
Tentamen Operating Systems Security, 23 January 2017, 12:30-15:30
(tot 16:00 voor studenten met extra tijd)

Any material other than a pen is not allowed; in particular no books, notes, or calculator.

Write clearly and answer short and concise. Je mag gewoon in het Nederlands antwoorden. Succes!

1. (10 points) Logging into a computer over SSH from an untrusted machine creates a security
issue: the user cannot be sure that the untrusted machine does not, for example, run a keylogger
in the background to obtain the user’s password. One solution are one-time passwords, which
can be used in PAM using the pam_otpw.so module. This module comes together with a one-
time-password generator otpw-gen, which generates a list of one-time passwords and creates a
file of the corresponding password hashes in the user’s home directory.

(a) What should the /etc/pam.d/sshd configuration file for the SSH server look like to allow
authentication only by one-time password?

(b) What should the /etc/pam.d/sshd configuration file for the SSH server look like to allow
authentication by one-time password as a fallback if the usual password authentication fails
(e.g., because the user decided to simply hit “enter” at the password prompt)?

(c) What should the /etc/pam.d/sshd configuration file for the SSH server look like to use
normal password authentication as fallback if authentication by one-time password failed
(e.g., because the user forgot to generate sufficiently many one-time passwords)?

(d) You wouldn’t expect to see a line like the following in /etc/pam.d/sshd:

auth sufficient pam_rootok.so

Explain why.

(e) In what PAM configuration file would you expect to see such a line?

2. (15 points) Consider an operating system with a reference monitor that is using mandatory
access control to implement the Bell-LaPadula security model with weak tranquility. Assume
that a user logs in with clearance secret and starts a program, which is attempting to perform a
certain sequence of operations on files. For each of those operations state whether it is allowed
or forbidden. If an operation is forbidden, briefly explain why. Additionally, state the security
level of the program before it performs any operations and every time the security level changes.

Note: The program tries to perform the operations in the order given below. If an operation is
forbidden, assume that the program simply continues without performing this operation.

(a) Read file /home/user/ossec/exam2015.tex with level secret

(b) Write file /home/user/ossec/exam2016.tex with level top secret

(c) Read file /home/user/notes.txt with level unclassified

(d) Write file /home/user/notes.txt with level unclassified

(e) Read file /etc/shadow with level top secret

(f) Read file /var/log/syslog with level secret

(g) Read file /home/user/ossec/exam2016.tex with level top secret

1



3. (25 points) The “classical” way to exploit a buffer-overflow vulnerability is to inject shellcode
on the stack and overwrite the return address with the address of that shell code. Consider the
following vulnerable function:

int vuln() {

char buf[150];

ssize_t b;

memset(buf, 0, 150);

printf("Enter input: ");

b = read(0, buf, 400);

printf("Recv: ");

write(1, buf, b);

return 0;

}

(a) Which line contains the vulnerability?

(b) Assume that a program using the function vuln() is running with non-executable stack
such that the shell-code-injection attack won’t work. What kind of attack could you mount
to exploit the buffer overflow instead?

(c) Assume that the program is running on an AMD64 machine. What addresses will you need
to mount the attack from part b)?

(d) Explain in detail what data an attacker needs to place in buf in order to mount the attack.
What address listed in part c) needs to overwrite the return address of vuln()?

(e) Address-space layout randomization (ASLR) makes this attack considerably more difficult.
Explain why.

(f) What could an attacker do to circumvent ASLR and still mount the attack described in
part b)?

2



4. (15 points) Consider the following program that only opens the file /tmp/outfile.txt for
writing (appending), if the file exists and is not a symbolic link.

#include <stdio.h>

#include <unistd.h>

#include <sys/stat.h>

#include <sys/types.h>

int main(int argc, char *argv[]) {

struct stat st;

FILE *fh;

const char *path = "/tmp/outfile.txt";

uid_t puid;

int r;

if(argc < 2) {

fprintf(stderr, "Usage: %s FILE\n", argv[0]);

return -1;

}

r = lstat(path, &st);

if(r < 0) {

fprintf(stderr, "lstat failed on %s\n", argv[1]);

return -1;

}

puid = geteuid();

// Check, whether file is a symbolic link

if((st.st_mode & S_IFMT) != S_IFLNK) {

fh = fopen(path, "a");

if (!fh) {

fprintf(stderr, "Opening file %s for appending failed\n", argv[1]);

return -1;

}

fprintf(fh, "%s\n",argv[1]);

fclose(fh);

}

else {

fprintf(stderr, "Error: file %s is a symbolic link\n", argv[1]);

}

return 0;

}

3



Assume that an attacker has control over the command-line argument (argv[1]) passed to the
program and that his target is to trick the program into writing that string to a symbolic link
(for example, pointing to /etc/shadow).

(a) What is the vulnerability in the code that allows the attacker to achieve his goal?

(b) How would the attacker achieve his goal?

(c) Sketch how you would fix the vulnerability.

5. (20 points) Assume that you have one physical machine available that you want to use to run
a web server (apache2) and a mail server (qmail). Consider the following different setups:

(a) Both the apache2 process and the qmail process run as user root natively on a Linux
system.

(b) The apache2 process runs as user web, the qmail process runs as user mail. Each of those
two users has read/write access only to the files that it needs to have access to to function
(e.g., qmail has read/write access to mails; apache2 has read access to html files that it
serves)

(c) The apache2 and the qmail process each run as user root in separate chroot environments.

(d) The apache2 and the qmail process run in separate virtual machines controlled by a Xen
hypervisor.

Assume that an attacker has an exploit against the web server that gives a shell with the per-
missions of the web server (i.e., as the user that is running apache2). The target of the attacker
is access to mails stored by the qmail process. For each of the scenarios above state what the
attacker needs to do to obtain these mails and what additional exploits (if any) are required.

6. (15 points) One goal of a multiuser operating system is to protect each user’s information and
activity from damage caused by accidental or deliberate actions of other users of the system.

(a) Describe two mechanisms that operating systems could use to reduce the opportunity for
a user process to prevent another user’s process from making progress. In your answer,
include any particular OS features that are relied upon.

(b) Describe how an operating system might attempt to ensure that long-term user information
(i.e. information which exists beyond process execution) is not interfered with or misused
by other users. Your answer should be clear about which actions are performed and the
resources they consume.

4


