Pairing-Friendly Elliptic Curves of Prime Order

Paulo S. L. M. Barreto ${ }^{1} \quad$ Michael Naehrig ${ }^{2}$

${ }^{1}$ University of São Paulo
pbarreto@larc.usp.br
${ }^{2}$ RWTH Aachen University mnaehrig@ti.rwth-aachen.de

SAC 2005

RWUHAACHEN

Outline

- Constructing pairing-friendly curves (review)
- prime order, but restricted to $k \leq 6$
- general k, but $\rho=\log p / \log r \approx 2$
- selected values of $k>6$, best result $\rho \approx \frac{5}{4}$
- New method: curves of prime order and $k=12$
- construction
- twisted pairings
- point and pairing compression

Pairing-Friendly Curves

- An elliptic curve is pairing-friendly if it contains a subgroup of (large) prime order r such that
- $r \mid p^{k}-1$,
- $r \nmid p^{i}-1$ for $0<i<k$,
where k is
- small enough that arithmetic on $\mathbb{F}_{p^{k}}$ is feasible,
- large enough that the DLP on $\mathbb{F}_{p^{k}}^{*}$ is about as intractable as the ECDLP on $E\left(\mathbb{F}_{p}\right)[r]$.

Pairing-Friendly Curves

- An elliptic curve is pairing-friendly if it contains a subgroup of (large) prime order r such that
- $r \mid p^{k}-1$,
- $r \nmid p^{i}-1$ for $0<i<k$,
where k is
- small enough that arithmetic on $\mathbb{F}_{p^{k}}$ is feasible,
- large enough that the DLP on $\mathbb{F}_{p^{k}}^{*}$ is about as intractable as the ECDLP on $E\left(\mathbb{F}_{p}\right)[r]$.
- Unfortunately, k is usually too large (special construction needed).

Complex Multiplication (CM)

- The goal:

Find p, n ($p>3$ prime) and $a, b \in \mathbb{F}_{p}$ s.t.
the elliptic curve $E: y^{2}=x^{3}+a x+b$
has order $\# E\left(\mathbb{F}_{p}\right)=n$
(and trace of the Frobenius $t=p+1-n$).

- Prerequisite:

The CM norm equation $D V^{2}=4 p-t^{2}$ must be satisfied with moderate CM discriminant D.

Some Constructions

- Miyaji-Nakabayashi-Takano (2001) use the fact that $n \mid \Phi_{k}(p)$ to parametrise p, n and t, for $k \in\{3,4,6\}$ the CM norm equation reduces to a Pell equation $D V^{2}=4 n(u)-(t(u)-2)^{2}$.
- Restriction: unable to handle larger k (norm equation at least quartic).

Some Constructions

- Miyaji-Nakabayashi-Takano (2001)
use the fact that $n \mid \Phi_{k}(p)$ to parametrise p, n and t, for $k \in\{3,4,6\}$ the CM norm equation reduces to a Pell equation $D V^{2}=4 n(u)-(t(u)-2)^{2}$.
- Restriction: unable to handle larger k (norm equation at least quartic).
- Cocks-Pinch (2002) unpublished algorithm based on the property that $r \mid n=p+1-t$ and $r \mid p^{k}-1$.
$\Rightarrow t-1$ is a primitive k-th root of unity $\bmod r$.
- Restriction: usually $\rho=\log p / \log r \approx 2$.

Algebraic Constructions

- Barreto-Lynn-Scott (2002), Brezing-Weng (2003)
- For certain values of k and D there exist closed-form parametrisations for families of curves with known equations.

$$
\text { (e.g. } k=2^{i} 3^{j} \text { and } D=3 \text {, or } k=2^{i} 7^{j} \text { and } D=7 \text {) }
$$

Algebraic Constructions

- Barreto-Lynn-Scott (2002), Brezing-Weng (2003)
- For certain values of k and D there exist closed-form parametrisations for families of curves with known equations.

$$
\text { (e.g. } k=2^{i} 3^{j} \text { and } D=3 \text {, or } k=2^{i} 7^{j} \text { and } D=7 \text {) }
$$

- Advantages: ρ closer to 1.
(best case: $\rho=\frac{5}{4}$ for $k=8$ and $D=3$)

Algebraic Constructions

- Barreto-Lynn-Scott (2002), Brezing-Weng (2003)
- For certain values of k and D there exist closed-form parametrisations for families of curves with known equations.

$$
\text { (e.g. } k=2^{i} 3^{j} \text { and } D=3 \text {, or } k=2^{i} 7^{j} \text { and } D=7 \text {) }
$$

- Advantages: ρ closer to 1.
(best case: $\rho=\frac{5}{4}$ for $k=8$ and $D=3$)
- Limitations: solutions known only for small D and curve order always composite (ρ still 'large').

