Pairing-Friendly Elliptic Curves of Prime Order

Michael Naehrig

Lehrstuhl für Theoretische Informationstechnik RWTH Aachen University mnaehrig@ti.rwth-aachen.de

Oberseminar Computer Security, b-it Bonn, 12.01.2006 This is joint work with

Paulo S. L. M. Barreto

pbarreto@larc.usp.br (University of São Paulo, Brazil).

Outline

- What are pairing-friendly curves?
- Constructing pairing-friendly curves (review)
- Curves of prime order and embedding degree k = 12
- Notes on efficient implementation
- Open problems

Elliptic Curves

• Let \mathbb{F}_q be a finite field, $q = p^f$, p > 3, $\overline{\mathbb{F}}_q$ an algebraic closure of \mathbb{F}_q .

For $a, b \in \mathbb{F}_q$ consider solutions (x, y) in $\overline{\mathbb{F}}_q^2$ of

$$y^2 = x^3 + ax + b.$$

Elliptic Curves

- Let \mathbb{F}_q be a finite field, $q = p^f$, p > 3, $\overline{\mathbb{F}}_q$ an algebraic closure of \mathbb{F}_q .
- For $a, b \in \mathbb{F}_q$ consider solutions (x, y) in $\overline{\mathbb{F}}_q^2$ of

$$y^2 = x^3 + ax + b.$$

• An *elliptic curve* over \mathbb{F}_q is a set

$$E = \{ (x, y) \in \overline{\mathbb{F}}_q^2 \mid y^2 = x^3 + ax + b \} \cup \{\mathcal{O}\},\$$

where $a, b \in \mathbb{F}_q$ and the discriminant $\Delta \neq 0$, $\Delta = -16(4a^3 + 27b^2).$

Elliptic Curves

- Let \mathbb{F}_q be a finite field, $q = p^f$, p > 3, $\overline{\mathbb{F}}_q$ an algebraic closure of \mathbb{F}_q .
- For $a, b \in \mathbb{F}_q$ consider solutions (x, y) in $\overline{\mathbb{F}}_q^2$ of

$$y^2 = x^3 + ax + b.$$

• An *elliptic curve* over \mathbb{F}_q is a set

$$E = \{ (x, y) \in \overline{\mathbb{F}}_q^2 \mid y^2 = x^3 + ax + b \} \cup \{\mathcal{O}\},\$$

where $a, b \in \mathbb{F}_q$ and the *discriminant* $\Delta \neq 0$, $\Delta = -16(4a^3 + 27b^2).$

• $j = -1728(4a)^3/\Delta$ is the *j*-invariant of *E*.

For an extension $L \supseteq \mathbb{F}_q$

$$E(L) = \{(x, y) \in L^2 \mid y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\}\$$

is called the set of *L*-rational points on *E*.

For an extension $L \supseteq \mathbb{F}_q$

$$E(L) = \{(x, y) \in L^2 \mid y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\}\$$

is called the set of *L*-rational points on *E*.

• Let $n = \#E(\mathbb{F}_q)$ be the number of \mathbb{F}_q -rational points.

For an extension $L \supseteq \mathbb{F}_q$

$$E(L) = \{(x, y) \in L^2 \mid y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\}\$$

is called the set of *L*-rational points on *E*.

- Let $n = \#E(\mathbb{F}_q)$ be the number of \mathbb{F}_q -rational points.
- Hasse's inequality states that

$$n = q + 1 - t, \ |t| \le 2\sqrt{q}.$$

For an extension $L \supseteq \mathbb{F}_q$

$$E(L) = \{(x, y) \in L^2 \mid y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\}\$$

is called the set of *L*-rational points on *E*.

- Let $n = \#E(\mathbb{F}_q)$ be the number of \mathbb{F}_q -rational points.
- Hasse's inequality states that

$$n = q + 1 - t, \ |t| \le 2\sqrt{q}.$$

▶ t is the trace of the Frobenius endomorphism ϕ_q $(\phi_q : (x, y) \mapsto (x^q, y^q)).$

- E(L) is an abelian group.
- Let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ be points in E(L). Point addition is defined as follows.

- E(L) is an abelian group.
- Let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ be points in E(L). Point addition is defined as follows.

$$\blacktriangleright P + \mathcal{O} = \mathcal{O} + P = P,$$

- E(L) is an abelian group.
- Let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ be points in E(L). Point addition is defined as follows.

$$\blacktriangleright P + \mathcal{O} = \mathcal{O} + P = P,$$

•
$$-P = (x_1, -y_1),$$

- E(L) is an abelian group.
- Let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ be points in E(L). Point addition is defined as follows.

