
OS Security
Mandatory Access Control

Radboud University, Nijmegen, The Netherlands

Winter 2017/2018



A short recap

I Traditional UNIX security uses discretionary access control (DAC)
I Each user decides about access permissions of his/her files
I Root can access all files
I Modern attack scenarios:

I User runs malware, malware sends private data through Internet
(confidentiality)

I User runs malware, malware modifies user’s files (integrity)
I DAC cannot prevent this kind of attack
I AV and IDS/IPS cannot guarantee to prevent this attack
I Idea: system-wide, fine-grained control over security goals

OS Security – Mandatory Access Control 2



Mandatory access control

I A system implements mandatory access control (MAC) if the
protection state can only be modified by trusted administrators via
trusted software.

I Trusted administrator defines policies, for example, to determine
which processes are allowed to access which files.

I Users cannot disable this.

OS Security – Mandatory Access Control 3



Multi-level security: Bell-LaPadula

I Central idea: control information flow to protect confidentiality
I Security model introduced in 1973
I Implemented in the Multics OS
I All objects are assigned security levels, typically:

I Top secret
I Secret
I Confidential
I Unclassified

I Users are assigned clearance levels
I Processes are assigned security levels

OS Security – Mandatory Access Control 4



Bell-LaPadula rules

Simple Security Property
A subject (user, process) must not be able to read an object above its
clearance level (e.g., a user with clearance “confidential” must not be able
to read a file with security level “secret”).
No read-up

The ? Property
A subject (process) must not write to an object below its security level
(e.g., a process with level “secret” must not write to a file with level
“unclassified”).
No write-down

OS Security – Mandatory Access Control 5



Tranquility

How is the security level of a process defined?

Strong tranquility
Security level of a process never changes. Set it once at startup, typically
to the user’s clearance level.

Weak tranquility
Security level of a process never changes in a way that it violates the
security policy. Typically start with low level, and increase as the process
reads higher-level information.

Typically desirable: weak tranquility

OS Security – Mandatory Access Control 6



Bell-LaPadula example - weak tranquility
I User with clearance “secret” starts process myprog with level

“unclassified”
I myprog tries to read file myfile with level “confidential”

I Allowed, because confidential ≤ secret
I Level of myprog increases to confidential

I myprog tries to write to file topsecretfile with level “top secret”
I Allowed, because top secret ≥ confidential

I myprog tries to write to file conffile with level “confidential”
I Allowed, because confidential ≥ confidential

I myprog tries to write to file otherfile with level “unclassified”
I Forbidden, because unclassified < confidential

I myprog tries to read file topsecretfile with level “top secret”
I Forbidden, because top secret > secret

I myprog tries to read file secretfile with level “secret”
I Allowed, because secret ≤ secret
I Level of myprog increases to secret

I myprog tries to write to file conffile with level “confidential”
I Forbidden, because confidential < secret

OS Security – Mandatory Access Control 7



Extensions to Bell-LaPadula

I Sometimes Bell-LaPadula is combined with categories to capture
“need to know”

I Example: “nuclear”, “intelligence”, “submarine”, “airforce”
I Compartments are subsets of the set of categories
I Subjects and objects are assigned compartments, e.g.,

I User user1: {“intelligence”, “airforce”}
I File file1: {“intelligence”}
I File file2: {“airforce, submarine”}

I Subject with clearance compartment S is allowed to read an object
with compartment O, if O ⊆ S

I Example:
I user1 is allowed to read file1
I user1 is not allowed to read file2

OS Security – Mandatory Access Control 8



Bell-LaPadula comments

I Only confidentiality is protected
I Actual write level is not defined by Bell-LaPadula (only minimal

level)
I No automated way to declassify information (i.e., reduce the level)
I In principle, users can write above their clearance

OS Security – Mandatory Access Control 9



Biba model

I Introduced by Kenneth J. Biba in 1975
I Model to protect integrity

I Complement of secrecy in Bell-LaPadula
I Assign to all objects and users integrity levels, typically:

