
Pairing-Friendly Elliptic Curves
of Prime Order

Michael Naehrig

Lehrstuhl für Theoretische Informationstechnik
RWTH Aachen University

mnaehrig@ti.rwth-aachen.de

Oberseminar Computer Security, b-it
Bonn, 12.01.2006



I This is joint work with

Paulo S. L. M. Barreto

pbarreto@larc.usp.br

(University of São Paulo, Brazil).



Outline

I What are pairing-friendly curves?

I Constructing pairing-friendly curves (review)

I Curves of prime order and embedding degree k = 12

I Notes on efficient implementation

I Open problems



Elliptic Curves

I Let Fq be a finite field, q = pf , p > 3,
Fq an algebraic closure of Fq.

I For a, b ∈ Fq consider solutions (x, y) in F2

q of

y2 = x3 + ax+ b.

I An elliptic curve over Fq is a set

E = {(x, y) ∈ F2

q | y2 = x3 + ax+ b} ∪ {O},

where a, b ∈ Fq and the discriminant ∆ 6= 0,
∆ = −16(4a3 + 27b2).

I j = −1728(4a)3/∆ is the j-invariant of E.
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Rational Points on Elliptic Curves

I For an extension L ⊇ Fq

E(L) = {(x, y) ∈ L2 | y2 = x3 + ax+ b} ∪ {O}

is called the set of L-rational points on E.

I Let n = #E(Fq) be the number of Fq-rational points.
I Hasse’s inequality states that

n = q + 1− t, |t| ≤ 2
√
q.

I t is the trace of the Frobenius endomorphism φq

(φq : (x, y) 7→ (xq, yq)).
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The Group Law

I E(L) is an abelian group.
I Let P = (x1, y1) and Q = (x2, y2) be points in E(L).

Point addition is defined as follows.

I P +O = O + P = P ,
I −P = (x1,−y1),
I if P 6= −Q let P + Q = (x3, y3), then

x3 = λ2 − x1 − x2,

y3 = (x1 − x3)λ− y1,

where

λ =
{

(y1 − y2)/(x1 − x2), if P 6= Q,
(3x2

1 + a)/2y1, if P = Q.
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Elliptic Curve Cryptography

I Find a cyclic subgroup

〈G〉 ≤ E(Fq)

with large prime order r = ord(G) and use it for
DL-based crypto.

I The size of r should be at least 160 bits s.t. the
ECDLP is considered to be hard.

I The most efficient case occurs when n = #E(Fq) is
prime itself or is almost prime, i. e.
ρ = log(q)/ log(r) ≈ 1.
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Torsion Points

I Let m ∈ Z, P ∈ E.
I If m > 0 let [m]P = P + P + · · ·+ P (m times).
I If m < 0 let [m]P = [−m](−P ).
I [0]P = O.

I E(L)[m] = {P ∈ E(L) | [m]P = O} is the set of
m-torsion points in E(L).

I If p - m we have E[m] ∼= Z/mZ× Z/mZ.

Lemma: (Balasubramanian-Koblitz, 1998)
Let r be prime, r | n, r - q − 1, p 6= r. Then:

E[r] ⊆ E(Fqk) ⇐⇒ r | qk − 1.
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The Embedding Degree

I The smallest such k is called embedding degree.

I Let G ∈ E(Fq) s.t. r = ord(G) is a large prime. Then
〈G〉 has embedding degree k, if

I r | qk − 1,
I r - qi − 1 for 0 < i < k.

I k is usually very large.
(Balasubramanian-Koblitz, 1998)

I Note that the conditions mean that F∗
qk contains the

set µr of r-th roots of unity.
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The Tate Pairing
I The Tate pairing is a map

τr : E(Fqk)[r]× E(Fqk)/rE(Fqk) → F∗
qk/(F∗

qk)
r,

which is bilinear and nondegenerate.

I To obtain a unique representative raise τr to the
power (qk − 1)/r.

I Under certain circumstances one may take E(Fqk)[r]
as a set of representatives for the second argument.

I For applications the first argument is usually
restricted to E(Fq)[r].

I Obtain the modified Tate pairing

er : E(Fq)[r]× E(Fqk)[r] → µr ⊆ F∗
qk .
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I First cryptographic use of pairings were the MOV/FR
attacks on the ECDLP (1993).