•
$$P + O = O + P = P$$
,
• $-P = (x_1, -y_1)$,
• if $P \neq -Q$ let $P + Q = (x_3, y_3)$, then

$$\begin{array}{rcl} x_3 & = & \lambda^2 - x_1 - x_2, \\ y_3 & = & (x_1 - x_3)\lambda - y_1, \end{array}$$

where

$$\lambda = \left\{ \begin{array}{ll} (y_1 - y_2)/(x_1 - x_2), & \text{if } P \neq Q, \\ (3x_1^2 + a)/2y_1, & \text{if } P = Q. \end{array} \right.$$

Elliptic Curve Cryptography

Find a cyclic subgroup

$$\langle G \rangle \le E(\mathbb{F}_q)$$

with large prime order $r = \operatorname{ord}(G)$ and use it for DL-based crypto.

Elliptic Curve Cryptography

Find a cyclic subgroup

 $\langle G \rangle \le E(\mathbb{F}_q)$

with large prime order $r = \operatorname{ord}(G)$ and use it for DL-based crypto.

► The size of *r* should be at least 160 bits s.t. the ECDLP is considered to be hard.

Elliptic Curve Cryptography

Find a cyclic subgroup

 $\langle G \rangle \leq E(\mathbb{F}_q)$

with large prime order r = ord(G) and use it for DL-based crypto.

- ► The size of *r* should be at least 160 bits s.t. the ECDLP is considered to be hard.
- The most efficient case occurs when n = #E(𝔽_q) is prime itself or is almost prime, i. e. ρ = log(q)/log(r) ≈ 1.

• Let
$$m \in \mathbb{Z}$$
, $P \in E$.

- If m > 0 let $[m]P = P + P + \dots + P$ (*m* times).
- If m < 0 let [m]P = [-m](-P).

•
$$[0]P = \mathcal{O}.$$

- Let $m \in \mathbb{Z}$, $P \in E$.
 - If m > 0 let $[m]P = P + P + \cdots + P$ (*m* times).
 - If m < 0 let [m]P = [-m](-P).
 - $[0]P = \mathcal{O}.$
- $E(L)[m] = \{P \in E(L) \mid [m]P = \mathcal{O}\}$ is the set of *m*-torsion points in E(L).

- Let $m \in \mathbb{Z}$, $P \in E$.
 - If m > 0 let $[m]P = P + P + \cdots + P$ (*m* times).
 - If m < 0 let [m]P = [-m](-P).
 - $[0]P = \mathcal{O}.$
- $E(L)[m] = \{P \in E(L) \mid [m]P = \mathcal{O}\}$ is the set of *m*-torsion points in E(L).
- If $p \nmid m$ we have $E[m] \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$.

• Let
$$m \in \mathbb{Z}$$
, $P \in E$.

• If m > 0 let $[m]P = P + P + \dots + P$ (*m* times).

• If
$$m < 0$$
 let $[m]P = [-m](-P)$.

- $[0]P = \mathcal{O}.$
- $E(L)[m] = \{P \in E(L) \mid [m]P = \mathcal{O}\}$ is the set of *m*-torsion points in E(L).

• If $p \nmid m$ we have $E[m] \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$.

Lemma: (Balasubramanian-Koblitz, 1998) Let r be prime, $r \mid n, r \nmid q - 1, p \neq r$. Then:

$$E[r] \subseteq E(\mathbb{F}_{q^k}) \iff r \mid q^k - 1.$$

▶ The smallest such *k* is called *embedding degree*.

- ► The smallest such *k* is called *embedding degree*.
- Let G ∈ E(F_q) s.t. r = ord(G) is a large prime. Then ⟨G⟩ has embedding degree k, if
 r | q^k − 1,

•
$$r \nmid q^i - 1$$
 for $0 < i < k$.

- ► The smallest such *k* is called *embedding degree*.
- ▶ Let $G \in E(\mathbb{F}_q)$ s.t. r = ord(G) is a large prime. Then $\langle G \rangle$ has embedding degree k, if

▶
$$r \mid q^k - 1$$
,
▶ $r \nmid q^i - 1$ for $0 < i < k$.

k is usually very large.
 (Balasubramanian-Koblitz, 1998)

- ► The smallest such *k* is called *embedding degree*.
- ▶ Let $G \in E(\mathbb{F}_q)$ s.t. r = ord(G) is a large prime. Then $\langle G \rangle$ has embedding degree k, if

r |
$$q^k - 1$$
,
 r ∤ $q^i - 1$ for $0 < i < k$.