The Problem

- Boneh-Lynn-Shacham (2001)
- Original challenge: how to build pairing-friendly curves with $k>6$?
- Modified challenge: how to build pairing-friendly curves of prime order with $k>6$?
- Suggested lower bound: $k=10$

Extending the MNT Approach

- Galbraith-McKee-Valença (2004) start from the property $n \mid \Phi_{k}(p)$ and parametrise $p(u)$ such that

$$
\Phi_{k}(p(u))=n_{1}(u) n_{2}(u)
$$

Extending the MNT Approach

- Galbraith-McKee-Valença (2004) start from the property $n \mid \Phi_{k}(p)$ and parametrise $p(u)$ such that

$$
\Phi_{k}(p(u))=n_{1}(u) n_{2}(u) .
$$

- Leads to conditions on quadratic $p(u)$ s.t. the factors of $\Phi_{k}(p(u))$ are quartic for $k \in\{5,8,10,12\}$.

Extending the MNT Approach

- Galbraith-McKee-Valença (2004) start from the property $n \mid \Phi_{k}(p)$ and parametrise $p(u)$ such that

$$
\Phi_{k}(p(u))=n_{1}(u) n_{2}(u) .
$$

- Leads to conditions on quadratic $p(u)$ s.t. the factors of $\Phi_{k}(p(u))$ are quartic for $k \in\{5,8,10,12\}$.
- Result: families of genus 2 curves similar to MNT elliptic curves.

Extending the MNT Approach

- NB: $p(u)$ must be a prime (or prime power).
- Some conditions cannot lead to solutions: for $k=12$ the parametrisation $p(u)=6 u^{2}$ will never produce a prime power.

Extending the MNT Approach

- NB: $p(u)$ must be a prime (or prime power).
- Some conditions cannot lead to solutions: for $k=12$ the parametrisation $p(u)=6 u^{2}$ will never produce a prime power.
- How about changing the strategy?

New Strategy

- Start from $n \mid \Phi_{k}(t(u)-1)$ and parametrise $t(u)$ s.t. $\Phi_{k}(t(u)-1)$ splits into quartic factors $n_{1}(u) n_{2}(u)$.
- The only restriction on $t(u)$ is the Hasse bound. Since $n(u)$ is quartic, $t(u)$ must be at most quadratic for $k \in\{5,8,10,12\}$.

New Strategy

- Start from $n \mid \Phi_{k}(t(u)-1)$ and parametrise $t(u)$ s.t. $\Phi_{k}(t(u)-1)$ splits into quartic factors $n_{1}(u) n_{2}(u)$.
- The only restriction on $t(u)$ is the Hasse bound. Since $n(u)$ is quartic, $t(u)$ must be at most quadratic for $k \in\{5,8,10,12\}$.
- Most conditions do not lead to a favourable factorisation of the norm equation

$$
D V^{2}=4 n(u)-(t(u)-2)^{2} .
$$

New Curves

- The condition $t(u)=6 u^{2}+1$ does lead to a favourable factorisation for $k=12$.

$$
\Phi_{k}(t(u)-1)=n(u) n(-u) .
$$

- Parameters:

$$
\begin{aligned}
n(u) & =36 u^{4}+36 u^{3}+18 u^{2}+6 u+1 \\
p(u) & =36 u^{4}+36 u^{3}+24 u^{2}+6 u+1 \\
D V^{2} & =4 p-t^{2}=3\left(6 u^{2}+4 u+1\right)^{2}
\end{aligned}
$$

$\mathrm{NB}: u \in \mathbb{Z} \backslash\{0\}$ (positive or negative values).

New Curves

- Since $D=3$, the curve equation has the form

$$
E\left(\mathbb{F}_{p}\right): y^{2}=x^{3}+b,
$$

with $b>0$ adjusted to attain the right order. (A simple sequential search quickly finds a suitable b.)

- NB: the method always produces $p \equiv 1(\bmod 3)$ (no supersingular curves).

Twisted Pairings

- There exists a sextic twist $E^{\prime}\left(\mathbb{F}_{p^{2}}\right)$ and an injective group homomorphism

$$
\psi: E^{\prime}\left(\mathbb{F}_{p^{2}}\right) \rightarrow E\left(\mathbb{F}_{p^{12}}\right) .
$$

Twisted Pairings

- There exists a sextic twist $E^{\prime}\left(\mathbb{F}_{p^{2}}\right)$ and an injective group homomorphism

$$
\psi: E^{\prime}\left(\mathbb{F}_{p^{2}}\right) \rightarrow E\left(\mathbb{F}_{p^{12}}\right) .
$$

- Define a twisted pairing

$$
\hat{e}: E\left(\mathbb{F}_{p}\right) \times E^{\prime}\left(\mathbb{F}_{p^{2}}\right) \rightarrow \mathbb{F}_{p^{12}}, \quad \hat{e}(P, Q)=e(P, \psi(Q)) .
$$

