \nmid m$ we have $E[m] \cong \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}$.

Lemma: (Balasubramanian-Koblitz, 1998)
Let r be prime, $r \mid n, r \nmid q-1, p \neq r$. Then:

$$
E[r] \subseteq E\left(\mathbb{F}_{q^{k}}\right) \Longleftrightarrow r \mid q^{k}-1 .
$$

The Embedding Degree

- The smallest such k is called embedding degree.

The Embedding Degree

- The smallest such k is called embedding degree.
- Let $G \in E\left(\mathbb{F}_{q}\right)$ s.t. $r=\operatorname{ord}(G)$ is a large prime. Then $\langle G\rangle$ has embedding degree k, if
- $r \mid q^{k}-1$,
- $r \nmid q^{i}-1$ for $0<i<k$.

The Embedding Degree

- The smallest such k is called embedding degree.
- Let $G \in E\left(\mathbb{F}_{q}\right)$ s.t. $r=\operatorname{ord}(G)$ is a large prime. Then $\langle G\rangle$ has embedding degree k, if
- $r \mid q^{k}-1$,
- $r \nmid q^{i}-1$ for $0<i<k$.
- k is usually very large. (Balasubramanian-Koblitz, 1998)

The Embedding Degree

- The smallest such k is called embedding degree.
- Let $G \in E\left(\mathbb{F}_{q}\right)$ s.t. $r=\operatorname{ord}(G)$ is a large prime. Then $\langle G\rangle$ has embedding degree k, if
- $r \mid q^{k}-1$,
- $r \nmid q^{i}-1$ for $0<i<k$.
- k is usually very large. (Balasubramanian-Koblitz, 1998)
- Note that the conditions mean that $\mathbb{F}_{q^{k}}^{*}$ contains the set μ_{r} of r-th roots of unity.

The Tate Pairing

- The Tate pairing is a map

$$
\tau_{r}: E\left(\mathbb{F}_{q^{k}}\right)[r] \times E\left(\mathbb{F}_{q^{k}}\right) / r E\left(\mathbb{F}_{q^{k}}\right) \rightarrow \mathbb{F}_{q^{k}}^{*} /\left(\mathbb{F}_{q^{k}}^{*}\right)^{r},
$$

which is bilinear and nondegenerate.

The Tate Pairing

- The Tate pairing is a map

$$
\tau_{r}: E\left(\mathbb{F}_{q^{k}}\right)[r] \times E\left(\mathbb{F}_{q^{k}}\right) / r E\left(\mathbb{F}_{q^{k}}\right) \rightarrow \mathbb{F}_{q^{k}}^{*} /\left(\mathbb{F}_{q^{k}}^{*}\right)^{r},
$$

which is bilinear and nondegenerate.

- To obtain a unique representative raise τ_{r} to the power $\left(q^{k}-1\right) / r$.

The Tate Pairing

- The Tate pairing is a map

$$
\tau_{r}: E\left(\mathbb{F}_{q^{k}}\right)[r] \times E\left(\mathbb{F}_{q^{k}}\right) / r E\left(\mathbb{F}_{q^{k}}\right) \rightarrow \mathbb{F}_{q^{k}}^{*} /\left(\mathbb{F}_{q^{k}}^{*}\right)^{r},
$$

which is bilinear and nondegenerate.

- To obtain a unique representative raise τ_{r} to the power $\left(q^{k}-1\right) / r$.
- Under certain circumstances one may take $E\left(\mathbb{F}_{q^{k}}\right)[r]$ as a set of representatives for the second argument.

The Tate Pairing

- The Tate pairing is a map

$$
\tau_{r}: E\left(\mathbb{F}_{q^{k}}\right)[r] \times E\left(\mathbb{F}_{q^{k}}\right) / r E\left(\mathbb{F}_{q^{k}}\right) \rightarrow \mathbb{F}_{q^{k}}^{*} /\left(\mathbb{F}_{q^{k}}^{*}\right)^{r},
$$

which is bilinear and nondegenerate.

- To obtain a unique representative raise τ_{r} to the power $\left(q^{k}-1\right) / r$.
- Under certain circumstances one may take $E\left(\mathbb{F}_{q^{k}}\right)[r]$ as a set of representatives for the second argument.
- For applications the first argument is usually restricted to $E\left(\mathbb{F}_{q}\right)[r]$.