- k is usually very large.
 (Balasubramanian-Koblitz, 1998)

The Tate pairing is a map

 $\tau_r: E(\mathbb{F}_{q^k})[r] \times E(\mathbb{F}_{q^k})/rE(\mathbb{F}_{q^k}) \to \mathbb{F}_{q^k}^*/(\mathbb{F}_{q^k}^*)^r,$

The Tate pairing is a map

 $\tau_r: E(\mathbb{F}_{q^k})[r] \times E(\mathbb{F}_{q^k})/rE(\mathbb{F}_{q^k}) \to \mathbb{F}_{q^k}^*/(\mathbb{F}_{q^k}^*)^r,$

which is bilinear and nondegenerate.

► To obtain a unique representative raise τ_r to the power $(q^k - 1)/r$.

The Tate pairing is a map

 $\tau_r: E(\mathbb{F}_{q^k})[r] \times E(\mathbb{F}_{q^k})/rE(\mathbb{F}_{q^k}) \to \mathbb{F}_{q^k}^*/(\mathbb{F}_{q^k}^*)^r,$

- ► To obtain a unique representative raise \u03c0_r to the power (q^k − 1)/r.
- ► Under certain circumstances one may take E(F_{q^k})[r] as a set of representatives for the second argument.

The Tate pairing is a map

 $\tau_r: E(\mathbb{F}_{q^k})[r] \times E(\mathbb{F}_{q^k})/rE(\mathbb{F}_{q^k}) \to \mathbb{F}_{q^k}^*/(\mathbb{F}_{q^k}^*)^r,$

- ► To obtain a unique representative raise \u03c0_r to the power (q^k − 1)/r.
- ► Under certain circumstances one may take E(F_{qk})[r] as a set of representatives for the second argument.
- For applications the first argument is usually restricted to E(𝔽_q)[r].

The Tate pairing is a map

 $\tau_r: E(\mathbb{F}_{q^k})[r] \times E(\mathbb{F}_{q^k})/rE(\mathbb{F}_{q^k}) \to \mathbb{F}_{q^k}^*/(\mathbb{F}_{q^k}^*)^r,$

- ► To obtain a unique representative raise \u03c6_r to the power (q^k − 1)/r.
- ► Under certain circumstances one may take E(F_{qk})[r] as a set of representatives for the second argument.
- For applications the first argument is usually restricted to E(𝔽_q)[r].
- Obtain the modified Tate pairing

$$e_r: E(\mathbb{F}_q)[r] \times E(\mathbb{F}_{q^k})[r] \to \mu_r \subseteq \mathbb{F}_{q^k}^*.$$

Pairing-Based Cryptography

 First cryptographic use of pairings were the MOV/FR attacks on the ECDLP (1993).

Pairing-Based Cryptography

- First cryptographic use of pairings were the MOV/FR attacks on the ECDLP (1993).
- ▶ But there are lots of constructive applications, e.g.
 - tripartite key agreement (Joux, 2000),
 - identity-based encryption (Boneh-Franklin, 2001),
 - short signatures (Boneh-Lynn-Shacham, 2001).

Pairing-Based Cryptography

- First cryptographic use of pairings were the MOV/FR attacks on the ECDLP (1993).
- ▶ But there are lots of constructive applications, e.g.
 - tripartite key agreement (Joux, 2000),
 - identity-based encryption (Boneh-Franklin, 2001),
 - short signatures (Boneh-Lynn-Shacham, 2001).
- Prerequisite: We need suitable elliptic curves to practically implement pairings.

Pairing-Friendly Curves

An elliptic curve is *pairing-friendly* if it contains a subgroup ⟨G⟩ ⊆ E(𝔽_q) of (large) prime order r and embedding degree k where k is

Pairing-Friendly Curves

- An elliptic curve is *pairing-friendly* if it contains a subgroup ⟨G⟩ ⊆ E(𝔽_q) of (large) prime order r and embedding degree k where k is
 - small enough that arithmetic on F_{q^k} is feasible, i.e. we can efficiently compute the Tate pairing (→ Miller's algorithm),

