
OS Security
Memory

Radboud University Nijmegen, The Netherlands

Winter 2014/2015



A short recap
I Central task of OS is to manage access of subjects (processes) to

objects (files)
I Access to resources only from kernel space through system calls
I Kernel modules can extend kernel functionality at runtime
I UNIX paradigm: “everything is a file”

I Special file handles for stdin, stdout, stderr
I Devices are handled through device files
I Reading and writing kernel parameters through pseudo-filesystems in

/proc and sys
I Symbolic links, directories, pipes are all implemented through file

handles
I Management of permissions in UNIX uses DAC model (as opposed

to MAC)
I Processes have associated user ID and group IDs
I Files have access rights (read,write,execute) for owner,group,other
I Special flags associated to files, in particular setuid flag
I Setuid programs are run with effective UID of the owner
I Particularly important: setuid-root programs (have to be very

careful!)
I Extension to classic access rights: ACLs

OS Security – Memory 2



IFS and LD_LIBRARY_PATH

I Attack against system("/bin/date") does not work anymore
I IFS environment variable is no longer inherited by shells
I LD_LIBRARY_PATH is not inherited for programs with setuid bit set
I PATH variable is still inherited
I Custom variables are still inherited
I Can try all this easily with a C program using getenv
I Cannot try this with a shell script
I Shell scripts won’t execute setuid (even if you set the bit)

OS Security – Memory 3



Shellshock

I Environment variables can be dangerous because they allow
(potentially unintended) data flow

I Even worse if environment variables are badly parsed:
http://digg.com/video/
the-shellshock-bug-explained-in-about-four-minutes

OS Security – Memory 4

http://digg.com/video/the-shellshock-bug-explained-in-about-four-minutes
http://digg.com/video/the-shellshock-bug-explained-in-about-four-minutes


More Shellshock background

I The bash is not just a command line but also a programming
language

I We can define functions: hello() { echo "Hello World"; }
I We can also export functions with export -f
I Environment variables do not support functions, just strings
I The newly launched bash looks for variables that “look like a

function”
I Parsing things that “look like a function” goes wrong

OS Security – Memory 5



Shellshock test

env x=’() { :;}; echo vulnerable’ bash -c "echo this is a test"

OS Security – Memory 6



Race conditions

I Remember the TOCTTOU vulnerability. . .
I This is an example of a more general class of vulnerabilities

Definition
A race condition is anomalous behavior of software where the output
depends on an uncontrollable sequence of operations.

I Typically appears if two processes access the same resource
I Programmer assumes that a certain section of code is executed

without interruptions
I Programmer does not guarantee that code executes without

interruptions
I Operating systems offer constructs to avoid race conditions: locking,

semaphores, mutexes
I Details in the “Operating Systems” lecture

OS Security – Memory 7



A race condition in the Linux kernel

I Announced May 2014: race condition in the Linux kernel
I More specifically: in the pty (pseudo-terminal) subsystem
I Bug was there for about 5 years
I Bug allows an attacker to crash the kernel
I Bug allows an attacker to obtain a root shell

OS Security – Memory 8



The pty subsystem

I A tty is a typewriter paired with an electromagnetic communication
channel

I In the old days: keyboard + screen and OS process (tty driver)
attached

I Today: Use terminal emulator (e.g., xterm) instead of screen
I Use pseudo-terminal (pty) device driver
I Job of the pty driver:

I Read input from one side
I Parse it for special characters (e.g., CTRL-C, backspace)
I Handle special characters (e.g, send SIGINT for CTRL-C)
I Forward the rest to the other side

I Important to notice: Two processes can write to the same pty
I Call sequence from userspace program to pty buffer:

write(pty_fd) in userspace → sys_write() in kernelspace →
tty_write() → pty_write() →
tty_insert_flip_string_fixed_flag()

OS Security – Memory 9



The vulnerable code

int tty_insert_flip_string_fixed_flag(struct tty_struct *tty,
const unsigned char *chars,
char flag, size_t size)

{
int copied = 0;
do {

int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);
int space = tty_buffer_request_room(tty, goal);
struct tty_buffer *tb = tty->buf.tail;
if (unlikely(space == 0))

break;
memcpy(tb->char_buf_ptr + tb->used, chars, space);
memset(tb->flag_buf_ptr + tb->used, flag, space);
tb->used += space;
copied += space; chars += space;

} while (unlikely(size > copied));
return copied;

}

OS Security – Memory 10



The race condition

I Assume two processes write to the same pty

Process A
I tty_buffer_request_room

I memcpy(buf+tb->used,...)
I tb->used += space;

Process B

I tty_buffer_request_room

I memcpy(buf+tb->used,...)

