OS Security

Mandatory Access Control

Radboud University, Nijmegen, The Netherlands

£ %
g 2
== ()
1, &
MiNe

Winter 2017/2018

A short recap

Traditional UNIX security uses discretionary access control (DAC)

>
» Each user decides about access permissions of his/her files
» Root can access all files

» Modern attack scenarios:

» User runs malware, malware sends private data through Internet
(confidentiality)
> User runs malware, malware modifies user's files (integrity)

OS Security — Mandatory Access Control

A short recap

Traditional UNIX security uses discretionary access control (DAC)

>
» Each user decides about access permissions of his/her files
» Root can access all files
» Modern attack scenarios:

» User runs malware, malware sends private data through Internet
(confidentiality)
> User runs malware, malware modifies user's files (integrity)

DAC cannot prevent this kind of attack
AV and IDS/IPS cannot guarantee to prevent this attack

v

v

OS Security — Mandatory Access Control

A short recap

Traditional UNIX security uses discretionary access control (DAC)
Each user decides about access permissions of his/her files
Root can access all files

vV v v .Yy

Modern attack scenarios:

» User runs malware, malware sends private data through Internet
(confidentiality)
> User runs malware, malware modifies user's files (integrity)

» DAC cannot prevent this kind of attack
» AV and IDS/IPS cannot guarantee to prevent this attack
> Idea: system-wide, fine-grained control over security goals

OS Security — Mandatory Access Control

Mandatory access control

> A system implements mandatory access control (MAC) if the
protection state can only be modified by trusted administrators via
trusted software.

» Trusted administrator defines policies, for example, to determine
which processes are allowed to access which files.

» Users cannot disable this.

OS Security — Mandatory Access Control

Multi-level security: Bell-LaPadula

» Central idea: control information flow to protect confidentiality
» Security model introduced in 1973
» Implemented in the Multics OS

OS Security — Mandatory Access Control

Multi-level security: Bell-LaPadula

» Central idea: control information flow to protect confidentiality
» Security model introduced in 1973
» Implemented in the Multics OS
» All objects are assigned security levels, typically:
» Top secret
» Secret
» Confidential
» Unclassified

OS Security — Mandatory Access Control

Multi-level security: Bell-LaPadula

» Central idea: control information flow to protect confidentiality
» Security model introduced in 1973
» Implemented in the Multics OS
» All objects are assigned security levels, typically:
» Top secret
> Secret
» Confidential
> Unclassified
» Users are assigned clearance levels

OS Security — Mandatory Access Control

Multi-level security: Bell-LaPadula

» Central idea: control information flow to protect confidentiality
» Security model introduced in 1973
» Implemented in the Multics OS
» All objects are assigned security levels, typically:
» Top secret
> Secret
» Confidential
> Unclassified
» Users are assigned clearance levels
» Processes are assigned security levels

OS Security — Mandatory Access Control

Bell-LaPadula rules

Simple Security Property

A subject (user, process) must not be able to read an object above its
clearance level (e.g., a user with clearance “confidential” must not be able
to read a file with security level “secret”).

No read-up

OS Security — Mandatory Access Control

Bell-LaPadula rules

Simple Security Property

A subject (user, process) must not be able to read an object above its
clearance level (e.g., a user with clearance “confidential” must not be able
to read a file with security level “secret”).

No read-up

The % Property

A subject (process) must not write to an object below its security level
(e.g., a process with level “secret” must not write to a file with level
“unclassified").

No write-down

OS Security — Mandatory Access Control

Tranquility

How is the security level of a process defined?

Strong tranquility
Security level of a process never changes. Set it once at startup, typically
to the user’s clearance level.

Weak tranquility

Security level of a process never changes in a way that it violates the
security policy. Typically start with low level, and increase as the process
reads higher-level information.

Typically desirable: weak tranquility

OS Security — Mandatory Access Control

Bell-LaPadula example - weak tranquility

» User with clearance “secret” starts process myprog with level
“unclassified”
» myprog tries to read file myfile with level “confidential”

OS Security — Mandatory Access Control

Bell-LaPadula example - weak tranquility

» User with clearance “secret” starts process myprog with level
“unclassified”
» myprog tries to read file myfile with level “confidential”
» Allowed, because confidential < secret
> Level of myprog increases to confidential

OS Security — Mandatory Access Control

Bell-LaPadula example - weak tranquility

» User with clearance “secret” starts process myprog with level
“unclassified”
» myprog tries to read file myfile with level “confidential”
» Allowed, because confidential < secret
> Level of myprog increases to confidential
> myprog tries to write to file topsecretfile with level “top secret”