Pairing-Friendly Curves

- An elliptic curve is *pairing-friendly* if it contains a subgroup ⟨G⟩ ⊆ E(𝔽_q) of (large) prime order r and embedding degree k where k is
 - small enough that arithmetic on 𝔽_{q^k} is feasible, i.e. we can efficiently compute the Tate pairing (→ Miller's algorithm),
 - ► large enough that the DLP on F^{*}_{q^k} is about as intractable as the ECDLP on E(F_q)[r], i.e. the MOV/FR attack is not feasible.
Pairing-Friendly Curves

- An elliptic curve is *pairing-friendly* if it contains a subgroup ⟨G⟩ ⊆ E(𝔽_q) of (large) prime order r and embedding degree k where k is
 - small enough that arithmetic on 𝔽_{q^k} is feasible, i.e. we can efficiently compute the Tate pairing (→ Miller's algorithm),
 - Iarge enough that the DLP on 𝔽^{*}_{qk} is about as intractable as the ECDLP on 𝔼(𝔽_q)[r],
 i.e. the MOV/FR attack is not feasible.
- ▶ What are good values for *k*?

Pairing-Friendly Curves

- An elliptic curve is *pairing-friendly* if it contains a subgroup ⟨G⟩ ⊆ E(𝔽_q) of (large) prime order r and embedding degree k where k is
 - small enough that arithmetic on 𝔽_{q^k} is feasible, i.e. we can efficiently compute the Tate pairing (→ Miller's algorithm),
 - Iarge enough that the DLP on 𝔽^{*}_{q^k} is about as intractable as the ECDLP on 𝔼(𝔽_q)[r],
 i.e. the MOV/FR attack is not feasible.
- ▶ What are good values for *k*?
- ▶ How can we construct curves with good *k*?

 The short signatures proposed by Boneh-Lynn-Shacham (2001) have length log(q).

- The short signatures proposed by Boneh-Lynn-Shacham (2001) have length log(q).
- Compare this to DSA signatures (length 320 bits, security level 2048 e.g.).

- The short signatures proposed by Boneh-Lynn-Shacham (2001) have length log(q).
- Compare this to DSA signatures (length 320 bits, security level 2048 e.g.).
- ► One gets signatures of length 2048/k. To achieve short signatures we need k > 6.

- The short signatures proposed by Boneh-Lynn-Shacham (2001) have length log(q).
- Compare this to DSA signatures (length 320 bits, security level 2048 e.g.).
- ► One gets signatures of length 2048/k. To achieve short signatures we need k > 6.
- Boneh-Lynn-Shacham (2001)
 - Original challenge: how to build pairing-friendly curves with k > 6?
 - Modified challenge: how to build pairing-friendly curves of prime order with k > 6?

- The short signatures proposed by Boneh-Lynn-Shacham (2001) have length log(q).
- Compare this to DSA signatures (length 320 bits, security level 2048 e.g.).
- ► One gets signatures of length 2048/k. To achieve short signatures we need k > 6.
- Boneh-Lynn-Shacham (2001)
 - Original challenge: how to build pairing-friendly curves with k > 6?
 - Modified challenge: how to build pairing-friendly curves of prime order with k > 6?
- Suggested lower bound: k = 10.

► Find parameters for suitable curves. Fix a value for k, e.g. k = 10 or k = 12.

- ► Find parameters for suitable curves. Fix a value for k, e.g. k = 10 or k = 12.
- We need curves with
 - 1. n prime,

2.
$$n = q + 1 - t$$
, $|t| \le 2\sqrt{q}$,

3. $n \mid q^k - 1$, but $n \nmid q^i - 1$ for 0 < i < k.

- ► Find parameters for suitable curves. Fix a value for k, e.g. k = 10 or k = 12.
- We need curves with
 - 1. n prime,

2.
$$n = q + 1 - t$$
, $|t| \le 2\sqrt{q}$,
3. $n \mid q^k - 1$, but $n \nmid q^i - 1$ for $0 < i < k$.

• Since $X^k - 1 = \prod_{d|k} \Phi_d(X)$ the last condition is equivalent to

$$n \mid \Phi_k(q), \text{ but } n \nmid \Phi_d(q) \text{ for } d < k.$$

- ► Find parameters for suitable curves. Fix a value for k, e.g. k = 10 or k = 12.
- We need curves with
 - 1. n prime,

2.
$$n = q + 1 - t$$
, $|t| \le 2\sqrt{q}$,
3. $n \mid q^k - 1$, but $n \nmid q^i - 1$ for $0 < i < j$

• Since $X^k - 1 = \prod_{d|k} \Phi_d(X)$ the last condition is equivalent to

$$n \mid \Phi_k(q), \text{ but } n \nmid \Phi_d(q) \text{ for } d < k.$$

k.