The Tate Pairing

- The Tate pairing is a map

$$
\tau_{r}: E\left(\mathbb{F}_{q^{k}}\right)[r] \times E\left(\mathbb{F}_{q^{k}}\right) / r E\left(\mathbb{F}_{q^{k}}\right) \rightarrow \mathbb{F}_{q^{k}}^{*} /\left(\mathbb{F}_{q^{k}}^{*}\right)^{r},
$$

which is bilinear and nondegenerate.

- To obtain a unique representative raise τ_{r} to the power $\left(q^{k}-1\right) / r$.
- Under certain circumstances one may take $E\left(\mathbb{F}_{q^{k}}\right)[r]$ as a set of representatives for the second argument.
- For applications the first argument is usually restricted to $E\left(\mathbb{F}_{q}\right)[r]$.
- Obtain the modified Tate pairing

$$
e_{r}: E\left(\mathbb{F}_{q}\right)[r] \times E\left(\mathbb{F}_{q^{k}}\right)[r] \rightarrow \mu_{r} \subseteq \mathbb{F}_{q^{k}}^{*} .
$$

Pairing-Based Cryptography

- First cryptographic use of pairings were the MOV/FR attacks on the ECDLP (1993).

Pairing-Based Cryptography

- First cryptographic use of pairings were the MOV/FR attacks on the ECDLP (1993).
- But there are lots of constructive applications, e.g.
- tripartite key agreement (Joux, 2000),
- identity-based encryption (Boneh-Franklin, 2001),
- short signatures (Boneh-Lynn-Shacham, 2001).

Pairing-Based Cryptography

- First cryptographic use of pairings were the MOV/FR attacks on the ECDLP (1993).
- But there are lots of constructive applications, e.g.
- tripartite key agreement (Joux, 2000),
- identity-based encryption (Boneh-Franklin, 2001),
- short signatures (Boneh-Lynn-Shacham, 2001).
- Prerequisite: We need suitable elliptic curves to practically implement pairings.

Pairing-Friendly Curves

- An elliptic curve is pairing-friendly if it contains a subgroup $\langle G\rangle \subseteq E\left(\mathbb{F}_{q}\right)$ of (large) prime order r and embedding degree k where k is

Pairing-Friendly Curves

- An elliptic curve is pairing-friendly if it contains a subgroup $\langle G\rangle \subseteq E\left(\mathbb{F}_{q}\right)$ of (large) prime order r and embedding degree k where k is
- small enough that arithmetic on $\mathbb{F}_{q^{k}}$ is feasible, i.e. we can efficiently compute the Tate pairing
$(\rightarrow$ Miller's algorithm),

Pairing-Friendly Curves

- An elliptic curve is pairing-friendly if it contains a subgroup $\langle G\rangle \subseteq E\left(\mathbb{F}_{q}\right)$ of (large) prime order r and embedding degree k where k is
- small enough that arithmetic on $\mathbb{F}_{q^{k}}$ is feasible, i.e. we can efficiently compute the Tate pairing $(\rightarrow$ Miller's algorithm),
- large enough that the DLP on $\mathbb{F}_{q^{k}}^{*}$ is about as intractable as the ECDLP on $E\left(\mathbb{F}_{q}\right)[r]$, i.e. the MOV/FR attack is not feasible.

Pairing-Friendly Curves

- An elliptic curve is pairing-friendly if it contains a subgroup $\langle G\rangle \subseteq E\left(\mathbb{F}_{q}\right)$ of (large) prime order r and embedding degree k where k is
- small enough that arithmetic on $\mathbb{F}_{q^{k}}$ is feasible, i.e. we can efficiently compute the Tate pairing $(\rightarrow$ Miller's algorithm),
- large enough that the DLP on $\mathbb{F}_{q^{k}}^{*}$ is about as intractable as the ECDLP on $E\left(\mathbb{F}_{q}\right)[r]$, i.e. the MOV/FR attack is not feasible.
- What are good values for k ?