OS Security — Mandatory Access Control

Bell-LaPadula example - weak tranquility

» User with clearance “secret” starts process myprog with level
“unclassified”
» myprog tries to read file myfile with level “confidential”
» Allowed, because confidential < secret
> Level of myprog increases to confidential
> myprog tries to write to file topsecretfile with level “top secret”
> Allowed, because top secret > confidential

OS Security — Mandatory Access Control

Bell-LaPadula example - weak tranquility

» User with clearance “secret” starts process myprog with level
“unclassified”
» myprog tries to read file myfile with level “confidential”

» Allowed, because confidential < secret
> Level of myprog increases to confidential

> myprog tries to write to file topsecretfile with level “top secret’
> Allowed, because top secret > confidential
> myprog tries to write to file conffile with level “confidential”

1

OS Security — Mandatory Access Control

Bell-LaPadula example - weak tranquility

» User with clearance “secret” starts process myprog with level
“unclassified”
» myprog tries to read file myfile with level “confidential”

» Allowed, because confidential < secret
> Level of myprog increases to confidential

> myprog tries to write to file topsecretfile with level “top secret’
> Allowed, because top secret > confidential

> myprog tries to write to file conffile with level “confidential”
» Allowed, because confidential > confidential

1

OS Security — Mandatory Access Control

Bell-LaPadula example - weak tranquility

» User with clearance “secret” starts process myprog with level
“unclassified”
» myprog tries to read file myfile with level “confidential”
» Allowed, because confidential < secret
> Level of myprog increases to confidential
> myprog tries to write to file topsecretfile with level “top secret’
> Allowed, because top secret > confidential
> myprog tries to write to file conffile with level “confidential”
» Allowed, because confidential > confidential
> myprog tries to write to file otherfile with level “unclassified”

1

OS Security — Mandatory Access Control

Bell-LaPadula example - weak tranquility

» User with clearance “secret” starts process myprog with level
“unclassified”

» myprog tries to read file myfile with level “confidential”
» Allowed, because confidential < secret
> Level of myprog increases to confidential

> myprog tries to write to file topsecretfile with level “top secret’
> Allowed, because top secret > confidential

> myprog tries to write to file conffile with level “confidential”
» Allowed, because confidential > confidential

> myprog tries to write to file otherfile with level “unclassified”
» Forbidden, because unclassified < confidential

1

OS Security — Mandatory Access Control

Bell-LaPadula example - weak tranquility

» User with clearance “secret” starts process myprog with level
“unclassified”
» myprog tries to read file myfile with level “confidential”
» Allowed, because confidential < secret
> Level of myprog increases to confidential

> myprog tries to write to file topsecretfile with level “top secret’
> Allowed, because top secret > confidential

> myprog tries to write to file conffile with level “confidential”
» Allowed, because confidential > confidential

> myprog tries to write to file otherfile with level “unclassified”
» Forbidden, because unclassified < confidential

» myprog tries to read file topsecretfile with level “top secret”

1

OS Security — Mandatory Access Control

Bell-LaPadula example - weak tranquility

» User with clearance “secret” starts process myprog with level
“unclassified”
» myprog tries to read file myfile with level “confidential”
» Allowed, because confidential < secret
> Level of myprog increases to confidential

> myprog tries to write to file topsecretfile with level “top secret’
> Allowed, because top secret > confidential
> myprog tries to write to file conffile with level “confidential”
» Allowed, because confidential > confidential
> myprog tries to write to file otherfile with level “unclassified”
» Forbidden, because unclassified < confidential
» myprog tries to read file topsecretfile with level “top secret”
» Forbidden, because top secret > secret

1

OS Security — Mandatory Access Control

Bell-LaPadula example - weak tranquility

» User with clearance “secret” starts process myprog with level
“unclassified”
» myprog tries to read file myfile with level “confidential”
» Allowed, because confidential < secret
> Level of myprog increases to confidential

> myprog tries to write to file topsecretfile with level “top secret’
> Allowed, because top secret > confidential
> myprog tries to write to file conffile with level “confidential”
» Allowed, because confidential > confidential
> myprog tries to write to file otherfile with level “unclassified”
» Forbidden, because unclassified < confidential
» myprog tries to read file topsecretfile with level “top secret”
» Forbidden, because top secret > secret