• Look for divisors of $\Phi_k(q)$.

Complex Multiplication (CM)

 If suitable parameters are found, try to construct a curve with those parameters. Use the CM method.

Complex Multiplication (CM)

- If suitable parameters are found, try to construct a curve with those parameters. Use the CM method.
- ► The goal:

Given p, n (p > 3 prime) find $a, b \in \mathbb{F}_p$ s.t. the elliptic curve $E : y^2 = x^3 + ax + b$ has order $\#E(\mathbb{F}_p) = n$ (and trace of the Frobenius t = p + 1 - n).

Complex Multiplication (CM)

- If suitable parameters are found, try to construct a curve with those parameters. Use the CM method.
- ► The goal:

Given p, n (p > 3 prime) find $a, b \in \mathbb{F}_p$ s.t. the elliptic curve $E : y^2 = x^3 + ax + b$ has order $\#E(\mathbb{F}_p) = n$ (and trace of the Frobenius t = p + 1 - n).

Prerequisite:

The CM norm equation $DV^2 = 4p - t^2$ must be satisfied with moderate CM discriminant *D*.

Compute square-free factorisation DV² = 4p − t², if D > 3 the constructed curve will have order p+1±t.

- Compute square-free factorisation DV² = 4p − t², if D > 3 the constructed curve will have order p+1±t.
- compute the Hilbert class polynomial $H_D(z)$,

- Compute square-free factorisation DV² = 4p − t², if D > 3 the constructed curve will have order p + 1 ± t.
- compute the Hilbert class polynomial $H_D(z)$,
- find a root j of $H_D(z) \pmod{p}$.

- Compute square-free factorisation DV² = 4p − t², if D > 3 the constructed curve will have order p+1±t.
- compute the Hilbert class polynomial $H_D(z)$,
- find a root j of $H_D(z) \pmod{p}$.
- The root j is the j-invariant of a curve where
 - if j = 0 then a = 0, if j = 1728 then b = 0,
 - otherwise a = 3c and b = 2c with c = j/(1728-j).

- Compute square-free factorisation DV² = 4p − t², if D > 3 the constructed curve will have order p + 1 ± t.
- compute the Hilbert class polynomial $H_D(z)$,
- find a root j of $H_D(z) \pmod{p}$.
- The root j is the j-invariant of a curve where
 - if j = 0 then a = 0, if j = 1728 then b = 0,
 - otherwise a = 3c and b = 2c with c = j/(1728-j).
- Check the order. If wrong, select another curve (by choosing a different root *j* or a twist of the curve).

Conditions

Required conditions for constructing pairing-friendly curves of prime order:

1. n prime,

2.
$$n = p + 1 - t$$
, $|t| \le 2\sqrt{p}$,

3.
$$n \mid \Phi_k(p)$$
, but $n \nmid \Phi_d(p)$ for $0 < d < k$,

4. $DV^2 = 4p - t^2$ for moderate D.

Miyaji-Nakabayashi-Takano (2001) use the fact that n | Φ_k(p) to parametrise p, n and t.

- Miyaji-Nakabayashi-Takano (2001) use the fact that n | Φ_k(p) to parametrise p, n and t.
- For example k = 6: parametrise p(u) = 4u² + 1 and t(u) = 1 ± 2u.
 Find u ∈ Z s.t. both p(u) and n(u) = p(u) + 1 - t(u) are prime.

- Miyaji-Nakabayashi-Takano (2001) use the fact that n | Φ_k(p) to parametrise p, n and t.
- For example k = 6: parametrise p(u) = 4u² + 1 and t(u) = 1 ± 2u.
 Find u ∈ Z s.t. both p(u) and n(u) = p(u) + 1 - t(u) are prime.
- ► Use CM to construct the curve, for k ∈ {3,4,6} the CM norm equation reduces to a Pell equation DV² = 4n(u) - (t(u) - 2)².

- Miyaji-Nakabayashi-Takano (2001) use the fact that n | Φ_k(p) to parametrise p, n and t.
- For example k = 6: parametrise p(u) = 4u² + 1 and t(u) = 1 ± 2u.
 Find u ∈ Z s.t. both p(u) and n(u) = p(u) + 1 - t(u) are prime.
- ▶ Use CM to construct the curve, for $k \in \{3, 4, 6\}$ the CM norm equation reduces to a Pell equation $DV^2 = 4n(u) - (t(u) - 2)^2$.
- Restriction: unable to handle larger k (norm equation at least quartic).