Pairing-Friendly Curves

- An elliptic curve is pairing-friendly if it contains a subgroup $\langle G\rangle \subseteq E\left(\mathbb{F}_{q}\right)$ of (large) prime order r and embedding degree k where k is
- small enough that arithmetic on $\mathbb{F}_{q^{k}}$ is feasible, i.e. we can efficiently compute the Tate pairing $(\rightarrow$ Miller's algorithm),
- large enough that the DLP on $\mathbb{F}_{q^{k}}^{*}$ is about as intractable as the ECDLP on $E\left(\mathbb{F}_{q}\right)[r]$, i.e. the MOV/FR attack is not feasible.
- What are good values for k ?
- How can we construct curves with good k ?

The Problem

- The short signatures proposed by Boneh-Lynn-Shacham (2001) have length $\log (q)$.

The Problem

- The short signatures proposed by Boneh-Lynn-Shacham (2001) have length $\log (q)$.
- Compare this to DSA signatures (length 320 bits, security level 2048 e.g.).

The Problem

- The short signatures proposed by Boneh-Lynn-Shacham (2001) have length $\log (q)$.
- Compare this to DSA signatures (length 320 bits, security level 2048 e.g.).
- One gets signatures of length 2048/k. To achieve short signatures we need $k>6$.

The Problem

- The short signatures proposed by Boneh-Lynn-Shacham (2001) have length $\log (q)$.
- Compare this to DSA signatures (length 320 bits, security level 2048 e.g.).
- One gets signatures of length 2048/k. To achieve short signatures we need $k>6$.
- Boneh-Lynn-Shacham (2001)
- Original challenge: how to build pairing-friendly curves with $k>6$?
- Modified challenge: how to build pairing-friendly curves of prime order with $k>6$?

The Problem

- The short signatures proposed by Boneh-Lynn-Shacham (2001) have length $\log (q)$.
- Compare this to DSA signatures (length 320 bits, security level 2048 e.g.).
- One gets signatures of length 2048/k. To achieve short signatures we need $k>6$.
- Boneh-Lynn-Shacham (2001)
- Original challenge: how to build pairing-friendly curves with $k>6$?
- Modified challenge: how to build pairing-friendly curves of prime order with $k>6$?
- Suggested lower bound: $k=10$.

Parameters

- Find parameters for suitable curves. Fix a value for k, e.g. $k=10$ or $k=12$.

Parameters

- Find parameters for suitable curves. Fix a value for k, e.g. $k=10$ or $k=12$.
- We need curves with

1. n prime,
2. $n=q+1-t,|t| \leq 2 \sqrt{q}$,
3. $n \mid q^{k}-1$, but $n \nmid q^{i}-1$ for $0<i<k$.

Parameters

- Find parameters for suitable curves.

Fix a value for k, e.g. $k=10$ or $k=12$.

- We need curves with

1. n prime,
2. $n=q+1-t,|t| \leq 2 \sqrt{q}$,
3. $n \mid q^{k}-1$, but $n \nmid q^{i}-1$ for $0<i<k$.

- Since $X^{k}-1=\prod_{d \mid k} \Phi_{d}(X)$ the last condition is equivalent to

$$
n \mid \Phi_{k}(q), \text { but } n \nmid \Phi_{d}(q) \text { for } d<k .
$$

Parameters

- Find parameters for suitable curves.

Fix a value for k, e.g. $k=10$ or $k=12$.

- We need curves with

1. n prime,
2. $n=q+1-t,|t| \leq 2 \sqrt{q}$,
3. $n \mid q^{k}-1$, but $n \nmid q^{i}-1$ for $0<i<k$.

- Since $X^{k}-1=\prod_{d \mid k} \Phi_{d}(X)$ the last condition is equivalent to

$$
n \mid \Phi_{k}(q), \text { but } n \nmid \Phi_{d}(q) \text { for } d<k .
$$

- Look for divisors of $\Phi_{k}(q)$.

Complex Multiplication (CM)

- If suitable parameters are found, try to construct a curve with those parameters. Use the CM method.

Complex Multiplication (CM)

- If suitable parameters are found, try to construct a curve with those parameters. Use the CM method.
- The goal:

Given p, n ($p>3$ prime) find $a, b \in \mathbb{F}_{p}$ s.t. the elliptic curve $E: y^{2}=x^{3}+a x+b$
has order $\# E\left(\mathbb{F}_{p}\right)=n$
(and trace of the Frobenius $t=p+1-n$).