1

» myprog tries to read file secretfile with level “secret”

OS Security — Mandatory Access Control

Bell-LaPadula example - weak tranquility

» User with clearance “secret” starts process myprog with level
“unclassified”
» myprog tries to read file myfile with level “confidential”
» Allowed, because confidential < secret
> Level of myprog increases to confidential

> myprog tries to write to file topsecretfile with level “top secret’
> Allowed, because top secret > confidential
> myprog tries to write to file conffile with level “confidential”
» Allowed, because confidential > confidential
> myprog tries to write to file otherfile with level “unclassified”
» Forbidden, because unclassified < confidential
» myprog tries to read file topsecretfile with level “top secret”
» Forbidden, because top secret > secret

1

» myprog tries to read file secretfile with level “secret”

> Allowed, because secret < secret
> Level of myprog increases to secret

OS Security — Mandatory Access Control

Bell-LaPadula example - weak tranquility

» User with clearance “secret” starts process myprog with level
“unclassified”

» myprog tries to read file myfile with level “confidential”
» Allowed, because confidential < secret
> Level of myprog increases to confidential

> myprog tries to write to file topsecretfile with level “top secret”
> Allowed, because top secret > confidential

> myprog tries to write to file conffile with level “confidential”
» Allowed, because confidential > confidential

> myprog tries to write to file otherfile with level “unclassified”
» Forbidden, because unclassified < confidential

» myprog tries to read file topsecretfile with level “top secret”
» Forbidden, because top secret > secret

» myprog tries to read file secretfile with level “secret”

> Allowed, because secret < secret
> Level of myprog increases to secret

» myprog tries to write to file conffile with level “confidential”

OS Security — Mandatory Access Control

Bell-LaPadula example - weak tranquility

» User with clearance “secret” starts process myprog with level
“unclassified”

» myprog tries to read file myfile with level “confidential”
» Allowed, because confidential < secret
> Level of myprog increases to confidential

> myprog tries to write to file topsecretfile with level “top secret”
> Allowed, because top secret > confidential

> myprog tries to write to file conffile with level “confidential”
» Allowed, because confidential > confidential

> myprog tries to write to file otherfile with level “unclassified”
» Forbidden, because unclassified < confidential

» myprog tries to read file topsecretfile with level “top secret”
» Forbidden, because top secret > secret

» myprog tries to read file secretfile with level “secret”

> Allowed, because secret < secret
> Level of myprog increases to secret

» myprog tries to write to file conffile with level “confidential”
> Forbidden, because confidential < secret

OS Security — Mandatory Access Control

Extensions to Bell-LaPadula

» Sometimes Bell-LaPadula is combined with categories to capture
“need to know"

[TH LT LT

» Example: “nuclear”, “intelligence”, “submarine”, “airforce”
» Compartments are subsets of the set of categories
» Subjects and objects are assigned compartments, e.g.,

> User userl: {“intelligence”, “airforce”}
> File filel: {"intelligence”}
> File file2: {“airforce, submarine”}

> Subject with clearance compartment S is allowed to read an object
with compartment O, if O C S
» Example:

» userl is allowed to read filel
» userl is not allowed to read file2

OS Security — Mandatory Access Control

Bell-LaPadula comments

v

Only confidentiality is protected

v

Actual write level is not defined by Bell-LaPadula (only minimal
level)

v

No automated way to declassify information (i.e., reduce the level)

v

In principle, users can write above their clearance

OS Security — Mandatory Access Control

Biba model

v

Introduced by Kenneth J. Biba in 1975
Model to protect integrity
» Complement of secrecy in Bell-LaPadula

v

v

Assign to all objects and users integrity levels, typically:
» Crucial
> Very important
> Important

v

Prevents “pollution” of information with higher integrity level

OS Security — Mandatory Access Control

10

Biba rules

Simple Integrity

A subject (user, process) must not read an object below its integrity level
(e.g., a user with level “crucial” must not read a file with level “very
important”).

No read-down

OS Security — Mandatory Access Control

11

Biba rules

Simple Integrity

A subject (user, process) must not read an object below its integrity level
(e.g., a user with level “crucial” must not read a file with level “very
important”).

No read-down

The x Integrity Property

A subject (user, process) must not be able to write to an object above its
integrity level (e.g, a process with clearance “important” must not be able
to write to a file with integrity level “very important”).