 Cocks-Pinch (2002) algorithm based on the property that r | n = p + 1 − t and r | p^k − 1.
 ⇒ t − 1 is a primitive k-th root of unity mod r.
 Strategy: take even t = 2a and solve the norm equation mod r: DV² = 4n − (t − 2)² ⇒ V ≡ ^{2(a−1)}/_{√−D} (mod r).

Compute $p = (DV^2 + t^2)/4$, n = p + 1 - t.

Cocks-Pinch (2002) algorithm based on the property that r | n = p + 1 − t and r | p^k − 1.
⇒ t − 1 is a primitive k-th root of unity mod r.
Strategy: take even t = 2a and solve the norm equation mod r: DV² = 4n − (t − 2)² ⇒ V ≡ ^{2(a−1)}/_{√−D} (mod r).
Compute p = (DV² + t²)/4, n = p + 1 − t.

• Restriction: usually $\rho = \log p / \log r \approx 2$.

- Barreto-Lynn-Scott (2002), Brezing-Weng (2003)
- ► For certain values of *k* and *D* there exist closed-form parametrisations for families of curves with known equations.

(e.g.
$$k = 2^{i}3^{j}$$
 and $D = 3$, or $k = 2^{i}7^{j}$ and $D = 7$)

- Barreto-Lynn-Scott (2002), Brezing-Weng (2003)
- For certain values of k and D there exist closed-form parametrisations for families of curves with known equations.

(e.g. $k = 2^{i}3^{j}$ and D = 3, or $k = 2^{i}7^{j}$ and D = 7)

Advantages: ρ closer to 1.
 (best case: ρ = ⁵/₄ for k = 8 and D = 3)

- Barreto-Lynn-Scott (2002), Brezing-Weng (2003)
- For certain values of k and D there exist closed-form parametrisations for families of curves with known equations.

(e.g. $k = 2^{i}3^{j}$ and D = 3, or $k = 2^{i}7^{j}$ and D = 7)

- Advantages: ρ closer to 1.
 (best case: ρ = ⁵/₄ for k = 8 and D = 3)
- Limitations: solutions known only for small D and curve order always composite (p still 'large').

► Galbraith-McKee-Valença (2004) start from the property n | Φ_k(p) and parametrise p(u) such that

$$\Phi_k(p(u)) = n_1(u)n_2(u).$$

► Galbraith-McKee-Valença (2004) start from the property n | Φ_k(p) and parametrise p(u) such that

$$\Phi_k(p(u)) = n_1(u)n_2(u).$$

Lemma:

Let $k \in \mathbb{N}$, $\zeta_k \in \mathbb{C}$ a primitive k-th root of unity, $p(u) \in \mathbb{Q}[u]$ a quadratic polynomial. Then

$$\Phi_k(p(u)) = n_1(u)n_2(u)$$

for irreducible polynomials $n_1, n_2 \in \mathbb{Q}[u]$ of degree $\varphi(k)$, if and only if $p(z) = \zeta_k$ has a solution in $\mathbb{Q}(\zeta_k)$. Otherwise $\Phi_k(p(u))$ is irreducible.

► Leads to conditions on quadratic p(u) s.t. the factors of $\Phi_k(p(u))$ are quartic for $k \in \{5, 8, 10, 12\}$. For example k = 10: $p(u) = 10u^2 + 5u + 2$, k = 12: $p(u) = 2u^2$ or $p(u) = 6u^2$.

- ► Leads to conditions on quadratic p(u) s.t. the factors of $\Phi_k(p(u))$ are quartic for $k \in \{5, 8, 10, 12\}$. For example k = 10: $p(u) = 10u^2 + 5u + 2$, k = 12: $p(u) = 2u^2$ or $p(u) = 6u^2$.
- Result: families of genus 2 curves similar to MNT elliptic curves.

- ► Leads to conditions on quadratic p(u) s.t. the factors of $\Phi_k(p(u))$ are quartic for $k \in \{5, 8, 10, 12\}$. For example k = 10: $p(u) = 10u^2 + 5u + 2$, k = 12: $p(u) = 2u^2$ or $p(u) = 6u^2$.
- Result: families of genus 2 curves similar to MNT elliptic curves.
- NB: p(u) must be a prime (or prime power).

- ► Leads to conditions on quadratic p(u) s.t. the factors of $\Phi_k(p(u))$ are quartic for $k \in \{5, 8, 10, 12\}$. For example k = 10: $p(u) = 10u^2 + 5u + 2$, k = 12: $p(u) = 2u^2$ or $p(u) = 6u^2$.
- Result: families of genus 2 curves similar to MNT elliptic curves.
- NB: p(u) must be a prime (or prime power).
- Some conditions cannot lead to solutions: for k = 12 the parametrisation p(u) = 6u² will never produce a prime power.