I Crucial
I Very important
I Important

I Prevents “pollution” of information with higher integrity level

OS Security – Mandatory Access Control 10



Biba rules

Simple Integrity
A subject (user, process) must not read an object below its integrity level
(e.g., a user with level “crucial” must not read a file with level “very
important”).
No read-down

The ? Integrity Property
A subject (user, process) must not be able to write to an object above its
integrity level (e.g, a process with clearance “important” must not be able
to write to a file with integrity level “very important”).
No write-up

OS Security – Mandatory Access Control 11



Linux Security Modules

I Linux security traditionally follows the UNIX security model
I Around 2000, various projects worked on MAC (and generally

stronger security) for Linux
I Linus Torvalds about inclusion of SELinux: “make it a module”
I Since Kernel 2.6: API for Linux Security Modules (LSMs)
I Hooks to module functions when accessing security-critical resources
I In recent kernels, hooks defined in include/linux/lsm_hooks.h

OS Security – Mandatory Access Control 12



Criticism of LSM

LSM is in the mainline kernel and various LSM implementations exist,
however, there is some criticism of the API:

I Small overhead even if no LSM is loaded
I LSM is designed for access control, but can be abused, for example,

for bypassing the kernel’s GPL license
I “Because LSM is compiled and enabled in the kernel, its symbols are

exported. Thus, every rootkit and backdoor writer will have every
hook he ever wanted in the kernel.”
(https://grsecurity.net/lsm.php)

I LSM provides hooks only for access control
I Systems like grsecurity and RSBAC need more than just access

control
I “Stacking” multiple security modules is problematic

OS Security – Mandatory Access Control 13

https://grsecurity.net/lsm.php


Implementations of LSM

I AppArmor
I Linux Intrusion Detection System (LIDS)
I POSIX capabilitites
I Simplified Mandatory Access Control Kernel (Smack)
I TOMOYO
I Security-Enhanced Linux (SELinux)

OS Security – Mandatory Access Control 14



SELinux overview

I Originally developed by the NSA
I Released as open source
I Used today by, for example, Red Hat Linux, Fedora, CentOS
I Check if SELinux is enabled:

getenforce
I Provides three kinds of MAC mechanisms:

1. Type enforcement (TE)
2. Role-based access control
3. Multi-level security (MLS)

I All approaches are additional to UNIX DAC: first check file
permissions, if those allow access additionally check MAC rules.

OS Security – Mandatory Access Control 15



Type Enforcement
I Everything (processes, files, sockets, etc) has a security context (a

label) in the format:
user:role:type(:level)

I Security context for files is stored in the file system, the rest in the
kernel

I Mainly important for the moment: the type
I Obtain security context using classical Linux commands with -Z,

e.g.,
I ps -Z shows processes with security context
I id -Z shows security context of current user
I ls -Z shows security context of files
I netstat -Z shows security context of network sockets

I All access has to be explicitly granted, using allow rules:
allow source_type target_type : object_class permissions;

I Example:
allow user_t bin_t : file {read execute getattr};

“A process with domain type (source type) user_t can read,
execute, or get attributes for a file object with object type (target
type) of bin_t.”

OS Security – Mandatory Access Control 16



Type Enforcement ctd.

I Default assignment of security context:
I processes get the context of the parent process
I files get the context of the parent directory

I Various ways to change this behavior
I Most important, transition rules:

type_transition source_type target_type : class new_type;
I Example:

type_transition httpd_t httpd_sys_script_exec_t : \
process httpd_sys_script_t;

“When the httpd daemon running in the domain httpd_t executes a
program of the type httpd_sys_script_exec_t, such as a CGI
script, the new process is given the domain of
httpd_sys_script_t”

OS Security – Mandatory Access Control 17



Type Enforcement vs. DAC

I SELinux TE can be used to separate security domains

“Can’t we just create a user http and give this user file access (using
UNIX permissions) to only what the webserver needs?”

I There is no way in DAC to prevent another user bdu to make all his
files readable for the webserver!

I There is no way to prevent root from any file access using DAC
I SELinux can limit the damage malware or an attacker can do

OS Security – Mandatory Access Control 18