No write-up

OS Security — Mandatory Access Control

11

Linux Security Modules

» Linux security traditionally follows the UNIX security model

» Around 2000, various projects worked on MAC (and generally
stronger security) for Linux

» Linus Torvalds about inclusion of SELinux: “make it a module’

i

OS Security — Mandatory Access Control

12

Linux Security Modules

v

Linux security traditionally follows the UNIX security model

v

Around 2000, various projects worked on MAC (and generally
stronger security) for Linux

Linus Torvalds about inclusion of SELinux: “make it a module”
Since Kernel 2.6: API for Linux Security Modules (LSMs)
Hooks to module functions when accessing security-critical resources

v

v

v

OS Security — Mandatory Access Control

12

Linux Security Modules

» Linux security traditionally follows the UNIX security model

» Around 2000, various projects worked on MAC (and generally

vV v . v v

stronger security) for Linux

Linus Torvalds about inclusion of SELinux: “make it a module”
Since Kernel 2.6: API for Linux Security Modules (LSMs)

Hooks to module functions when accessing security-critical resources
In recent kernels, hooks defined in include/linux/lsm_hooks.h

OS Security — Mandatory Access Control

12

Criticism of LSM

LSM is in the mainline kernel and various LSM implementations exist,
however, there is some criticism of the API:

» Small overhead even if no LSM is loaded

OS Security — Mandatory Access Control

13

https://grsecurity.net/lsm.php

Criticism of LSM

LSM is in the mainline kernel and various LSM implementations exist,
however, there is some criticism of the API:

» Small overhead even if no LSM is loaded

» LSM is designed for access control, but can be abused, for example,
for bypassing the kernel's GPL license

OS Security — Mandatory Access Control

13

https://grsecurity.net/lsm.php

Criticism of LSM

LSM is in the mainline kernel and various LSM implementations exist,
however, there is some criticism of the API:

» Small overhead even if no LSM is loaded

» LSM is designed for access control, but can be abused, for example,
for bypassing the kernel's GPL license

> “Because LSM is compiled and enabled in the kernel, its symbols are
exported. Thus, every rootkit and backdoor writer will have every
hook he ever wanted in the kernel.”
(https://grsecurity.net/lsm.php)

OS Security — Mandatory Access Control

13

https://grsecurity.net/lsm.php

Criticism of LSM

LSM is in the mainline kernel and various LSM implementations exist,
however, there is some criticism of the API:

>

»

Small overhead even if no LSM is loaded

LSM is designed for access control, but can be abused, for example,
for bypassing the kernel's GPL license

“Because LSM is compiled and enabled in the kernel, its symbols are
exported. Thus, every rootkit and backdoor writer will have every
hook he ever wanted in the kernel.”
(https://grsecurity.net/lsm.php)

LSM provides hooks only for access control

» Systems like grsecurity and RSBAC need more than just access

control

OS Security — Mandatory Access Control

13

https://grsecurity.net/lsm.php

Criticism of LSM

LSM is in the mainline kernel and various LSM implementations exist,
however, there is some criticism of the API:

>

»

Small overhead even if no LSM is loaded

LSM is designed for access control, but can be abused, for example,
for bypassing the kernel's GPL license

“Because LSM is compiled and enabled in the kernel, its symbols are
exported. Thus, every rootkit and backdoor writer will have every
hook he ever wanted in the kernel.”
(https://grsecurity.net/lsm.php)

LSM provides hooks only for access control

» Systems like grsecurity and RSBAC need more than just access

control

“Stacking” multiple security modules is problematic

OS Security — Mandatory Access Control

13

https://grsecurity.net/lsm.php

Implementations of LSM

AppArmor

Linux Intrusion Detection System (LIDS)

POSIX capabilitites

Simplified Mandatory Access Control Kernel (Smack)
TOMOYO

Security-Enhanced Linux (SELinux)

vV v v v v Y

OS Security — Mandatory Access Control 14

SELinux overview

» Originally developed by the NSA
» Released as open source
» Used today by, for example, Red Hat Linux, Fedora, CentOS

OS Security — Mandatory Access Control

15

SELinux overview

Originally developed by the NSA

Released as open source

Used today by, for example, Red Hat Linux, Fedora, CentOS
Check if SELinux is enabled:

vV v v v

getenforce

Provides three kinds of MAC mechanisms:

1. Type enforcement (TE)
2. Role-based access control
3. Multi-level security (MLS)

v

OS Security — Mandatory Access Control

15

SELinux overview

vV v v v

Originally developed by the NSA

Released as open source

Used today by, for example, Red Hat Linux, Fedora, CentOS
Check if SELinux is enabled:

getenforce

Provides three kinds of MAC mechanisms:

1. Type enforcement (TE)
2. Role-based access control
3. Multi-level security (MLS)

All approaches are additional to UNIX DAC: first check file
permissions, if those allow access additionally check MAC rules.