Complex Multiplication (CM)

- If suitable parameters are found, try to construct a curve with those parameters. Use the CM method.
- The goal:

Given p, n ($p>3$ prime) find $a, b \in \mathbb{F}_{p}$ s.t. the elliptic curve $E: y^{2}=x^{3}+a x+b$
has order $\# E\left(\mathbb{F}_{p}\right)=n$
(and trace of the Frobenius $t=p+1-n$).

- Prerequisite:

The CM norm equation $D V^{2}=4 p-t^{2}$ must be satisfied with moderate CM discriminant D.

Complex Multiplication (Some Details)

- Compute square-free factorisation $D V^{2}=4 p-t^{2}$, if $D>3$ the constructed curve will have order $p+1 \pm t$.

Complex Multiplication (Some Details)

- Compute square-free factorisation $D V^{2}=4 p-t^{2}$, if $D>3$ the constructed curve will have order $p+1 \pm t$.
- compute the Hilbert class polynomial $H_{D}(z)$,

Complex Multiplication (Some Details)

- Compute square-free factorisation $D V^{2}=4 p-t^{2}$, if $D>3$ the constructed curve will have order $p+1 \pm t$.
- compute the Hilbert class polynomial $H_{D}(z)$,
- find a root j of $H_{D}(z)(\bmod p)$.

Complex Multiplication (Some Details)

- Compute square-free factorisation $D V^{2}=4 p-t^{2}$, if $D>3$ the constructed curve will have order $p+1 \pm t$.
- compute the Hilbert class polynomial $H_{D}(z)$,
- find a root j of $H_{D}(z)(\bmod p)$.
- The root j is the j-invariant of a curve where
- if $j=0$ then $a=0$, if $j=1728$ then $b=0$,
- otherwise $a=3 c$ and $b=2 c$ with $c=j /(1728-j)$.

Complex Multiplication (Some Details)

- Compute square-free factorisation $D V^{2}=4 p-t^{2}$, if $D>3$ the constructed curve will have order $p+1 \pm t$.
- compute the Hilbert class polynomial $H_{D}(z)$,
- find a root j of $H_{D}(z)(\bmod p)$.
- The root j is the j-invariant of a curve where
- if $j=0$ then $a=0$, if $j=1728$ then $b=0$,
- otherwise $a=3 c$ and $b=2 c$ with $c=j /(1728-j)$.
- Check the order. If wrong, select another curve (by choosing a different root j or a twist of the curve).

Conditions

Required conditions for constructing pairing-friendly curves of prime order:

1. n prime,
2. $n=p+1-t,|t| \leq 2 \sqrt{p}$,
3. $n \mid \Phi_{k}(p)$, but $n \nmid \Phi_{d}(p)$ for $0<d<k$,
4. $D V^{2}=4 p-t^{2}$ for moderate D.

The MNT Construction

- Miyaji-Nakabayashi-Takano (2001) use the fact that $n \mid \Phi_{k}(p)$ to parametrise p, n and t.

The MNT Construction

- Miyaji-Nakabayashi-Takano (2001) use the fact that $n \mid \Phi_{k}(p)$ to parametrise p, n and t.
- For example $k=6$: parametrise $p(u)=4 u^{2}+1$ and $t(u)=1 \pm 2 u$. Find $u \in \mathbb{Z}$ s.t. both $p(u)$ and $n(u)=p(u)+1-t(u)$ are prime.

The MNT Construction

- Miyaji-Nakabayashi-Takano (2001) use the fact that $n \mid \Phi_{k}(p)$ to parametrise p, n and t.
- For example $k=6$:
parametrise $p(u)=4 u^{2}+1$ and $t(u)=1 \pm 2 u$. Find $u \in \mathbb{Z}$ s.t. both $p(u)$ and $n(u)=p(u)+1-t(u)$ are prime.
- Use CM to construct the curve, for $k \in\{3,4,6\}$ the CM norm equation reduces to a Pell equation $D V^{2}=4 n(u)-(t(u)-2)^{2}$.

The MNT Construction

- Miyaji-Nakabayashi-Takano (2001) use the fact that $n \mid \Phi_{k}(p)$ to parametrise p, n and t.
- For example $k=6$:
parametrise $p(u)=4 u^{2}+1$ and $t(u)=1 \pm 2 u$. Find $u \in \mathbb{Z}$ s.t. both $p(u)$ and $n(u)=p(u)+1-t(u)$ are prime.
- Use CM to construct the curve, for $k \in\{3,4,6\}$ the CM norm equation reduces to a Pell equation $D V^{2}=4 n(u)-(t(u)-2)^{2}$.
- Restriction: unable to handle larger k (norm equation at least quartic).