I But there are lots of constructive applications, e.g.
I tripartite key agreement (Joux, 2000),
I identity-based encryption (Boneh-Franklin, 2001),
I short signatures (Boneh-Lynn-Shacham, 2001).

I Prerequisite: We need suitable elliptic curves to
practically implement pairings.
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Pairing-Friendly Curves

I An elliptic curve is pairing-friendly if it contains a
subgroup 〈G〉 ⊆ E(Fq) of (large) prime order r and
embedding degree k where k is

I small enough that arithmetic on Fqk is feasible,
i.e. we can efficiently compute the Tate pairing
(→ Miller’s algorithm),

I large enough that the DLP on F∗
qk is about as

intractable as the ECDLP on E(Fq)[r],
i.e. the MOV/FR attack is not feasible.

I What are good values for k?

I How can we construct curves with good k?
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The Problem

I The short signatures proposed by
Boneh-Lynn-Shacham (2001) have length log(q).

I Compare this to DSA signatures (length 320 bits,
security level 2048 e.g.).

I One gets signatures of length 2048/k. To achieve
short signatures we need k > 6.

I Boneh-Lynn-Shacham (2001)
I Original challenge: how to build pairing-friendly

curves with k > 6?
I Modified challenge: how to build pairing-friendly

curves of prime order with k > 6?
I Suggested lower bound: k = 10.
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Parameters

I Find parameters for suitable curves.
Fix a value for k, e.g. k = 10 or k = 12.

I We need curves with
1. n prime,
2. n = q + 1− t, |t| ≤ 2

√
q,

3. n | qk − 1, but n - qi − 1 for 0 < i < k.
I Since Xk − 1 =

∏
d|k Φd(X) the last condition is

equivalent to

n | Φk(q), but n - Φd(q) for d < k.

I Look for divisors of Φk(q).
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Complex Multiplication (CM)

I If suitable parameters are found, try to construct a
curve with those parameters.
Use the CM method.

I The goal:
Given p, n (p > 3 prime) find a, b ∈ Fp s.t.
the elliptic curve E : y2 = x3 + ax+ b
has order #E(Fp) = n
(and trace of the Frobenius t = p+ 1− n).

I Prerequisite:
The CM norm equation DV 2 = 4p− t2 must be
satisfied with moderate CM discriminant D.
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Complex Multiplication (Some Details)

I Compute square-free factorisation DV 2 = 4p− t2,
if D > 3 the constructed curve will have order
p+ 1± t.

I compute the Hilbert class polynomial HD(z),

I find a root j of HD(z) (mod p).

I The root j is the j-invariant of a curve where
I if j = 0 then a = 0, if j = 1728 then b = 0,
I otherwise a = 3c and b = 2c with c = j/(1728−j).

I Check the order. If wrong, select another curve (by
choosing a different root j or a twist of the curve).



Complex Multiplication (Some Details)

I Compute square-free factorisation DV 2 = 4p− t2,
if D > 3 the constructed curve will have order
p+ 1± t.

I compute the Hilbert class polynomial HD(z),

I find a root j of HD(z) (mod p).

I The root j is the j-invariant of a curve where
I if j = 0 then a = 0, if j = 1728 then b = 0,
I otherwise a = 3c and b = 2c with c = j/(1728−j).

I Check the order. If wrong, select another curve (by
choosing a different root j or a twist of the curve).



Complex Multiplication (Some Details)

I Compute square-free factorisation DV 2 = 4p− t2,
if D > 3 the constructed curve will have order
p+ 1± t.

I compute the Hilbert class polynomial HD(z),

I find a root j of HD(z) (mod p).

I The root j is the j-invariant of a curve where
I if j = 0 then a = 0, if j = 1728 then b = 0,
I otherwise a = 3c and b = 2c with c = j/(1728−j).

I Check the order. If wrong, select another curve (by
choosing a different root j or a twist of the curve).



Complex Multiplication (Some Details)

I Compute square-free factorisation DV 2 = 4p− t2,
if D > 3 the constructed curve will have order
p+ 1± t.

I compute the Hilbert class polynomial HD(z),

I find a root j of HD(z) (mod p).

I The root j is the j-invariant of a curve where
I if j = 0 then a = 0, if j = 1728 then b = 0,
I otherwise a = 3c and b = 2c with c = j/(1728−j).

I Check the order. If wrong, select another curve (by
choosing a different root j or a twist of the curve).