OS Security — Mandatory Access Control 15

Type Enforcement

» Everything (processes, files, sockets, etc) has a security context (a
label) in the format:
user:role:type(:level)
» Security context for files is stored in the file system, the rest in the
kernel
» Mainly important for the moment: the type

OS Security — Mandatory Access Control

16

Type Enforcement

>

Everything (processes, files, sockets, etc) has a security context (a
label) in the format:
user:role:type(:level)

Security context for files is stored in the file system, the rest in the
kernel
Mainly important for the moment: the type
Obtain security context using classical Linux commands with -Z,
e.g.,

> ps -Z shows processes with security context

» id -Z shows security context of current user

> 1s -Z shows security context of files

» netstat -Z shows security context of network sockets

OS Security — Mandatory Access Control

16

Type Enforcement

>

Everything (processes, files, sockets, etc) has a security context (a
label) in the format:
user:role:type(:level)

Security context for files is stored in the file system, the rest in the
kernel
Mainly important for the moment: the type
Obtain security context using classical Linux commands with -Z,
e.g.,

> ps -Z shows processes with security context

» id -Z shows security context of current user

> 1s -Z shows security context of files

» netstat -Z shows security context of network sockets
All access has to be explicitly granted, using allow rules:
allow source_type target_type : object_class permissions;

OS Security — Mandatory Access Control

16

Type Enforcement

>

Everything (processes, files, sockets, etc) has a security context (a
label) in the format:
user:role:type(:level)

Security context for files is stored in the file system, the rest in the
kernel
Mainly important for the moment: the type
Obtain security context using classical Linux commands with -Z,
e.g.,

> ps -Z shows processes with security context

» id -Z shows security context of current user

> 1s -Z shows security context of files

» netstat -Z shows security context of network sockets
All access has to be explicitly granted, using allow rules:
allow source_type target_type : object_class permissions;
Example:
allow user_t bin_t : file {read execute getattr};

“A process with domain type (source type) user_t can read,
execute, or get attributes for a file object with object type (target
type) of bin_t.”

OS Security — Mandatory Access Control

16

Type Enforcement ctd.

» Default assignment of security context:

> processes get the context of the parent process
> files get the context of the parent directory

OS Security — Mandatory Access Control

17

Type Enforcement ctd.

» Default assignment of security context:

> processes get the context of the parent process
> files get the context of the parent directory

» Various ways to change this behavior

» Most important, transition rules:
type_transition source_type target_type : class new_type;

OS Security — Mandatory Access Control

17

Type Enforcement ctd.

» Default assignment of security context:
> processes get the context of the parent process
> files get the context of the parent directory

» Various ways to change this behavior

» Most important, transition rules:
type_transition source_type target_type : class new_type;

» Example:
type_transition httpd_t httpd_sys_script_exec_t : \
process httpd_sys_script_t;

“When the httpd daemon running in the domain httpd_t executes a
program of the type httpd_sys_script_exec_t, such as a CGlI
script, the new process is given the domain of
httpd_sys_script_t"

OS Security — Mandatory Access Control 17

Type Enforcement vs. DAC

» SELinux TE can be used to separate security domains

OS Security — Mandatory Access Control

18

Type Enforcement vs. DAC

» SELinux TE can be used to separate security domains

“Can’t we just create a user http and give this user file access (using
UNIX permissions) to only what the webserver needs?”

OS Security — Mandatory Access Control

18

Type Enforcement vs. DAC

» SELinux TE can be used to separate security domains

“Can’t we just create a user http and give this user file access (using
UNIX permissions) to only what the webserver needs?”

» There is no way in DAC to prevent another user bdu to make all his

files readable for the webserverl!

» There is no way to prevent root from any file access using DAC

OS Security — Mandatory Access Control

18

Type Enforcement vs. DAC

» SELinux TE can be used to separate security domains

“Can’t we just create a user http and give this user file access (using
UNIX permissions) to only what the webserver needs?”

» There is no way in DAC to prevent another user bdu to make all his
files readable for the webserver!

» There is no way to prevent root from any file access using DAC
» SELinux can limit the damage malware or an attacker can do

OS Security — Mandatory Access Control

18

