OS Security

Memory

Radboud University Nijmegen, The Netherlands

é,\ad Ny
errer

O’hme-‘?@

Winter 2015/2016

A short recap

>

v

vVvyYyyVvyy

Central task of OS is to manage access of subjects (processes) to
objects (files)
Access to resources only from kernel space through system calls
Kernel modules can extend kernel functionality at runtime
UNIX paradigm: “everything is a file"
» Special file handles for stdin, stdout, stderr
» Devices are handled through device files
> Reading and writing kernel parameters through pseudo-filesystems in
/proc and sys
» Symbolic links, directories, pipes are all implemented through file
handles
Management of permissions in UNIX uses DAC model (as opposed
to MAC)
Processes have associated user ID and group IDs
Files have access rights (read,write,execute) for owner,group,other
Special flags associated to files, in particular setuid flag
Setuid programs are run with effective UID of the owner
Particularly important: setuid-root programs (have to be very
carefull)

OS Security — Memory

Briefly back to file access: ACLs

vV v v v v Y

User/Group/All model is not always flexible enough
Want to enable arbitrary access permissions
Solution: Access Control Lists (ACLs)

Grant permissions to arbitrary users and groups
Needs support from the file system

Mount with option acl, for example:

mount -o remount,acl /

Set ACL entries with the program setfacl (set file access control
lists)

> Read ACL entries with getfacl (get file access control lists)

Note: 1s -1 will not show ACLs, only a '+’ to indicate that “there’s
more”

OS Security — Memory

Linux ACL examples

» Grant user veelasha read,write execute rights on file test.txt:

setfacl -m user:veelasha:rwx test.txt

» Remove all rights for user veelasha on file test.txt:

setfacl -x user:veelasha test.txt

» Grant read and execute rights for members of the group dialout:

setfacl -m group:dialout:r-x test.txt

» Read and set permissions for test.txt from file test.perm:

setfacl -M test.perm test.txt

OS Security — Memory

TOCTTOU

>

>

Problem if there is a time gap between checking permissions and
executing operation
This is called time of check to time of use (TOCTTOU or
TOCTOU)
Example: use access() syscall in suid-root program to check rights
against real user ID:
if (access("file", W_0K) '= 0) {

exit(1);
}

fd = open("file", O_WRONLY);
write(fd, buffer, sizeof (buffer));

Attacker attempts to run symlink("/etc/shadow", "file");
between access() and open()

» This is an example for a race condition

» Generally, a race condition bug is a bug where software behaviour

depends on uncontrollable timing behavior in an unintended way

OS Security — Memory

Race conditions

» Typically appears if two processes access the same resource

» Programmer assumes that a certain section of code is executed
without interruptions

» Programmer does not guarantee that code executes without
interruptions

» Operating systems offer constructs to avoid race conditions: locking,
semaphores, mutexes

» Details in the "Operating Systems” lecture

» More extensive example of a race condition later. ..

OS Security — Memory

Memory access

vV v v v

vV v v v

So far, all access to resources was handled through file-access
permissions

Requesting a resource (file) is done through syscalls
Cannot do that for reading/writing memory
Load/store instructions are very frequent in programs

Speed of memory access largely determines the speed of many
programs

System calls are expensive

A load (from cache) can finish in a few cycles

A system call has some hundred cycles overhead

OS still needs control over memory access of processes!

OS Security — Memory

Virtual memory

vV v v v Yy

Central idea:

> Don't let processes use addresses in physical memory
> Instead, use virtual addresses
» For each access to a virtual address, map to actual physical address

Obviously, don't want to map byte-by-byte

Chop the memory into pages of fixed size (typically 4KB)
Use a page table to establish the mapping

Essentially, use a different page table for each process

If there is no entry for a virtual address in a processes’ page table:
exit with segmentation fault

OS Security — Memory

Advantages of virtual memory

vV v.v v v .Y

Processes can use (seemingly) contiguous memory locations
Those addresses don't have to be contiguous in physical memory
Can even assign more memory than is physically available

Need to swap memory content to and from hard drive

Can separate address spaces from different programs!

OS can now ensure that one process cannot read/write another
processes’ memory

Hmmm, but looking up addresses for each memory access doesn’t
sound cheaper than a syscall. ..

OS Security — Memory

The MMU

» Mapping from virtual to physical addresses is done in hardware

» CPU has a Memory Management Unit (MMU), which performs the
mapping
» Typical setup:
» OS writes page table for processes to memory
» OS provides pointer to page table of current process to MMU
» This is done by writing a special control register, the page table base
register (PTBR)
> Access to this control register only from protection ring 0
» MMU looks up mapping from memory and remembers it in special
cache

> Page-table cache is called translation lookaside buffer (TLB)
» Need to invalidate TLB content on context switch:
» Can flush the whole TLB content

> Can mark the content invalid and “re-validate” when the process
comes back

OS Security — Memory

10

Shared memory

v

v

v

v

Now we have memory of different processes nicely separated

However, sometimes we want processes to share memory

Shared memory is an efficient (and common) way for inter-process
communication (IPC)
Unix offers syscalls for sharing memory:

>

>
>
>
>

Can map a file into memory with mmap () (with MAP_SHARED option)
Can request shared memory with shm_open() or shmget ()
Shared-memory resources have access permissions similar to files
The “execute” flag is ignored

For shared memory we're basically back to file access through syscalls

OS Security — Memory

11

Virtual memory and security

» Virtual memory gives the OS the possibility to separate memory of
different processes

> One process (or user) can still provide input to another process

» Virtual memory does not say anything about what a process is doing
with its own memory!

