
OS Security
SELinux and Ethos

Radboud University Nijmegen, The Netherlands

Winter 2014/2015



Next week’s lecture

Guest lecture by Jordy Kersten and Frans Kollée
(Madison Ghurka)

OS Security – SELinux and Ethos 2



31C3 Recommendations

I Tobias Engel: “SS7: Locate. Track. Manipulate.”
I Karsten Nohl: “Mobile self-defense”
I Daniel J. Bernstein, Tanja Lange: “ECCHacks”
I Jacob Appelbaum, Laura Poitras: “Reconstructing narratives”
I Starbug: “Ich sehe, also bin ich . . . Du”

Videos of talks online at
http://media.ccc.de/browse/congress/2014/

OS Security – SELinux and Ethos 3

http://media.ccc.de/browse/congress/2014/


A short recap
I Various programs to detect/prevent intrusion (IDS, IPS, AV)

I Different categories of malware:
I Virus (self-reproducing, needs host program)
I Worm (spreading routine, no host program)
I Trojan (no spreading routine, usually comes with useful

masquerading functionality)
I Correction: Viruses do not have to print their own source code!
I Self-reproducing programs and “quines” are still related
I Rootkits are used to hide the results of an attack
I Particularly dangerous: kernelspace root kits
I Even worse: bootkits infect the MBR
I Even worse: hardware/firmware malware
I Malware detection either signature-based or heuristic
I Code polymorphism (and self-modifying code) to counter

signature-based AV
I AV can hurt security: larger attack surface, false positives, user

perception of security

OS Security – SELinux and Ethos 4



A short recap
I Various programs to detect/prevent intrusion (IDS, IPS, AV)
I Different categories of malware:

I Virus (self-reproducing, needs host program)
I Worm (spreading routine, no host program)
I Trojan (no spreading routine, usually comes with useful

masquerading functionality)

I Correction: Viruses do not have to print their own source code!
I Self-reproducing programs and “quines” are still related
I Rootkits are used to hide the results of an attack
I Particularly dangerous: kernelspace root kits
I Even worse: bootkits infect the MBR
I Even worse: hardware/firmware malware
I Malware detection either signature-based or heuristic
I Code polymorphism (and self-modifying code) to counter

signature-based AV
I AV can hurt security: larger attack surface, false positives, user

perception of security

OS Security – SELinux and Ethos 4



A short recap
I Various programs to detect/prevent intrusion (IDS, IPS, AV)
I Different categories of malware:

I Virus (self-reproducing, needs host program)
I Worm (spreading routine, no host program)
I Trojan (no spreading routine, usually comes with useful

masquerading functionality)
I Correction: Viruses do not have to print their own source code!
I Self-reproducing programs and “quines” are still related

I Rootkits are used to hide the results of an attack
I Particularly dangerous: kernelspace root kits
I Even worse: bootkits infect the MBR
I Even worse: hardware/firmware malware
I Malware detection either signature-based or heuristic
I Code polymorphism (and self-modifying code) to counter

signature-based AV
I AV can hurt security: larger attack surface, false positives, user

perception of security

OS Security – SELinux and Ethos 4



A short recap
I Various programs to detect/prevent intrusion (IDS, IPS, AV)
I Different categories of malware:

I Virus (self-reproducing, needs host program)
I Worm (spreading routine, no host program)
I Trojan (no spreading routine, usually comes with useful

masquerading functionality)
I Correction: Viruses do not have to print their own source code!
I Self-reproducing programs and “quines” are still related
I Rootkits are used to hide the results of an attack
I Particularly dangerous: kernelspace root kits

I Even worse: bootkits infect the MBR
I Even worse: hardware/firmware malware
I Malware detection either signature-based or heuristic
I Code polymorphism (and self-modifying code) to counter

signature-based AV
I AV can hurt security: larger attack surface, false positives, user

perception of security

OS Security – SELinux and Ethos 4



A short recap
I Various programs to detect/prevent intrusion (IDS, IPS, AV)
I Different categories of malware:

I Virus (self-reproducing, needs host program)
I Worm (spreading routine, no host program)
I Trojan (no spreading routine, usually comes with useful

masquerading functionality)
I Correction: Viruses do not have to print their own source code!
I Self-reproducing programs and “quines” are still related
I Rootkits are used to hide the results of an attack
I Particularly dangerous: kernelspace root kits
I Even worse: bootkits infect the MBR