Twisted Pairings

- There exists a sextic twist $E^{\prime}\left(\mathbb{F}_{p^{2}}\right)$ and an injective group homomorphism

$$
\psi: E^{\prime}\left(\mathbb{F}_{p^{2}}\right) \rightarrow E\left(\mathbb{F}_{p^{12}}\right) .
$$

- Define a twisted pairing

$$
\hat{e}: E\left(\mathbb{F}_{p}\right) \times E^{\prime}\left(\mathbb{F}_{p^{2}}\right) \rightarrow \mathbb{F}_{p^{12}}, \quad \hat{e}(P, Q)=e(P, \psi(Q)) .
$$

- The field arithmetic needed for non-pairing operations is restricted to $\mathbb{F}_{p^{2}}$ instead of $\mathbb{F}_{p^{k / 2}}$.
- The homomorphism is only needed when actually computing pairings.

Compressed Pairings

- Pairing compression is possible with ratio $\frac{1}{3}$ in a way that naturally integrates with point compression.
- Instead of reducing a point $\left(x^{\prime}, y^{\prime}\right) \in E^{\prime}\left(\mathbb{F}_{p^{2}}\right)$ to its x-coordinate, discard it and keep only the y-coordinate. Recovering (x^{\prime}, y^{\prime}) creates ambiguity between three possible values of x^{\prime}.

Compressed Pairings

- Pairing compression is possible with ratio $\frac{1}{3}$ in a way that naturally integrates with point compression.
- Instead of reducing a point $\left(x^{\prime}, y^{\prime}\right) \in E^{\prime}\left(\mathbb{F}_{p^{2}}\right)$ to its x-coordinate, discard it and keep only the y-coordinate. Recovering (x^{\prime}, y^{\prime}) creates ambiguity between three possible values of x^{\prime}.
- The three points that share the same y-coordinate are conjugates, as are the pairing values computed on them (provided the points are n-torsion points).
- The trace of all three pairing values is the same $\mathbb{F}_{p^{4}}$ value.

Point Compression

- Discard one more bit of y^{\prime}, i.e. do not distinguish between y^{\prime} and $-y^{\prime}$.
- Keep only the information to represent an equivalence class $\left\{\left(x^{\prime}, \pm y^{\prime}\right),\left(\zeta_{3} x^{\prime}, \pm y^{\prime}\right),\left(\zeta_{3}^{2} x^{\prime}, \pm y^{\prime}\right)\right\}$.

Point Compression

- Discard one more bit of y^{\prime}, i.e. do not distinguish between y^{\prime} and $-y^{\prime}$.
- Keep only the information to represent an equivalence class $\left\{\left(x^{\prime}, \pm y^{\prime}\right),\left(\zeta_{3} x^{\prime}, \pm y^{\prime}\right),\left(\zeta_{3}^{2} x^{\prime}, \pm y^{\prime}\right)\right\}$.
- The $\mathbb{F}_{p^{2}}$-traces of the pairing values of all six points in the class are equal.
- Obtain a unique compressed pairing value over $\mathbb{F}_{p^{2}}$.

Point Compression

- Discard one more bit of y^{\prime}, i.e. do not distinguish between y^{\prime} and $-y^{\prime}$.
- Keep only the information to represent an equivalence class $\left\{\left(x^{\prime}, \pm y^{\prime}\right),\left(\zeta_{3} x^{\prime}, \pm y^{\prime}\right),\left(\zeta_{3}^{2} x^{\prime}, \pm y^{\prime}\right)\right\}$.
- The $\mathbb{F}_{p^{2}}$-traces of the pairing values of all six points in the class are equal.
- Obtain a unique compressed pairing value over $\mathbb{F}_{p^{2}}$.
- Represent points in $E^{\prime}\left(\mathbb{F}_{p^{2}}\right)$ with less than $\log \left(p^{2}\right)$ bits.
- Pairing compression with ratio $\frac{1}{6}$ may be possible.

Work in Progress

- Reduce the loop length similar to the η_{T} pairing. Use a space-time tradeoff, see Scott (2005). Simplify the final powering.

Work in Progress

- Reduce the loop length similar to the η_{T} pairing. Use a space-time tradeoff, see Scott (2005). Simplify the final powering.
- Security assessment of certain features, e.g. sparse curve orders correspond to sparse field sizes - attacks may be possible, but their relevance is uncertain.

More Open Problems

- How to build pairing-friendly curves of genus $g \in\{1,2,3,4\}$ and prime order for $k / g<32$ and $\varphi(k)>4$ over a field $\mathbb{F}_{p^{m}}$?
- Are there any real security problems with small D ? Can we handle really large D ?
- Lots of other problems ...

Thank you!