OS Security — Memory

12

Reminder: Memory layout

The memory content of a process is segmented into:

» The code segment (or text segment): contains the program code
The data segment: contains initialized static variables
The bss segment: contains uninitialized (zeroed) static variables
The heap: (memory allocated by malloc and released by free)

The stack: local data and return addresses

vV v.v. v Yy

Memory mapping segment: files, e.g., dynamic libraries mapped into
memory

OS Security — Memory

Reminder: The stack frame

Function call

void h() {
int x = 7;
int a = 6;
£(42, 123);

void f(int a, int b) {
char buf[20];

Call stack

--- stack frame for h ---

--- stack frame for f ---
123
42
return address to h
frame pointer to h
buf [19]
buf [18]

OS Security — Memory

14

A classic buffer-overflow attack

#include <stdio.h>

int vulnfunc(void) {

}

char *ret;

char buffer[100];

ret = gets(buffer);

printf (buffer);
printf("\n");
fflush(stdout);

if (ret == NULL) return O;
else return 1;

int main(void) {

int ret = 1;
while (ret) {

ret = vulnfunc();
}

return O;

gets() reads into buffer

Can write more than 100 bytes
to buffer

Fill buffer with shell code

Overwrite return address of
vulnfunc () with address of
shell code

Can write some nops before
shell code (“nop slide™)

Program will jump to shell code
and launch a shell

OS Security — Memory

15

A classic buffer-overflow: the shell code

"\x48\x31\xd2"
"\x48\xbb\x2f \x2f\x62\x69\x6e\x2f \x73\x68"
"\x48\xc1\xeb\x08"
"\x53"
"\x48\x89\xe7"
"\x52"

"\X57"
"\x48\x89\xe6"
"\xb0\x3b"
"\x0f\x05"

}

// xor %rdx, %rdx

// mov $0x68732f6e69622f2f, Jrbx
// shr $0x8, Yrbx

// push Y%rbx

// mov Y%rsp, %rdi

// push %rdx

// push %rdi

// mov Yrsp, Jrsi

// mov $0x3b, %al

// syscall

OS Security — Memory

16

What can the OS do to help?

Traditional model:

v

v

User decided to run the program

Program behaves benignly (why else would the user run it...?7)
It's the user’s problem

Not really helpful with software today

vvyy

v

Two steps to the straight-forward attack:

1. Change program’s control flow
2. Inject and execute attacker’'s code

v

OS can help to prevent in particular 2

v

Compilers can help to prevent 1 (e.g, stack canaries)

v

Modern operating systems in fact do help

OS Security — Memory

17

WoeX

vV v v v

vV v.v v v .Y

Real problem of 2. is the von-Neumann architecture
Code and data share the same memory space
Idea: Take this back (a little bit)

Mark some areas of memory (stack, heap, data segment)
non-executable

Such a countermeasure is called Data Execution Prevention (DEP)
Other name: W @ X (“either write or execute”)

Ideally this is implemented in the CPU's MMU

Supported by many recent CPUs (e.g., AMD64, ARM)

Various software solutions for CPUs without hardware support

Software solutions add overhead to memory access

OS Security — Memory

18

Enabling/disabling NX

vV vV vV vV vV VY

Non-executable-stack bit is stored in the ELF header of a binary
Linux by default supports NX stack

gcc by default produces non-executable-stack binaries

Disable NX in gcc: gecc -z execstack

Disable NX on an existing binary: execstack -s BINARY
Enable NX on an existing binary: execstack -c BINARY
Disable NX for 32-bit binaries in Linux kernel:

> Boot parameter noexec=off (for x86)
> Boot parameter noexec32=off (for AMD64)

Reasons to disable NX protection:

> Creating homework for Software and Websecurity
> Generally, trying out “classical” attacks
» Some programs need executable stack!