I Even worse: hardware/firmware malware
I Malware detection either signature-based or heuristic
I Code polymorphism (and self-modifying code) to counter

signature-based AV
I AV can hurt security: larger attack surface, false positives, user

perception of security

OS Security – SELinux and Ethos 4



A short recap
I Various programs to detect/prevent intrusion (IDS, IPS, AV)
I Different categories of malware:

I Virus (self-reproducing, needs host program)
I Worm (spreading routine, no host program)
I Trojan (no spreading routine, usually comes with useful

masquerading functionality)
I Correction: Viruses do not have to print their own source code!
I Self-reproducing programs and “quines” are still related
I Rootkits are used to hide the results of an attack
I Particularly dangerous: kernelspace root kits
I Even worse: bootkits infect the MBR
I Even worse: hardware/firmware malware

I Malware detection either signature-based or heuristic
I Code polymorphism (and self-modifying code) to counter

signature-based AV
I AV can hurt security: larger attack surface, false positives, user

perception of security

OS Security – SELinux and Ethos 4



A short recap
I Various programs to detect/prevent intrusion (IDS, IPS, AV)
I Different categories of malware:

I Virus (self-reproducing, needs host program)
I Worm (spreading routine, no host program)
I Trojan (no spreading routine, usually comes with useful

masquerading functionality)
I Correction: Viruses do not have to print their own source code!
I Self-reproducing programs and “quines” are still related
I Rootkits are used to hide the results of an attack
I Particularly dangerous: kernelspace root kits
I Even worse: bootkits infect the MBR
I Even worse: hardware/firmware malware
I Malware detection either signature-based or heuristic
I Code polymorphism (and self-modifying code) to counter

signature-based AV

I AV can hurt security: larger attack surface, false positives, user
perception of security

OS Security – SELinux and Ethos 4



A short recap
I Various programs to detect/prevent intrusion (IDS, IPS, AV)
I Different categories of malware:

I Virus (self-reproducing, needs host program)
I Worm (spreading routine, no host program)
I Trojan (no spreading routine, usually comes with useful

masquerading functionality)
I Correction: Viruses do not have to print their own source code!
I Self-reproducing programs and “quines” are still related
I Rootkits are used to hide the results of an attack
I Particularly dangerous: kernelspace root kits
I Even worse: bootkits infect the MBR
I Even worse: hardware/firmware malware
I Malware detection either signature-based or heuristic
I Code polymorphism (and self-modifying code) to counter

signature-based AV
I AV can hurt security: larger attack surface, false positives, user

perception of security
OS Security – SELinux and Ethos 4



LSM

I Linux security traditionally follows the UNIX security model
I Around 2000, various projects worked on MAC (and generally

stronger security) for Linux
I Linus Torvalds about inclusion of SELinux: “make it a module”

I Since Kernel 2.6: API for Linux Security Modules (LSMs)
I Hooks to module functions when accessing security-critical resources
I An LSM sets function pointers in a data structure called

security_operations
I Global table of this type called security_ops defined in

include/linux/security.h

OS Security – SELinux and Ethos 5



LSM

I Linux security traditionally follows the UNIX security model
I Around 2000, various projects worked on MAC (and generally

stronger security) for Linux
I Linus Torvalds about inclusion of SELinux: “make it a module”
I Since Kernel 2.6: API for Linux Security Modules (LSMs)
I Hooks to module functions when accessing security-critical resources

I An LSM sets function pointers in a data structure called
security_operations

I Global table of this type called security_ops defined in
include/linux/security.h

OS Security – SELinux and Ethos 5



LSM

I Linux security traditionally follows the UNIX security model
I Around 2000, various projects worked on MAC (and generally

stronger security) for Linux
I Linus Torvalds about inclusion of SELinux: “make it a module”
I Since Kernel 2.6: API for Linux Security Modules (LSMs)
I Hooks to module functions when accessing security-critical resources
I An LSM sets function pointers in a data structure called

security_operations
I Global table of this type called security_ops defined in

include/linux/security.h

OS Security – SELinux and Ethos 5



Criticism of LSM

LSM is in the mainline kernel and various LSM implemetations exist,
however, there is some criticism of the API:

I Small overhead even if no LSM is loaded

I LSM is designed for access control, but can be abused, for example,
for bypassing GPL license

I “Because LSM is compiled and enabled in the kernel, its symbols are
exported. Thus, every rootkit and backdoor writer will have every
hook he ever wanted in the kernel.”
(https://grsecurity.net/lsm.php)