Complex Multiplication (Some Details)

I Compute square-free factorisation DV 2 = 4p− t2,
if D > 3 the constructed curve will have order
p+ 1± t.

I compute the Hilbert class polynomial HD(z),

I find a root j of HD(z) (mod p).

I The root j is the j-invariant of a curve where
I if j = 0 then a = 0, if j = 1728 then b = 0,
I otherwise a = 3c and b = 2c with c = j/(1728−j).

I Check the order. If wrong, select another curve (by
choosing a different root j or a twist of the curve).



Conditions

Required conditions for constructing pairing-friendly
curves of prime order:

1. n prime,

2. n = p+ 1− t, |t| ≤ 2
√
p,

3. n | Φk(p), but n - Φd(p) for 0 < d < k,

4. DV 2 = 4p− t2 for moderate D.



The MNT Construction

I Miyaji-Nakabayashi-Takano (2001)
use the fact that n | Φk(p) to parametrise p, n and t.

I For example k = 6:
parametrise p(u) = 4u2 + 1 and t(u) = 1± 2u.
Find u ∈ Z s.t. both p(u) and n(u) = p(u) + 1− t(u)
are prime.

I Use CM to construct the curve,
for k ∈ {3, 4, 6} the CM norm equation reduces to a
Pell equation DV 2 = 4n(u)− (t(u)− 2)2.

I Restriction: unable to handle larger k
(norm equation at least quartic).
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Some Constructions

I Cocks-Pinch (2002)
algorithm based on the property that r | n = p+ 1− t
and r | pk − 1.
⇒ t− 1 is a primitive k-th root of unity mod r.
Strategy: take even t = 2a and solve the norm
equation mod r:
DV 2 = 4n− (t− 2)2 ⇒ V ≡ 2(a−1)√

−D
(mod r).

Compute p = (DV 2 + t2)/4, n = p+ 1− t.

I Restriction: usually ρ = log p/log r ≈ 2.
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Some Constructions

I Barreto-Lynn-Scott (2002), Brezing-Weng (2003)
I For certain values of k and D there exist closed-form

parametrisations for families of curves with known
equations.
(e.g. k = 2i3j and D = 3, or k = 2i7j and D = 7)

I Advantages: ρ closer to 1.
(best case: ρ = 5

4
for k = 8 and D = 3)

I Limitations: solutions known only for small D and
curve order always composite (ρ still ’large’).



Some Constructions

I Barreto-Lynn-Scott (2002), Brezing-Weng (2003)
I For certain values of k and D there exist closed-form

parametrisations for families of curves with known
equations.
(e.g. k = 2i3j and D = 3, or k = 2i7j and D = 7)

I Advantages: ρ closer to 1.
(best case: ρ = 5

4
for k = 8 and D = 3)

I Limitations: solutions known only for small D and
curve order always composite (ρ still ’large’).



Some Constructions

I Barreto-Lynn-Scott (2002), Brezing-Weng (2003)
I For certain values of k and D there exist closed-form

parametrisations for families of curves with known
equations.
(e.g. k = 2i3j and D = 3, or k = 2i7j and D = 7)

I Advantages: ρ closer to 1.
(best case: ρ = 5

4
for k = 8 and D = 3)

I Limitations: solutions known only for small D and
curve order always composite (ρ still ’large’).



Extending the MNT Approach

I Galbraith-McKee-Valença (2004)
start from the property n | Φk(p) and parametrise p(u)
such that

Φk(p(u)) = n1(u)n2(u).

Lemma:
Let k ∈ N, ζk ∈ C a primitive k-th root of unity, p(u) ∈ Q[u]
a quadratic polynomial. Then

Φk(p(u)) = n1(u)n2(u)

for irreducible polynomials n1, n2 ∈ Q[u] of degree ϕ(k), if
and only if p(z) = ζk has a solution in Q(ζk). Otherwise
Φk(p(u)) is irreducible.
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Extending the MNT Approach

I Leads to conditions on quadratic p(u) s.t. the factors
of Φk(p(u)) are quartic for k ∈ {5, 8, 10, 12}.
For example k = 10: p(u) = 10u2 + 5u+ 2,
k = 12: p(u) = 2u2 or p(u) = 6u2.

I Result: families of genus 2 curves similar to MNT
elliptic curves.

I NB: p(u) must be a prime (or prime power).
I Some conditions cannot lead to solutions:

for k = 12 the parametrisation p(u) = 6u2 will never
produce a prime power.

