Pairing-Friendly Elliptic Curves of Prime Order

Paulo S. L. M. Barreto¹ Michael Naehrig²

¹University of São Paulo pbarreto@larc.usp.br

²RWTH Aachen University mnaehrig@ti.rwth-aachen.de

SAC 2005

Outline

- Constructing pairing-friendly curves (review)
 - prime order, but restricted to $k \le 6$
 - general k, but $\rho = \log p / \log r \approx 2$
 - selected values of k > 6, best result $\rho \approx \frac{5}{4}$

- New method: curves of prime order and k = 12
 - construction
 - twisted pairings
 - point and pairing compression

Pairing-Friendly Curves

An elliptic curve is *pairing-friendly* if it contains a subgroup of (large) prime order r such that

▶
$$r \mid p^k - 1$$
,
▶ $r \nmid p^i - 1$ for $0 < i < k$,

where k is

- ▶ small enough that arithmetic on \mathbb{F}_{p^k} is feasible,

Pairing-Friendly Curves

An elliptic curve is *pairing-friendly* if it contains a subgroup of (large) prime order r such that

▶
$$r \mid p^k - 1$$
,
▶ $r \nmid p^i - 1$ for $0 < i < k$,

where k is

- ▶ small enough that arithmetic on \mathbb{F}_{p^k} is feasible,
- Unfortunately, k is usually too large (special construction needed).

Complex Multiplication (CM)

► The goal: Find p, n (p > 3 prime) and a, b ∈ F_p s.t. the elliptic curve E : y² = x³ + ax + b has order #E(F_p) = n (and trace of the Frobenius t = p + 1 - n).

Prerequisite:

The CM norm equation $DV^2 = 4p - t^2$ must be satisfied with moderate CM discriminant *D*.

Some Constructions

- Miyaji-Nakabayashi-Takano (2001) use the fact that n | Φ_k(p) to parametrise p, n and t, for k ∈ {3,4,6} the CM norm equation reduces to a Pell equation DV² = 4n(u) − (t(u) − 2)².
- Restriction: unable to handle larger k (norm equation at least quartic).

Some Constructions

- Miyaji-Nakabayashi-Takano (2001) use the fact that n | Φ_k(p) to parametrise p, n and t, for k ∈ {3,4,6} the CM norm equation reduces to a Pell equation DV² = 4n(u) − (t(u) − 2)².
- Restriction: unable to handle larger k (norm equation at least quartic).
- Cocks-Pinch (2002) unpublished algorithm based on the property that r | n = p + 1 − t and r | p^k − 1.
 ⇒ t − 1 is a primitive k-th root of unity mod r.
- Restriction: usually $\rho = \log p / \log r \approx 2$.

Algebraic Constructions

- Barreto-Lynn-Scott (2002), Brezing-Weng (2003)
- For certain values of k and D there exist closed-form parametrisations for families of curves with known equations.

(e.g.
$$k = 2^{i}3^{j}$$
 and $D = 3$, or $k = 2^{i}7^{j}$ and $D = 7$)

Algebraic Constructions

- Barreto-Lynn-Scott (2002), Brezing-Weng (2003)
- For certain values of k and D there exist closed-form parametrisations for families of curves with known equations.

(e.g. $k = 2^{i}3^{j}$ and D = 3, or $k = 2^{i}7^{j}$ and D = 7)

Advantages: ρ closer to 1.
 (best case: ρ = ⁵/₄ for k = 8 and D = 3)

Algebraic Constructions

- Barreto-Lynn-Scott (2002), Brezing-Weng (2003)
- For certain values of k and D there exist closed-form parametrisations for families of curves with known equations.

(e.g. $k = 2^{i}3^{j}$ and D = 3, or $k = 2^{i}7^{j}$ and D = 7)

- Advantages: ρ closer to 1.
 (best case: ρ = ⁵/₄ for k = 8 and D = 3)
- Limitations: solutions known only for small D and curve order always composite (ρ still 'large').

The Problem

Boneh-Lynn-Shacham (2001)

- Original challenge: how to build pairing-friendly curves with k > 6?
- Modified challenge: how to build pairing-friendly curves of prime order with k > 6?
- Suggested lower bound: k = 10

 Galbraith-McKee-Valença (2004) start from the property n | Φ_k(p) and parametrise p(u) such that

$$\Phi_k(p(u)) = n_1(u)n_2(u).$$

 Galbraith-McKee-Valença (2004) start from the property n | Φ_k(p) and parametrise p(u) such that

$$\Phi_k(p(u)) = n_1(u)n_2(u).$$

Leads to conditions on quadratic p(u) s.t. the factors of Φ_k(p(u)) are quartic for k ∈ {5, 8, 10, 12}.

 Galbraith-McKee-Valença (2004) start from the property n | Φ_k(p) and parametrise p(u) such that

$$\Phi_k(p(u)) = n_1(u)n_2(u).$$

- Leads to conditions on quadratic p(u) s.t. the factors of Φ_k(p(u)) are quartic for k ∈ {5, 8, 10, 12}.
- Result: families of genus 2 curves similar to MNT elliptic curves.

- ▶ NB: p(u) must be a prime (or prime power).
- Some conditions cannot lead to solutions: for k = 12 the parametrisation p(u) = 6u² will never produce a prime power.

- ▶ NB: p(u) must be a prime (or prime power).
- Some conditions cannot lead to solutions: for k = 12 the parametrisation p(u) = 6u² will never produce a prime power.

How about changing the strategy?

New Strategy

- Start from $n | \Phi_k(t(u) 1)$ and parametrise t(u) s.t. $\Phi_k(t(u) - 1)$ splits into quartic factors $n_1(u)n_2(u)$.
- ► The only restriction on t(u) is the Hasse bound. Since n(u) is quartic, t(u) must be at most quadratic for k ∈ {5, 8, 10, 12}.