Some Constructions

- Cocks-Pinch (2002) algorithm based on the property that $r \mid n=p+1-t$ and $r \mid p^{k}-1$.
$\Rightarrow t-1$ is a primitive k-th root of unity $\bmod r$. Strategy: take even $t=2 a$ and solve the norm equation mod r :

$$
D V^{2}=4 n-(t-2)^{2} \Rightarrow V \equiv \frac{2(a-1)}{\sqrt{-D}}(\bmod r)
$$

Compute $p=\left(D V^{2}+t^{2}\right) / 4, n=p+1-t$.

Some Constructions

- Cocks-Pinch (2002) algorithm based on the property that $r \mid n=p+1-t$ and $r \mid p^{k}-1$.
$\Rightarrow t-1$ is a primitive k-th root of unity $\bmod r$. Strategy: take even $t=2 a$ and solve the norm equation mod r :

$$
D V^{2}=4 n-(t-2)^{2} \Rightarrow V \equiv \frac{2(a-1)}{\sqrt{-D}}(\bmod r)
$$

Compute $p=\left(D V^{2}+t^{2}\right) / 4, n=p+1-t$.

- Restriction: usually $\rho=\log p / \log r \approx 2$.

Some Constructions

- Barreto-Lynn-Scott (2002), Brezing-Weng (2003)
- For certain values of k and D there exist closed-form parametrisations for families of curves with known equations.

$$
\text { (e.g. } k=2^{i} 3^{j} \text { and } D=3 \text {, or } k=2^{i} 7^{j} \text { and } D=7 \text {) }
$$

Some Constructions

- Barreto-Lynn-Scott (2002), Brezing-Weng (2003)
- For certain values of k and D there exist closed-form parametrisations for families of curves with known equations.

$$
\text { (e.g. } k=2^{i} 3^{j} \text { and } D=3 \text {, or } k=2^{i} 7^{j} \text { and } D=7 \text {) }
$$

- Advantages: ρ closer to 1.
(best case: $\rho=\frac{5}{4}$ for $k=8$ and $D=3$)

Some Constructions

- Barreto-Lynn-Scott (2002), Brezing-Weng (2003)
- For certain values of k and D there exist closed-form parametrisations for families of curves with known equations. (e.g. $k=2^{i} 3^{j}$ and $D=3$, or $k=2^{i} 7^{j}$ and $D=7$)
- Advantages: ρ closer to 1. (best case: $\rho=\frac{5}{4}$ for $k=8$ and $D=3$)
- Limitations: solutions known only for small D and curve order always composite (ρ still 'large').

Extending the MNT Approach

- Galbraith-McKee-Valença (2004) start from the property $n \mid \Phi_{k}(p)$ and parametrise $p(u)$ such that

$$
\Phi_{k}(p(u))=n_{1}(u) n_{2}(u)
$$

Extending the MNT Approach

- Galbraith-McKee-Valença (2004) start from the property $n \mid \Phi_{k}(p)$ and parametrise $p(u)$ such that

$$
\Phi_{k}(p(u))=n_{1}(u) n_{2}(u)
$$

Lemma:

Let $k \in \mathbb{N}, \zeta_{k} \in \mathbb{C}$ a primitive k-th root of unity, $p(u) \in \mathbb{Q}[u]$ a quadratic polynomial. Then

$$
\Phi_{k}(p(u))=n_{1}(u) n_{2}(u)
$$

for irreducible polynomials $n_{1}, n_{2} \in \mathbb{Q}[u]$ of degree $\varphi(k)$, if and only if $p(z)=\zeta_{k}$ has a solution in $\mathbb{Q}\left(\zeta_{k}\right)$. Otherwise $\Phi_{k}(p(u))$ is irreducible.

Extending the MNT Approach

- Leads to conditions on quadratic $p(u)$ s.t. the factors of $\Phi_{k}(p(u))$ are quartic for $k \in\{5,8,10,12\}$. For example $k=10: p(u)=10 u^{2}+5 u+2$, $k=12: p(u)=2 u^{2}$ or $p(u)=6 u^{2}$.

