OS Security Malware (Part II)

Radboud University, Nijmegen, The Netherlands

Winter 2017/2018

Smartphone Malware

Part II

Evolution of Malware: From PC to Smartphone

- Larger attack surface for malware authors; easy-to-deploy attacks; many forms of attack vectors
- ▶ Motivation: 'low risk, high reward'
 - Various app markets: official (e.g. Google Play) and non-official (e.g. Pandaapp)
 - Decentralized: anyone can become an app developer; no proper vetting of new apps

Early days of smartphone malware

- Back in 2004, a group known as 29A released Cabir a malware (worm) for Symbian
 - Propagate via Bluetooth
 - Bluetooth was the most used technology to transfer information between 2 devices at the time
 - Countermeasure: simply turn Bluetooth off or switch it to the "invisible" mode
 - Bluetooth attack 2.0: BlueBorne (2017)
- ▶ Trojan, Qdial, targeting Symbian users, was released in same year
 - Malware sent text messages to premium rate services, for which the handset owner would be charged, thus making an income for the malware author.
- ▶ In 2005, a variant of Cabir was released Pbstealer
 - It copied all the information from an infected device's address book and attempted to transmit it to any Bluetooth-enabled device within range.
 - Malware included the string: ".:: Good artist copy, Great artist steal ::."

Current state of smartphone malware

- ▶ All major smartphone platforms have been infected
 - iOS: WireLurker (2014), can install malicious third-party applications to an iOS device through an infected Mac via a USB connection
 - Windows Phone: Proof-of-concept for Windows Phone 8 presented at MalCon 2013; FinSpy Mobile spyware (2013)
 - Blackberry: Trojans use a technique referred to as 'BackStab'; steal unencrypted backups of phones from computers; does not require higher-level privileges or root access to the phone or computer
- ► Android OS most infected platform to date

Popular Android Malware

- First proof-of-concept malware released in 2008.
 - Causes the phone to accept all incoming calls
 - ► Turns off the radio, preventing outgoing/incoming calls
 - Causes the phone to end all calls
 - ▶ Gathers sensitive information and sends it to the attacker
- ▶ Mobile Spy spyware, 2009
 - Monitored infected device via web browser, phone calls, text messages, photos, videos, GPS locations
 - ▶ Ran in 'stealth mode', no visible icon
- DroidKungFu, capable of root-level access on vulnerable Android devices and evade the detection of security software by encrypting its exploits using AES.
 - One of the exploits used was the RageAgainstTheCage (RATC) exploit.
 - Also known as adb setuid exhaustion attack
 - A race condition between RATC and adb-server
 - See https://thesnkchrmr.wordpress.com/2011/03/24/ rageagainstthecage/ for more details about the exploit and its source code

Rootkits & Bootkits

- ➤ One of the first Android rootkit was presented at DEF CON 18 (2010)
- Rootkit was used to track location of smartphone's owner, read SMS and redirect calls
- ► A demo of a clickjacking rootkit targeting Android 4.0, https://www.youtube.com/watch?v=RxpMPrqnxC0
- ▶ Bootkit, Android.Oldboot (2014) has the capability of reinstalling itself even after all of its working components have been deleted. Primary targets were rooted Android devices.

Bitcoin Mining malware

- ▶ In 2014, several malicious apps found on Google Play store were used in a large-scale crypto currency mining operation
- Contained a hidden crypto miner that stealthily exploit users' device for computational resources
- Malware was deployed through Wallpaper apps, with more than 500 downloads

Tools to analyze Android Malware

- Mobile Malware can be analyzed in 2 ways: statically and dynamically
- ► Static Analysis: Analyze suspicious app through reverse-engineering
- Dynamic Analysis: Execute the suspicious app in a controlled environment and monitor its behaviors
- ► Tools: IDA Pro, JD-Gui, Dex2Jar, Android SDK
- ► Countermeasures against Android malware:
 - There is no single solution!
 - Download apps from official markets only
 - ► Read permissions carefully before downloading and installing an app