I LSM provides hooks only for access control
I Systems like grsecurity and RSBAC need more than just access

control
I “Stacking” multiple security modules is problematic
I LSM hooks expose kernel internal data structures as parameters

OS Security – SELinux and Ethos 6

https://grsecurity.net/lsm.php


Criticism of LSM

LSM is in the mainline kernel and various LSM implemetations exist,
however, there is some criticism of the API:

I Small overhead even if no LSM is loaded
I LSM is designed for access control, but can be abused, for example,

for bypassing GPL license

I “Because LSM is compiled and enabled in the kernel, its symbols are
exported. Thus, every rootkit and backdoor writer will have every
hook he ever wanted in the kernel.”
(https://grsecurity.net/lsm.php)

I LSM provides hooks only for access control
I Systems like grsecurity and RSBAC need more than just access

control
I “Stacking” multiple security modules is problematic
I LSM hooks expose kernel internal data structures as parameters

OS Security – SELinux and Ethos 6

https://grsecurity.net/lsm.php


Criticism of LSM

LSM is in the mainline kernel and various LSM implemetations exist,
however, there is some criticism of the API:

I Small overhead even if no LSM is loaded
I LSM is designed for access control, but can be abused, for example,

for bypassing GPL license
I “Because LSM is compiled and enabled in the kernel, its symbols are

exported. Thus, every rootkit and backdoor writer will have every
hook he ever wanted in the kernel.”
(https://grsecurity.net/lsm.php)

I LSM provides hooks only for access control
I Systems like grsecurity and RSBAC need more than just access

control
I “Stacking” multiple security modules is problematic
I LSM hooks expose kernel internal data structures as parameters

OS Security – SELinux and Ethos 6

https://grsecurity.net/lsm.php


Criticism of LSM

LSM is in the mainline kernel and various LSM implemetations exist,
however, there is some criticism of the API:

I Small overhead even if no LSM is loaded
I LSM is designed for access control, but can be abused, for example,

for bypassing GPL license
I “Because LSM is compiled and enabled in the kernel, its symbols are

exported. Thus, every rootkit and backdoor writer will have every
hook he ever wanted in the kernel.”
(https://grsecurity.net/lsm.php)

I LSM provides hooks only for access control
I Systems like grsecurity and RSBAC need more than just access

control

I “Stacking” multiple security modules is problematic
I LSM hooks expose kernel internal data structures as parameters

OS Security – SELinux and Ethos 6

https://grsecurity.net/lsm.php


Criticism of LSM

LSM is in the mainline kernel and various LSM implemetations exist,
however, there is some criticism of the API:

I Small overhead even if no LSM is loaded
I LSM is designed for access control, but can be abused, for example,

for bypassing GPL license
I “Because LSM is compiled and enabled in the kernel, its symbols are

exported. Thus, every rootkit and backdoor writer will have every
hook he ever wanted in the kernel.”
(https://grsecurity.net/lsm.php)

I LSM provides hooks only for access control
I Systems like grsecurity and RSBAC need more than just access

control
I “Stacking” multiple security modules is problematic

I LSM hooks expose kernel internal data structures as parameters

OS Security – SELinux and Ethos 6

https://grsecurity.net/lsm.php


Criticism of LSM

LSM is in the mainline kernel and various LSM implemetations exist,
however, there is some criticism of the API:

I Small overhead even if no LSM is loaded
I LSM is designed for access control, but can be abused, for example,

for bypassing GPL license
I “Because LSM is compiled and enabled in the kernel, its symbols are

exported. Thus, every rootkit and backdoor writer will have every
hook he ever wanted in the kernel.”
(https://grsecurity.net/lsm.php)

I LSM provides hooks only for access control
I Systems like grsecurity and RSBAC need more than just access

control
I “Stacking” multiple security modules is problematic
I LSM hooks expose kernel internal data structures as parameters

OS Security – SELinux and Ethos 6

https://grsecurity.net/lsm.php


Implementations of LSM

I AppArmor (see lecture on virtualization)
I Linux Intrusion Detection System (LIDS)
I POSIX capabilitites
I Simplified Mandatory Access Control Kernel (Smack)
I TOMOYO
I Security-Enhanced Linux (SELinux)