Extending the MNT Approach

- Leads to conditions on quadratic $p(u)$ s.t. the factors of $\Phi_{k}(p(u))$ are quartic for $k \in\{5,8,10,12\}$. For example $k=10: p(u)=10 u^{2}+5 u+2$, $k=12: p(u)=2 u^{2}$ or $p(u)=6 u^{2}$.
- Result: families of genus 2 curves similar to MNT elliptic curves.

Extending the MNT Approach

- Leads to conditions on quadratic $p(u)$ s.t. the factors of $\Phi_{k}(p(u))$ are quartic for $k \in\{5,8,10,12\}$. For example $k=10: p(u)=10 u^{2}+5 u+2$, $k=12$: $p(u)=2 u^{2}$ or $p(u)=6 u^{2}$.
- Result: families of genus 2 curves similar to MNT elliptic curves.
- NB: $p(u)$ must be a prime (or prime power).

Extending the MNT Approach

- Leads to conditions on quadratic $p(u)$ s.t. the factors of $\Phi_{k}(p(u))$ are quartic for $k \in\{5,8,10,12\}$. For example $k=10: p(u)=10 u^{2}+5 u+2$, $k=12$: $p(u)=2 u^{2}$ or $p(u)=6 u^{2}$.
- Result: families of genus 2 curves similar to MNT elliptic curves.
- NB: $p(u)$ must be a prime (or prime power).
- Some conditions cannot lead to solutions: for $k=12$ the parametrisation $p(u)=6 u^{2}$ will never produce a prime power.

Extending the MNT Approach

- Leads to conditions on quadratic $p(u)$ s.t. the factors of $\Phi_{k}(p(u))$ are quartic for $k \in\{5,8,10,12\}$. For example $k=10: p(u)=10 u^{2}+5 u+2$, $k=12$: $p(u)=2 u^{2}$ or $p(u)=6 u^{2}$.
- Result: families of genus 2 curves similar to MNT elliptic curves.
- NB: $p(u)$ must be a prime (or prime power).
- Some conditions cannot lead to solutions: for $k=12$ the parametrisation $p(u)=6 u^{2}$ will never produce a prime power.
- How about changing the strategy?

New Strategy

- Start from $n \mid \Phi_{k}(t(u)-1)$ and parametrise $t(u)$ s.t. $\Phi_{k}(t(u)-1)$ splits into quartic factors $n_{1}(u) n_{2}(u)$.
- The only restriction on $t(u)$ is the Hasse bound. Since $n(u)$ is quartic, $t(u)$ must be at most quadratic for $k \in\{5,8,10,12\}$.

New Strategy

- Start from $n \mid \Phi_{k}(t(u)-1)$ and parametrise $t(u)$ s.t. $\Phi_{k}(t(u)-1)$ splits into quartic factors $n_{1}(u) n_{2}(u)$.
- The only restriction on $t(u)$ is the Hasse bound. Since $n(u)$ is quartic, $t(u)$ must be at most quadratic for $k \in\{5,8,10,12\}$.
- Most conditions do not lead to a favourable factorisation of the norm equation

$$
D V^{2}=4 n(u)-(t(u)-2)^{2}
$$

New Strategy

- Start from $n \mid \Phi_{k}(t(u)-1)$ and parametrise $t(u)$ s.t. $\Phi_{k}(t(u)-1)$ splits into quartic factors $n_{1}(u) n_{2}(u)$.
- The only restriction on $t(u)$ is the Hasse bound. Since $n(u)$ is quartic, $t(u)$ must be at most quadratic for $k \in\{5,8,10,12\}$.
- Most conditions do not lead to a favourable factorisation of the norm equation

$$
D V^{2}=4 n(u)-(t(u)-2)^{2}
$$

- But...

New Curves

- The condition $t(u)=6 u^{2}+1$ does lead to a favourable factorisation for $k=12$.

$$
\Phi_{k}(t(u)-1)=n(u) n(-u) .
$$

- Parameters:

$$
\begin{aligned}
n(u) & =36 u^{4}+36 u^{3}+18 u^{2}+6 u+1 \\
p(u) & =36 u^{4}+36 u^{3}+24 u^{2}+6 u+1 \\
D V^{2} & =4 p-t^{2}=3\left(6 u^{2}+4 u+1\right)^{2}
\end{aligned}
$$

NB: $u \in \mathbb{Z} \backslash\{0\}$ (positive or negative values).