Intrusion Detection & Prevention

- Two kinds of intrusion detection systems (IDS):
 - Network-based IDS (NIDS)
 - ► Host-based IDS (HIDS)
 - Special kind of HIDS: antivirus software (AV)
 - AV is typically more generally anti-malware software (aka virus scanners, malware scanners)
- ► Some systems have additional capabilities to *prevent* intrusion
- ▶ Those systems are called intrusion prevention systems (IPS), again:
 - Network-based IPS (NIPS)
 - Host-based IPS (HIPS)
- ▶ IDS/IPS tool: SNORT (more on this later)

Network-based intrusion detection system

- ▶ NIDS monitors traffic on its network segment as a data source
- ► This is achieved by placing the network interface in *promiscuous* mode to capture all traffic that crosses its network segment
- ▶ Different detection methods:
 - Signature-based detection: Signatures are attack patterns predetermined and pre-configured. This detection method monitors the network traffic and compares it with the pre-configured signatures so as to find a match.
 - Anomaly-based detection: This method of detection creates a baseline on average network conditions. Once a baseline has been created, the system intermittently samples network traffic on the basis of statistical analysis and compares the sample to the created baseline.
 - Protocol state analysis detection: This type of detection method identifies deviations of protocol states by comparing observed events with predefined profiles

Signature-based detection

- Only works for known attacks
- ▶ Packets can be matched against three different types of signatures:
 - String signatures: look for a text string that indicates a possible attack. For example: "cat "+ +" > /.rhosts" might cause a UNIX system to become extremely vulnerable to network attack
 - Port signatures: monitor connection attempts to well-known, frequently attacked ports. Examples of these ports include telnet (TCP port 23), FTP (TCP port 21/20), SUNRPC (TCP/UDP port 111), and IMAP (TCP port 143)
 - Header signatures: watch for suspicious combinations in packet headers. For example:s a TCP packet with both the SYN and FIN flags set, signifying that the requester wishes to start and stop a connection at the same time

Host-based intrusion detection system

- HIDS goes beyond malware scanning (although there may be some overlap)
- Typically register certain resources with the IDS, those resources are monitored
- Examples of resources: system files, Windows registry entries, network ports
- ▶ Idea: remember state of resource, detect modifications
- Typically store hash values of resources
- Crucial to protect the table of hashes!
- Additionally, analyze log files (e.g., /var/log/syslog)
- ► For log-file analysis, two possibilities:
 - Signature-based intrusion detection
 - Behavior-based intrusion detection
- Problem of signature-based IDS: same as with AV
- ▶ Problem of behavior-based IDS: hard to obtain good detection rate at low false-positive rate in highly dynamic systems

SNORT

- ► Can be used for network intrusion detection and prevention
- ► Free and open source
- Uses a simple rules-description language to create rules
- Snort rules are divided into 2 logical sections: rule header and rule options
 - The rule header contains the rule's action (e.g., log, alert, drop), protocol, source and destination IP addresses and netmasks, and the source and destination ports information
 - The rule option section contains alert messages and information on which parts of the packet should be inspected to determine if the rule action should be taken.
- action proto src_ip src_port direction dst_ip dst_port (options)
- ► Example: log tcp any :1024 -> 192.168.1.0/24 500:
- ▶ Log tcp traffic from priveleged ports less than or equal to 1024 going to ports greater than or equal to 500

Recover after intrusion

- ► Easy situation: download a file from the Internet, AV complains.
 - ⇒ Don't run/open file, but stop download (or delete file).
- ► Hard situation: AV complains about *old* files or IDS reports intrusion
- ► AV software typically offers to "remove the virus/worm/trojan"
- Question: Is that enough?
- ▶ There is only one responsible answer: **No.**
- Once a system has been compromised, you don't know what else is broken
- ▶ Only reasonable recovery from intrusion:
 - ▶ Isolate the system (to prevent further damage)
 - ► Analyze what was compromised and how (forensics)
 - ► Restore to a clean state (reinstall, restore clean data backup)