OS Security — Memory

19

Return to libc

Attacker cannot execute his code on the stack anymore
Workaround: execute code that is already in the program

(Almost) always mapped into the programs memory space: C
standard library

Idea: put suitable arguments for system() somewhere in memory
(e.g., "/bin/sh")

Overwrite the return address to point to system()

» For clean exit, set return address of system to address of exit ()

Obtain the address of 1ibc with
cat /proc/$PID/maps | grep libc

Obtain the offset of system() and exit () through
nm -D /lib/x86_64-1linux-gnu/libc.so.6 | grep system

OS Security — Memory

20

Return to libc ctd.

v

Place the string "/bin/sh" somewhere and obtain its address
Write behind buffer

1. Address of system()
2. Address of exit ()
3. Address of "/bin/sh"

Address of system() must overwrite return address in current frame

v

v

v

Code will return to system() with

> return address pointing to exit (), and
> argument pointing to /bin/sh

OS Security — Memory

21

Countermeasures

Can make sure that \O is in the address of libc
Many functions (like gets) won't read past the \0
Does not generally help, can overflow some buffers also with \0

Can remove some critical functions from (reduced) libc

vV v v v .Y

Problems:

> Can break functionality
» What functions exactly can cause problems...?

OS Security — Memory

22

ROP

vV v v v

vV V.V v v Vv .Yy

We do not have to return to libc functions
Can also return to arbitrary addresses
Can chain such returns, if each targeted block ends in return

Attack idea: Collect pieces of code from binary (each ending in
return)

Chain these pieces to an attack program

This idea is called return-oriented programming

Concept introduced by Shacham in 2007

Collected pieces of code are called gadgets

Attacker now has to program with “gadget-instructions”
Slight generalization: Can also use gadgets ending in jumps

Important concept: can obtain malicious computation without
malicious code!

Searching for gadgets (and to some extent chaining) can be
automated

OS Security — Memory

23

ASLR

vV vy VY

Return to libc and ROP need to know the addresses of code
Idea: randomize position of dynamic libraries
This approach is called address space layout randomization (ASLR)

Does not only randomize position of dynamic libraries, but also:

> position of stack
> position of data segment
» position of heap

To also randomize the position of the binary itself need to use
gcc -fpie

> pie stands for “position independent execution”

Disable ASLR in Linux:
echo 0 > /proc/sys/kernel/randomize_va_space
or boot with parameter norandmaps

Disable ASLR for one process:
setarch ‘uname -m¢ -R PROGRAMNAME

OS Security — Memory

24

Attacks against ASLR

» ASLR is generally very effective as a defense

» Problem if address of one instruction leaks to the attacker:

>

vVYy VvV VvVy

Format-string attacks

Using overflows to overwrite null-termination
Memory content written to disk

Software that uses non-randomized modules

For a while, 1inux-gate.so.1 was not randomized

» Problem on 32-bit machines: not enough entropy

>

Cannot randomize lower 12 bits of address (that would break page
alignment)
Cannot randomize upper 4 bits (limits capabilities of large memory
mappings)

> Result: only 16 bits of entropy (65536 possibilities)
» Shacham, Page, Pfaff, Goh, Modadugu, Boneh, 2004: brute-force

attack that took 216 seconds on average

OS Security — Memory

25

A race condition in the Linux kernel

Announced May 2014: race condition in the Linux kernel
More specifically: in the pty (pseudo-terminal) subsystem
Bug was there for about 5 years

Bug allows an attacker to crash the kernel

vV v . v v Yy

Bug allows an attacker to obtain a root shell

OS Security — Memory

26

The pty subsystem

> A tty is a typewriter paired with an electromagnetic communication
channel

> In the old days: keyboard + screen and OS process (tty driver)
attached

» Today: Use terminal emulator (e.g., xterm) instead of screen
» Use pseudo-terminal (pty) device driver

> Job of the pty driver:

» Read input from one side

> Parse it for special characters (e.g., CTRL-C, backspace)
> Handle special characters (e.g, send SIGINT for CTRL-C)
» Forward the rest to the other side

» Important to notice: Two processes can write to the same pty

» Call sequence from userspace program to pty buffer:
write(pty_£fd) in userspace — sys_write() in kernelspace —
tty_write() — pty_write() —
tty_insert_flip_string_fixed_flag()

OS Security — Memory

The vulnerable code

int tty_insert_flip_string_fixed_flag(struct tty_struct *tty,

{

}

const unsigned char *chars,
char flag, size_t size)

int copied = 0O;
do {

int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);
int space = tty_buffer_request_room(tty, goal);
struct tty_buffer *tb = tty->buf.tail;
if (unlikely(space == 0))
break;
memcpy (tb->char_buf_ptr + tb->used, chars, space);
memset (tb->flag_buf_ptr + tb->used, flag, space);
tb->used += space;
copied += space; chars += space;

} while (unlikely(size > copied));
return copied;

OS Security — Memory

28

The race condition

» Assume two processes write to the same pty

Process A Process B
> tty_buffer_request_room
> tty_buffer_request_room
» memcpy (buf+tb->used,...)
> tb->used += space;
» memcpy (buf+tb->used,...)

» memcpy(s) of A fill the buffer(s) and increase used
» memcpy(s) of B will write behind the buffer

» Local-root exploit needs some more bits and pieces, for details see
http://blog.includesecurity.com/2014/06/
exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.
html

OS Security — Memory

29

http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html
http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html
http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html