New Curves

- Since $D=3$, the curve equation has the form

$$
E\left(\mathbb{F}_{p}\right): y^{2}=x^{3}+b,
$$

with $b>0$ adjusted to attain the right order. (A simple sequential search quickly finds a suitable b.)

- NB: the method always produces $p \equiv 1(\bmod 3)$ (no supersingular curves).

Twisted Pairings

- For ordinary curves there are no distortion maps.

Twisted Pairings

- For ordinary curves there are no distortion maps.
- There exists a sextic twist $E^{\prime}\left(\mathbb{F}_{p^{2}}\right)$ and an injective group homomorphism

$$
\psi: E^{\prime}\left(\mathbb{F}_{p^{2}}\right) \rightarrow E\left(\mathbb{F}_{p^{12}}\right) .
$$

Twisted Pairings

- For ordinary curves there are no distortion maps.
- There exists a sextic twist $E^{\prime}\left(\mathbb{F}_{p^{2}}\right)$ and an injective group homomorphism

$$
\psi: E^{\prime}\left(\mathbb{F}_{p^{2}}\right) \rightarrow E\left(\mathbb{F}_{p^{12}}\right) .
$$

- Define a twisted pairing

$$
\hat{e}: E\left(\mathbb{F}_{p}\right) \times E^{\prime}\left(\mathbb{F}_{p^{2}}\right) \rightarrow \mathbb{F}_{p^{12}}^{*}, \quad \hat{e}\left(P, Q^{\prime}\right)=e\left(P, \psi\left(Q^{\prime}\right)\right) .
$$

Twisted Pairings

- For ordinary curves there are no distortion maps.
- There exists a sextic twist $E^{\prime}\left(\mathbb{F}_{p^{2}}\right)$ and an injective group homomorphism

$$
\psi: E^{\prime}\left(\mathbb{F}_{p^{2}}\right) \rightarrow E\left(\mathbb{F}_{p^{12}}\right) .
$$

- Define a twisted pairing

$$
\hat{e}: E\left(\mathbb{F}_{p}\right) \times E^{\prime}\left(\mathbb{F}_{p^{2}}\right) \rightarrow \mathbb{F}_{p^{12}}^{*}, \quad \hat{e}\left(P, Q^{\prime}\right)=e\left(P, \psi\left(Q^{\prime}\right)\right) .
$$

- The field arithmetic needed for non-pairing operations is restricted to $\mathbb{F}_{p^{2}}$.
- The homomorphism is only needed when actually computing pairings.

Twisted Pairings

- Let $X^{6}-\xi$ be an irreducible polynomial in $\mathbb{F}_{p^{2}}[X]$. Represent $\mathbb{F}_{p^{12}}$ as $\mathbb{F}_{p^{2}}[X] /\left(X^{6}-\xi\right)$.
Any element in $\mathbb{F}_{p^{12}}$ has the form
$a_{5} z^{5}+a_{4} z^{4}+a_{3} z^{3}+a_{2} z^{2}+a_{1} z+a_{0}$ for a root z of $X^{6}-\xi$.

Twisted Pairings

- Let $X^{6}-\xi$ be an irreducible polynomial in $\mathbb{F}_{p^{2}}[X]$. Represent $\mathbb{F}_{p^{12}}$ as $\mathbb{F}_{p^{2}}[X] /\left(X^{6}-\xi\right)$.
Any element in $\mathbb{F}_{p^{12}}$ has the form
$a_{5} z^{5}+a_{4} z^{4}+a_{3} z^{3}+a_{2} z^{2}+a_{1} z+a_{0}$ for a root z of $X^{6}-\xi$.
- The twist is $E^{\prime}: y^{\prime 2}=x^{\prime 3}+b / \xi$.