I How about changing the strategy?
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New Strategy

I Start from n | Φk(t(u)− 1) and parametrise t(u) s.t.
Φk(t(u)− 1) splits into quartic factors n1(u)n2(u).

I The only restriction on t(u) is the Hasse bound. Since
n(u) is quartic, t(u) must be at most quadratic for
k ∈ {5, 8, 10, 12}.

I Most conditions do not lead to a favourable
factorisation of the norm equation

DV 2 = 4n(u)− (t(u)− 2)2.

I But . . .
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New Curves

I The condition t(u) = 6u2 + 1 does lead to a
favourable factorisation for k = 12.

Φk(t(u)− 1) = n(u)n(−u).

I Parameters:

n(u) = 36u4 + 36u3 + 18u2 + 6u+ 1

p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1

DV 2 = 4p− t2 = 3(6u2 + 4u+ 1)2

NB: u ∈ Z \ {0} (positive or negative values).



New Curves

I Since D = 3, the curve equation has the form

E(Fp) : y2 = x3 + b,

with b > 0 adjusted to attain the right order.
(A simple sequential search quickly finds a
suitable b.)

I NB: the method always produces p ≡ 1 (mod 3)
(no supersingular curves).



Twisted Pairings

I For ordinary curves there are no distortion maps.

I There exists a sextic twist E ′(Fp2) and an injective
group homomorphism

ψ : E ′(Fp2) → E(Fp12).

I Define a twisted pairing

ê : E(Fp)× E ′(Fp2) → F∗
p12 , ê(P,Q′) = e(P, ψ(Q′)).

I The field arithmetic needed for non-pairing
operations is restricted to Fp2.

I The homomorphism is only needed when actually
computing pairings.



Twisted Pairings

I For ordinary curves there are no distortion maps.
I There exists a sextic twist E ′(Fp2) and an injective

group homomorphism

ψ : E ′(Fp2) → E(Fp12).

I Define a twisted pairing
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ê : E(Fp)× E ′(Fp2) → F∗
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Twisted Pairings

I Let X6 − ξ be an irreducible polynomial in Fp2 [X].
Represent Fp12 as Fp2 [X]/(X6 − ξ).
Any element in Fp12 has the form
a5z

5 + a4z
4 + a3z

3 + a2z
2 + a1z + a0 for a root z of

X6 − ξ.

I The twist is E ′ : y′2 = x′3 + b/ξ.
I Let (x′, y′) ∈ E ′(Fp2). The mapping

ψ : (x′, y′) 7→ (z2x′, z3y′)

does not incur any multiplication overhead and
produces sparse elements of Fp12 .
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Compressed Pairings

I Pairing compression is possible with ratio 1
3

in a way
that naturally integrates with point compression.

I Instead of reducing a point (x′, y′) ∈ E ′(Fp2) to its
x-coordinate, discard it and keep only the
y-coordinate. Recovering (x′, y′) creates ambiguity
between three possible values of x′.

I The three points that share the same y-coordinate
are conjugates, as are the pairing values computed
on them (provided the points are n-torsion points).

I The trace of all three pairing values is the same Fp4

value.
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Point Compression

I Discard one more bit of y′, i.e. do not distinguish
between y′ and −y′.

I Keep only the information to represent an
equivalence class {(x′,±y′), (ζ3x′,±y′), (ζ2

3x
′,±y′)}.

I The Fp2-traces of the pairing values of all six points in
the class are equal.

I Obtain a unique compressed pairing value over Fp2.

I Represent points in E ′(Fp2) with less than log(p2) bits.
I Pairing compression with ratio 1

6
may be possible.
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Open Problems

I How to build pairing-friendly curves of genus
g ∈ {1, 2, 3, 4} and prime order for k/g < 32 and
ϕ(k) > 4 over a field Fpf ?

I Are there any real security problems with small D?
Can we handle really large D?

I How are the special primes distributed? Are there
infinitely many?

I . . .



If you are interested . . .

I Curve Database:
http://www.ti.rwth-aachen.de/�mnaehrig

Lots of examples of bitsizes 160, 192, 224,. . . , 512
and program to compute curve of chosen bitsize.

I Paulo Barreto’s Pairing-Based Crypto Lounge:
http://paginas.terra.com.br/informatica/

paulobarreto/pblounge.html