- ► Leads to conditions on quadratic p(u) s.t. the factors of $\Phi_k(p(u))$ are quartic for $k \in \{5, 8, 10, 12\}$. For example k = 10: $p(u) = 10u^2 + 5u + 2$, k = 12: $p(u) = 2u^2$ or $p(u) = 6u^2$.
- Result: families of genus 2 curves similar to MNT elliptic curves.
- NB: p(u) must be a prime (or prime power).
- Some conditions cannot lead to solutions: for k = 12 the parametrisation p(u) = 6u² will never produce a prime power.

How about changing the strategy?
New Strategy

- Start from $n \mid \Phi_k(t(u) 1)$ and parametrise t(u) s.t. $\Phi_k(t(u) 1)$ splits into quartic factors $n_1(u)n_2(u)$.
- ► The only restriction on t(u) is the Hasse bound. Since n(u) is quartic, t(u) must be at most quadratic for k ∈ {5, 8, 10, 12}.

New Strategy

- Start from $n \mid \Phi_k(t(u) 1)$ and parametrise t(u) s.t. $\Phi_k(t(u) 1)$ splits into quartic factors $n_1(u)n_2(u)$.
- ► The only restriction on t(u) is the Hasse bound. Since n(u) is quartic, t(u) must be at most quadratic for k ∈ {5, 8, 10, 12}.
- Most conditions do not lead to a favourable factorisation of the norm equation

$$DV^{2} = 4n(u) - (t(u) - 2)^{2}.$$

New Strategy

- Start from $n \mid \Phi_k(t(u) 1)$ and parametrise t(u) s.t. $\Phi_k(t(u) 1)$ splits into quartic factors $n_1(u)n_2(u)$.
- ► The only restriction on t(u) is the Hasse bound. Since n(u) is quartic, t(u) must be at most quadratic for k ∈ {5, 8, 10, 12}.
- Most conditions do not lead to a favourable factorisation of the norm equation

$$DV^{2} = 4n(u) - (t(u) - 2)^{2}.$$

But ...

New Curves

• The condition $t(u) = 6u^2 + 1$ does lead to a favourable factorisation for k = 12.

$$\Phi_k(t(u) - 1) = n(u)n(-u).$$

Parameters:

$$n(u) = 36u^{4} + 36u^{3} + 18u^{2} + 6u + 1$$

$$p(u) = 36u^{4} + 36u^{3} + 24u^{2} + 6u + 1$$

$$DV^{2} = 4p - t^{2} = 3(6u^{2} + 4u + 1)^{2}$$

NB: $u \in \mathbb{Z} \setminus \{0\}$ (positive or negative values).

New Curves

Since D = 3, the curve equation has the form

$$E(\mathbb{F}_p): y^2 = x^3 + b,$$

with b > 0 adjusted to attain the right order. (A simple sequential search quickly finds a suitable *b*.)

► NB: the method always produces p ≡ 1 (mod 3) (no supersingular curves).

For ordinary curves there are no distortion maps.

- For ordinary curves there are no distortion maps.
- ► There exists a sextic twist E'(𝔽_{p²}) and an injective group homomorphism

$$\psi: E'(\mathbb{F}_{p^2}) \to E(\mathbb{F}_{p^{12}}).$$

- For ordinary curves there are no distortion maps.
- ► There exists a sextic twist E'(𝔽_{p²}) and an injective group homomorphism

$$\psi: E'(\mathbb{F}_{p^2}) \to E(\mathbb{F}_{p^{12}}).$$

Define a twisted pairing

 $\hat{e}: E(\mathbb{F}_p) \times E'(\mathbb{F}_{p^2}) \to \mathbb{F}_{p^{12}}^*, \quad \hat{e}(P,Q') = e(P,\psi(Q')).$

- For ordinary curves there are no distortion maps.
- ► There exists a sextic twist E'(𝔽_{p²}) and an injective group homomorphism

$$\psi: E'(\mathbb{F}_{p^2}) \to E(\mathbb{F}_{p^{12}}).$$

Define a twisted pairing

 $\hat{e}: E(\mathbb{F}_p) \times E'(\mathbb{F}_{p^2}) \to \mathbb{F}_{p^{12}}^*, \quad \hat{e}(P,Q') = e(P,\psi(Q')).$

- ► The field arithmetic needed for non-pairing operations is restricted to F_{p²}.
- The homomorphism is only needed when actually computing pairings.