I memcpy(s) of A fill the buffer(s) and increase used
I memcpy(s) of B will write behind the buffer
I Local-root exploit needs some more bits and pieces, for details see

http://blog.includesecurity.com/2014/06/
exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.
html

OS Security – Memory 11

http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html
http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html
http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html


Memory access

I So far, all access to resources was handled through file-access
permissions

I Requesting a resource (file) is done through syscalls
I Cannot do that for reading/writing memory
I Load/store instructions are very frequent in programs
I Speed of memory access largely determines the speed of many

programs
I System calls are expensive
I A load (from cache) can finish in a few cycles
I A system call has some hundred cycles overhead
I OS still needs control over memory access of processes!

OS Security – Memory 12



Virtual memory

I Central idea:
I Don’t let processes use addresses in physical memory
I Instead, use virtual addresses
I For each access to a virtual address, map to actual physical address

I Obviously, don’t want to map byte-by-byte
I Chop the memory into pages of fixed size (typically 4KB)
I Use a page table to establish the mapping
I Essentially, use a different page table for each process
I If there is no entry for a virtual address in a processes’ page table:

exit with segmentation fault

OS Security – Memory 13



Advantages of virtual memory

I Processes can use (seemingly) contiguous memory locations
I Those addresses don’t have to be contiguous in physical memory
I Can even assign more memory than is physically available
I Need to swap memory content to and from hard drive
I Can separate address spaces from different programs!
I OS can now ensure that one process cannot read/write another

processes’ memory
I Hmmm, but looking up addresses for each memory access doesn’t

sound cheaper than a syscall. . .

OS Security – Memory 14



The MMU

I Mapping from virtual to physical addresses is done in hardware
I CPU has a Memory Management Unit (MMU), which performs the

mapping
I Typical setup:

I OS writes page table for processes to memory
I OS provides pointer to page table of current process to MMU
I This is done by writing a special control register, the page table base

register (PTBR)
I Access to this control register only from protection ring 0
I MMU looks up mapping from memory and remembers it in special

cache
I Page-table cache is called translation lookaside buffer (TLB)

I Need to invalidate TLB content on context switch:
I Can flush the whole TLB content
I Can mark the content invalid and “re-validate” when the process

comes back

OS Security – Memory 15



Shared memory

I Now we have memory of different processes nicely separated
I However, sometimes we want processes to share memory
I Shared memory is an efficient (and common) way for inter-process

communication (IPC)
I Unix offers syscalls for sharing memory:

I Can map a file into memory with mmap() (with MAP_SHARED option)
I Can request shared memory with shm_open() or shmget()
I Shared-memory resources have access permissions similar to files
I The “execute” flag is ignored
I For shared memory we’re basically back to file access through syscalls

OS Security – Memory 16



Virtual memory and security

I Virtual memory gives the OS the possibility to separate memory of
different processes

I One process (or user) can still provide input to another process
I Virtual memory does not say anything about what a process is doing

with its own memory!

OS Security – Memory 17



Reminder: Memory layout

The memory content of a process is segmented into:
I The code segment (or text segment): contains the program code
I The data segment: constains initialized static variables
I The bss segment: contains uninitialized (zeroed) static variables
I The heap: (memory allocated by malloc and released by free)
I The stack: local data and return addresses
I Memory mapping segment: files, e.g., dynamic libraries mapped into

memory

OS Security – Memory 18



Reminder: The stack frame

Function call

void h() {
int x = 7;
int a = 6;
f(42, 123);
...

}

void f(int a, int b) {
char buf[20];

...
}

Call stack

--- stack frame for m ---

7
6

-------------------------
--- stack frame for f ---

123
42
return address to m
frame pointer to m
buf[19]
buf[18]
...
buf[0]

-------------------------

OS Security – Memory 19



A classic buffer-overflow attack

#include <stdio.h>

int vulnfunc(void) {
char *ret;
char buffer[100];
ret = gets(buffer);
printf(buffer);
printf("\n");
fflush(stdout);
if (ret == NULL) return 0;
else return 1;

}

int main(void) {
int ret = 1;
while (ret) {

ret = vulnfunc();
}
return 0;

}

I gets() reads into buffer
I Can write more than 100 bytes

to buffer
I Fill buffer with shell code
I Overwrite return address of

vulnfunc() with address of
shell code

I Can write some nops before
shell code (“nop slide”)

I Program will jump to shell code
and launch a shell

OS Security – Memory 20



A classic buffer-overflow: the shell code

"\x48\x31\xd2" // xor %rdx, %rdx
"\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68" // mov $0x68732f6e69622f2f, %rbx
"\x48\xc1\xeb\x08" // shr $0x8, %rbx
"\x53" // push %rbx
"\x48\x89\xe7" // mov %rsp, %rdi
"\x52" // push %rdx
"\x57" // push %rdi
"\x48\x89\xe6" // mov %rsp, %rsi
"\xb0\x3b" // mov $0x3b, %al
"\x0f\x05" // syscall
}

OS Security – Memory 21



What can the OS do to help?

