
Operating Systems Security – Assignment 3

2017/2018
Due Date: 7 Dec 2017 (23:59 CET)

1 Bypassing ASLR

In this exercise, you will learn how to exploit a buffer overflow, bypassing ASLR on 64-bit Linux
binaries. You are strongly encouraged to read this article1 before proceeding with the assignment.

Login your (Kali) Linux system and download the source code from https://www.cs.ru.nl/

˜vmoonsamy/teaching/ossec2016/a3_sourcecode.zip.

Compile vuln.c using the following command (Hint: add -no-pie on Ubuntu 16.10 and above to
avoid the executable becoming ASLR’ed):
gcc -fno-stack-protector -no-pie vuln.c -o vuln

Enable ASLR:
echo 2 > /proc/sys/kernel/randomize va space

Objectives

a) Find the address of read@plt and system@plt by disassembling vuln using objdump.
b) In vuln.c, a ROP gadget is provided in the function helper.

i) What does the gadget do and what can it be used for?
ii) Find the offset of the gadget in the executable.

c) Use readelf to find writable memory that can be used to store 8 bytes of payload. Give the
memory address and explain why you picked this address.

d) Locate payload.py in the source code folder you downloaded. The exploit is split up into two
stages - Stage 1 and Stage 2. Explain for each stage what is being done.

Run the vulnerable program as a server:
socat TCP-LISTEN:3333,reuseaddr,fork EXEC:./vuln
This way you can send input using a socket on port 3333.

e) Fill in the memory addresses you found before in exploit.py and run it in a separate terminal.
Confirm that you can successfully get a shell by providing a screenshot (this should be the case
if you entered the correct addresses) and explain in detail why.

2 Self-replicating code

Write a (small) C program that prints its own source-code.

1 https://blog.techorganic.com/2016/03/18/64-bit-linux-stack-smashing-tutorial-part-3/

https://www.cs.ru.nl/~vmoonsamy/teaching/ossec2016/a3_sourcecode.zip
https://www.cs.ru.nl/~vmoonsamy/teaching/ossec2016/a3_sourcecode.zip
https://blog.techorganic.com/2016/03/18/64-bit-linux-stack-smashing-tutorial-part-3/

3 Covert channels

An operating system tries to avoid information leakage between processes which are executed by
different users. However, it is not always capable of identifying suspicious behaviour, especially if
the processes use generic information leakage channels such as:

– Existence of a file
– File attributes
– CPU usage
– Temperature sensor
– “Disk full” errors

Objectives

a) Write two (simple) programs that communicate messages to each other using a covert infor-
mation leakage channel that is not (inherently) identified by the operating system as commu-
nication channel between processes. Hand in the source-code and explain how it should be
installed/used.

b) Execute the programs under two different (non-root) users and let it communicate to one
another. Then, open the log files of your (Kali) Linux system and see if the communication
leaves any visible trace (such as unusual and suspicious errors). Explain why your method is
undetectable or how it could be optimized to avoid detection by operating systems that perform
more advanced monitoring.