New Strategy

- Start from $n | \Phi_k(t(u) 1)$ and parametrise t(u) s.t. $\Phi_k(t(u) 1)$ splits into quartic factors $n_1(u)n_2(u)$.
- ► The only restriction on t(u) is the Hasse bound. Since n(u) is quartic, t(u) must be at most quadratic for k ∈ {5, 8, 10, 12}.
- Most conditions do not lead to a favourable factorisation of the norm equation

$$DV^2 = 4n(u) - (t(u) - 2)^2.$$

New Curves

• The condition $t(u) = 6u^2 + 1$ does lead to a favourable factorisation for k = 12.

$$\Phi_k(t(u)-1)=n(u)n(-u).$$

Parameters:

$$n(u) = 36u^{4} + 36u^{3} + 18u^{2} + 6u + 1$$

$$p(u) = 36u^{4} + 36u^{3} + 24u^{2} + 6u + 1$$

$$DV^{2} = 4p - t^{2} = 3(6u^{2} + 4u + 1)^{2}$$

NB: $u \in \mathbb{Z} \setminus \{0\}$ (positive or negative values).

New Curves

Since D = 3, the curve equation has the form

$$E(\mathbb{F}_p): y^2 = x^3 + b,$$

with b > 0 adjusted to attain the right order. (A simple sequential search quickly finds a suitable *b*.)

► NB: the method always produces p ≡ 1 (mod 3) (no supersingular curves).

Twisted Pairings

► There exists a sextic twist E'(𝔽_{p²}) and an injective group homomorphism

$$\psi: E'(\mathbb{F}_{p^2}) \to E(\mathbb{F}_{p^{12}}).$$

Twisted Pairings

► There exists a sextic twist E'(𝔽_{p²}) and an injective group homomorphism

$$\psi: E'(\mathbb{F}_{p^2}) \to E(\mathbb{F}_{p^{12}}).$$

- Define a twisted pairing
 - $\hat{e}: E(\mathbb{F}_p) \times E'(\mathbb{F}_{p^2}) \to \mathbb{F}_{p^{12}}, \quad \hat{e}(P,Q) = e(P,\psi(Q)).$

Twisted Pairings

► There exists a sextic twist E'(𝔽_{p²}) and an injective group homomorphism

$$\psi: E'(\mathbb{F}_{p^2}) \to E(\mathbb{F}_{p^{12}}).$$

Define a twisted pairing

 $\hat{e}: E(\mathbb{F}_p) \times E'(\mathbb{F}_{p^2}) \to \mathbb{F}_{p^{12}}, \quad \hat{e}(P,Q) = e(P,\psi(Q)).$

- ► The field arithmetic needed for non-pairing operations is restricted to F_{p²} instead of F_{p^{k/2}}.
- The homomorphism is only needed when actually computing pairings.

Compressed Pairings

- Pairing compression is possible with ratio ¹/₃ in a way that naturally integrates with point compression.
- ► Instead of reducing a point (x', y') ∈ E'(𝔽_{p²}) to its x-coordinate, discard it and keep only the y-coordinate. Recovering (x', y') creates ambiguity between three possible values of x'.

Compressed Pairings

- Pairing compression is possible with ratio ¹/₃ in a way that naturally integrates with point compression.
- ► Instead of reducing a point (x', y') ∈ E'(𝔽_{p²}) to its x-coordinate, discard it and keep only the y-coordinate. Recovering (x', y') creates ambiguity between three possible values of x'.
- The three points that share the same y-coordinate are conjugates, as are the pairing values computed on them (provided the points are n-torsion points).
- ► The trace of all three pairing values is the same 𝔽_{p⁴} value.

Point Compression

- ► Discard one more bit of y', i.e. do not distinguish between y' and -y'.
- Keep only the information to represent an equivalence class {(x', ±y'), (ζ₃x', ±y'), (ζ₃²x', ±y')}.

Point Compression

- ► Discard one more bit of y', i.e. do not distinguish between y' and -y'.
- Keep only the information to represent an equivalence class {(x', ±y'), (ζ₃x', ±y'), (ζ₃²x', ±y')}.
- ► The F_{p²}-traces of the pairing values of all six points in the class are equal.
- Obtain a unique compressed pairing value over \mathbb{F}_{p^2} .

Point Compression

- ► Discard one more bit of y', i.e. do not distinguish between y' and -y'.
- Keep only the information to represent an equivalence class {(x', ±y'), (ζ₃x', ±y'), (ζ₃²x', ±y')}.
- ► The F_{p²}-traces of the pairing values of all six points in the class are equal.
- Obtain a unique compressed pairing value over \mathbb{F}_{p^2} .
- Represent points in $E'(\mathbb{F}_{p^2})$ with less than $\log(p^2)$ bits.
- Pairing compression with ratio $\frac{1}{6}$ may be possible.

Work in Progress

Reduce the loop length similar to the η_T pairing.
 Use a space-time tradeoff, see Scott (2005).
 Simplify the final powering.

Work in Progress

- Reduce the loop length similar to the η_T pairing.
 Use a space-time tradeoff, see Scott (2005).
 Simplify the final powering.
- Security assessment of certain features, e.g. sparse curve orders correspond to sparse field sizes - attacks may be possible, but their relevance is uncertain.

More Open Problems

- How to build pairing-friendly curves of genus g ∈ {1,2,3,4} and prime order for k/g < 32 and φ(k) > 4 over a field ℝ_{p^m}?
- Are there any real security problems with small D? Can we handle really large D?
- Lots of other problems ...

Thank you!