Twisted Pairings

- Let $X^{6}-\xi$ be an irreducible polynomial in $\mathbb{F}_{p^{2}}[X]$. Represent $\mathbb{F}_{p^{12}}$ as $\mathbb{F}_{p^{2}}[X] /\left(X^{6}-\xi\right)$.
Any element in $\mathbb{F}_{p^{12}}$ has the form
$a_{5} z^{5}+a_{4} z^{4}+a_{3} z^{3}+a_{2} z^{2}+a_{1} z+a_{0}$ for a root z of $X^{6}-\xi$.
- The twist is $E^{\prime}: y^{\prime 2}=x^{\prime 3}+b / \xi$.
- Let $\left(x^{\prime}, y^{\prime}\right) \in E^{\prime}\left(\mathbb{F}_{p^{2}}\right)$. The mapping

$$
\psi:\left(x^{\prime}, y^{\prime}\right) \mapsto\left(z^{2} x^{\prime}, z^{3} y^{\prime}\right)
$$

does not incur any multiplication overhead and produces sparse elements of $\mathbb{F}_{p^{12}}$.

Compressed Pairings

- Pairing compression is possible with ratio $\frac{1}{3}$ in a way that naturally integrates with point compression.
- Instead of reducing a point $\left(x^{\prime}, y^{\prime}\right) \in E^{\prime}\left(\mathbb{F}_{p^{2}}\right)$ to its x-coordinate, discard it and keep only the y-coordinate. Recovering (x^{\prime}, y^{\prime}) creates ambiguity between three possible values of x^{\prime}.

Compressed Pairings

- Pairing compression is possible with ratio $\frac{1}{3}$ in a way that naturally integrates with point compression.
- Instead of reducing a point $\left(x^{\prime}, y^{\prime}\right) \in E^{\prime}\left(\mathbb{F}_{p^{2}}\right)$ to its x-coordinate, discard it and keep only the y-coordinate. Recovering (x^{\prime}, y^{\prime}) creates ambiguity between three possible values of x^{\prime}.
- The three points that share the same y-coordinate are conjugates, as are the pairing values computed on them (provided the points are n-torsion points).
- The trace of all three pairing values is the same $\mathbb{F}_{p^{4}}$ value.

Point Compression

- Discard one more bit of y^{\prime}, i.e. do not distinguish between y^{\prime} and $-y^{\prime}$.
- Keep only the information to represent an equivalence class $\left\{\left(x^{\prime}, \pm y^{\prime}\right),\left(\zeta_{3} x^{\prime}, \pm y^{\prime}\right),\left(\zeta_{3}^{2} x^{\prime}, \pm y^{\prime}\right)\right\}$.

Point Compression

- Discard one more bit of y^{\prime}, i.e. do not distinguish between y^{\prime} and $-y^{\prime}$.
- Keep only the information to represent an equivalence class $\left\{\left(x^{\prime}, \pm y^{\prime}\right),\left(\zeta_{3} x^{\prime}, \pm y^{\prime}\right),\left(\zeta_{3}^{2} x^{\prime}, \pm y^{\prime}\right)\right\}$.
- The $\mathbb{F}_{p^{2}}$-traces of the pairing values of all six points in the class are equal.
- Obtain a unique compressed pairing value over $\mathbb{F}_{p^{2}}$.

Point Compression

- Discard one more bit of y^{\prime}, i.e. do not distinguish between y^{\prime} and $-y^{\prime}$.
- Keep only the information to represent an equivalence class $\left\{\left(x^{\prime}, \pm y^{\prime}\right),\left(\zeta_{3} x^{\prime}, \pm y^{\prime}\right),\left(\zeta_{3}^{2} x^{\prime}, \pm y^{\prime}\right)\right\}$.
- The $\mathbb{F}_{p^{2}}$-traces of the pairing values of all six points in the class are equal.
- Obtain a unique compressed pairing value over $\mathbb{F}_{p^{2}}$.
- Represent points in $E^{\prime}\left(\mathbb{F}_{p^{2}}\right)$ with less than $\log \left(p^{2}\right)$ bits.
- Pairing compression with ratio $\frac{1}{6}$ may be possible.

Open Problems

- How to build pairing-friendly curves of genus $g \in\{1,2,3,4\}$ and prime order for $k / g<32$ and $\varphi(k)>4$ over a field $\mathbb{F}_{p^{f}}$?
- Are there any real security problems with small D ? Can we handle really large D ?
- How are the special primes distributed? Are there infinitely many?

If you are interested ...

- Curve Database:
http://www.ti.rwth-aachen.de/~mnaehrig Lots of examples of bitsizes 160, 192, 224,... , 512 and program to compute curve of chosen bitsize.
- Paulo Barreto's Pairing-Based Crypto Lounge: http://paginas.terra.com.br/informatica/ paulobarreto/pblounge.html