I Traditional model:
I User decided to run the program
I Program behaves benignly (why else would the user run it. . . ?)
I It’s the user’s problem
I Not really helpful with software today

I Two steps to the straight-forward attack:
1. Change program’s control flow
2. Inject and execute attacker’s code

I OS can help to prevent in particular 2
I Compilers can help to prevent 1 (e.g, stack canaries)
I Modern operating systems in fact do help

OS Security – Memory 22



W ⊕X

I Real problem of 2. is the von-Neumann architecture
I Code and data share the same memory space
I Idea: Take this back (a little bit)
I Mark some areas of memory (stack, heap, data segment)

non-executable
I Such a countermeasure is called Data Execution Prevention (DEP)
I Other name: W ⊕X (“either write or execute”)
I Ideally this is implemented in the CPU’s MMU
I Supported by many recent CPUs (e.g., AMD64, ARM)
I Various software solutions for CPUs without hardware support
I Software solutions add overhead to memory access

OS Security – Memory 23



Enabling/disabling NX

I Non-executable-stack bit is stored in the ELF header of a binary
I Linux by default supports NX stack
I gcc by default produces non-executable-stack binaries
I Disable NX in gcc: gcc -z execstack
I Disable NX on an existing binary: execstack -s BINARY
I Enable NX on an existing binary: execstack -c BINARY
I Disable NX for 32-bit binaries in Linux kernel:

I Boot parameter noexec=off (for x86)
I Boot parameter noexec32=off (for AMD64)

I Reasons to disable NX protection:
I Creating homework for Software and Websecurity
I Generally, trying out “classical” attacks
I Some programs need executable stack!

OS Security – Memory 24



Return to libc
I Attacker cannot execute his code on the stack anymore
I Workaround: execute code that is already in the program
I (Almost) always mapped into the programs memory space: C

standard library
I Idea: put suitable arguments for system() somewhere in memory

(e.g., "/bin/sh")
I Overwrite the return address to point to system()
I For clean exit, set return address of system to address of exit()
I Obtain the address of libc with ldd
I Obtain the offset of system() and exit() through

#include <stdio.h>
#include <dlfcn.h>

main(){
void *h, *p;
h = dlopen(NULL, RTLD_LAZY);
p = dlsym(h, "system");
printf("0x%016lx\n", p);
p = dlsym(h, "exit");
printf("0x%016lx\n", p);
return 0;

}
OS Security – Memory 25



Return to libc ctd.

I Place the string "/bin/sh" somewhere and obtain its address
I Write behind buffer

1. Address of system()
2. Address of exit()
3. Address of "/bin/sh"

I Address of system() must overwrite return address in current frame
I Code will return to system() with

I return address pointing to exit(), and
I argument pointing to /bin/sh

OS Security – Memory 26



Countermeasures

I Can make sure that \0 is in the address of libc
I Many functions (like gets) won’t read past the \0
I Does not generally help, can overflow some buffers also with \0
I Can remove some critical functions from (reduced) libc
I Problems:

I Can break functionality
I What functions exactly can cause problems. . . ?

OS Security – Memory 27



ROP

I We do not have to return to libc functions
I Can also return to arbitrary addresses
I Can chain such returns, if each targeted block ends in return
I Attack idea: Collect pieces of code from binary (each ending in

return)
I Chain these pieces to an attack program
I This idea is called return-oriented programming
I Concept introduced by Shacham in 2007
I Collected pieces of code are called gadgets
I Attacker now has to program with “gadget-instructions”
I Slight generalization: Can also use gadgets ending in jumps
I Important concept: can obtain malicious computation without

malicious code!
I Searching for gadgets (and to some extent chaining) can be

automated

OS Security – Memory 28



ASLR

I Return to libc and ROP need to know the addresses of code
I Idea: randomize position of dynamic libraries
I This approach is called address space layout randomization (ASLR)
I Does not only randomize position of dynamic libraries, but also:

I position of stack
I position of data segment
I position of heap

I To also randomize the position of the binary itself need to use
gcc -fpie

I pie stands for “position independent execution”
I Disable ASLR in Linux:

echo 0 > /proc/sys/kernel/randomize_va_space
or boot with parameter norandmaps

I Disable ASLR for one process:
setarch ‘uname -m‘ -R PROGRAMNAME

OS Security – Memory 29



Attacks against ASLR

I ASLR is generally very effective as a defense
I Problem if address of one instruction leaks to the attacker:

I Format-string attacks
I Using overflows to overwrite null-termination
I Memory content written to disk
I Software that uses non-randomized modules
I . . .

I Problem on 32-bit machines: not enough entropy
I Cannot randomize lower 12 bits of address (that would break page

alignment)
I Cannot randomize upper 4 bits (limits capabilities of large memory

mappings)
I Result: only 16 bits of entropy (65536 possibilities)
I Shacham, Page, Pfaff, Goh, Modadugu, Boneh, 2004: brute-force

attack that took 216 seconds on average

OS Security – Memory 30