 Let X⁶ − ξ be an irreducible polynomial in F_{p²}[X]. Represent F_{p¹²} as F_{p²}[X]/(X⁶ − ξ). Any element in F_{p¹²} has the form a₅z⁵ + a₄z⁴ + a₃z³ + a₂z² + a₁z + a₀ for a root z of X⁶ − ξ.

 Let X⁶ − ξ be an irreducible polynomial in F_{p²}[X]. Represent F_{p¹²} as F_{p²}[X]/(X⁶ − ξ). Any element in F_{p¹²} has the form a₅z⁵ + a₄z⁴ + a₃z³ + a₂z² + a₁z + a₀ for a root z of X⁶ − ξ.

• The twist is
$$E' : y'^2 = x'^3 + b/\xi$$
.

- ► Let $X^6 \xi$ be an irreducible polynomial in $\mathbb{F}_{p^2}[X]$. Represent $\mathbb{F}_{p^{12}}$ as $\mathbb{F}_{p^2}[X]/(X^6 - \xi)$. Any element in $\mathbb{F}_{p^{12}}$ has the form $a_5z^5 + a_4z^4 + a_3z^3 + a_2z^2 + a_1z + a_0$ for a root z of $X^6 - \xi$.
- The twist is $E': y'^2 = x'^3 + b/\xi$.
- Let $(x', y') \in E'(\mathbb{F}_{p^2})$. The mapping

$$\psi: (x', y') \mapsto (z^2 x', z^3 y')$$

does not incur any multiplication overhead and produces sparse elements of $\mathbb{F}_{p^{12}}$.

Compressed Pairings

- Pairing compression is possible with ratio ¹/₃ in a way that naturally integrates with point compression.
- ► Instead of reducing a point (x', y') ∈ E'(𝔽_{p²}) to its x-coordinate, discard it and keep only the y-coordinate. Recovering (x', y') creates ambiguity between three possible values of x'.

Compressed Pairings

- Pairing compression is possible with ratio ¹/₃ in a way that naturally integrates with point compression.
- ► Instead of reducing a point (x', y') ∈ E'(𝔽_{p²}) to its x-coordinate, discard it and keep only the y-coordinate. Recovering (x', y') creates ambiguity between three possible values of x'.
- The three points that share the same y-coordinate are conjugates, as are the pairing values computed on them (provided the points are n-torsion points).
- ► The trace of all three pairing values is the same 𝔽_{p⁴} value.

Point Compression

- ► Discard one more bit of y', i.e. do not distinguish between y' and -y'.
- ► Keep only the information to represent an equivalence class {(x', ±y'), (ζ₃x', ±y'), (ζ₃²x', ±y')}.

Point Compression

- ► Discard one more bit of y', i.e. do not distinguish between y' and -y'.
- ► Keep only the information to represent an equivalence class {(x', ±y'), (ζ₃x', ±y'), (ζ₃²x', ±y')}.
- ► The F_{p²}-traces of the pairing values of all six points in the class are equal.
- Obtain a unique compressed pairing value over \mathbb{F}_{p^2} .

Point Compression

- ► Discard one more bit of y', i.e. do not distinguish between y' and -y'.
- ► Keep only the information to represent an equivalence class {(x', ±y'), (ζ₃x', ±y'), (ζ₃²x', ±y')}.
- ► The F_{p²}-traces of the pairing values of all six points in the class are equal.
- Obtain a unique compressed pairing value over \mathbb{F}_{p^2} .
- Represent points in $E'(\mathbb{F}_{p^2})$ with less than $\log(p^2)$ bits.
- Pairing compression with ratio $\frac{1}{6}$ may be possible.

Open Problems

- How to build pairing-friendly curves of genus $g \in \{1, 2, 3, 4\}$ and prime order for k/g < 32 and $\varphi(k) > 4$ over a field \mathbb{F}_{p^f} ?
- Are there any real security problems with small D? Can we handle really large D?
- How are the special primes distributed? Are there infinitely many?

If you are interested ...

Curve Database:

http://www.ti.rwth-aachen.de/~mnaehrig Lots of examples of bitsizes 160, 192, 224,..., 512 and program to compute curve of chosen bitsize.

Paulo Barreto's Pairing-Based Crypto Lounge: http://paginas.terra.com.br/informatica/ paulobarreto/pblounge.html