OS Security – SELinux and Ethos 7



Ethos OS

I All previous security features of an OS were “add-on”
I System calls, shells interface, utilities etc. implement the POSIX

standards for UNIX OSs
I UNIX goes back to the 70s, not designed for security

I Ethos is a new operating-system design
I Project started in 2007 by Jon Solworth at UIC
I Ethos does not implement the POSIX standard, it’s radically

“clean-slate”
I Ethos is designed for security

OS Security – SELinux and Ethos 8



Ethos OS

I All previous security features of an OS were “add-on”
I System calls, shells interface, utilities etc. implement the POSIX

standards for UNIX OSs
I UNIX goes back to the 70s, not designed for security
I Ethos is a new operating-system design
I Project started in 2007 by Jon Solworth at UIC
I Ethos does not implement the POSIX standard, it’s radically

“clean-slate”
I Ethos is designed for security

OS Security – SELinux and Ethos 8



Motivation
I “A secure OS by itself is meaningless”
I Main goal and motivation of Ethos: make it easy to write robust

applications:

A program is robust if it continues to operate as intended even in
the face of an intelligent adversary.

I Typical security-critical application-level failures:
I Fail to provide adequate security services, e.g., encryption,

authentication, authorization

I Programming flaws like buffer overflows, race conditions, missing or
incorrectly used security services

I Failures at the intersection of mechanisms

I Problem: Too much responsibility for application programmers
I Example: Hundreds of LoC to use OpenSSL in typical server

applications
I Solution in Ethos: provide higher-level API (system calls) that takes

care of security issues
I Ethos is designed for network (Internet) applications

OS Security – SELinux and Ethos 9



Motivation
I “A secure OS by itself is meaningless”
I Main goal and motivation of Ethos: make it easy to write robust

applications:

A program is robust if it continues to operate as intended even in
the face of an intelligent adversary.

I Typical security-critical application-level failures:
I Fail to provide adequate security services, e.g., encryption,

authentication, authorization

I Programming flaws like buffer overflows, race conditions, missing or
incorrectly used security services

I Failures at the intersection of mechanisms
I Problem: Too much responsibility for application programmers
I Example: Hundreds of LoC to use OpenSSL in typical server

applications
I Solution in Ethos: provide higher-level API (system calls) that takes

care of security issues
I Ethos is designed for network (Internet) applications

OS Security – SELinux and Ethos 9



Motivation
I “A secure OS by itself is meaningless”
I Main goal and motivation of Ethos: make it easy to write robust

applications:

A program is robust if it continues to operate as intended even in
the face of an intelligent adversary.

I Typical security-critical application-level failures:
I Fail to provide adequate security services, e.g., encryption,

authentication, authorization
I Programming flaws like buffer overflows, race conditions, missing or

incorrectly used security services

I Failures at the intersection of mechanisms
I Problem: Too much responsibility for application programmers
I Example: Hundreds of LoC to use OpenSSL in typical server

applications
I Solution in Ethos: provide higher-level API (system calls) that takes

care of security issues
I Ethos is designed for network (Internet) applications

OS Security – SELinux and Ethos 9



Motivation
I “A secure OS by itself is meaningless”
I Main goal and motivation of Ethos: make it easy to write robust

applications:

A program is robust if it continues to operate as intended even in
the face of an intelligent adversary.

I Typical security-critical application-level failures:
I Fail to provide adequate security services, e.g., encryption,

authentication, authorization
I Programming flaws like buffer overflows, race conditions, missing or

incorrectly used security services
I Failures at the intersection of mechanisms

I Problem: Too much responsibility for application programmers
I Example: Hundreds of LoC to use OpenSSL in typical server

applications
I Solution in Ethos: provide higher-level API (system calls) that takes

care of security issues
I Ethos is designed for network (Internet) applications

OS Security – SELinux and Ethos 9



Motivation
I “A secure OS by itself is meaningless”
I Main goal and motivation of Ethos: make it easy to write robust

applications:

A program is robust if it continues to operate as intended even in
the face of an intelligent adversary.

I Typical security-critical application-level failures:
I Fail to provide adequate security services, e.g., encryption,

authentication, authorization
I Programming flaws like buffer overflows, race conditions, missing or

incorrectly used security services
I Failures at the intersection of mechanisms

I Problem: Too much responsibility for application programmers
I Example: Hundreds of LoC to use OpenSSL in typical server

applications

I Solution in Ethos: provide higher-level API (system calls) that takes
care of security issues

I Ethos is designed for network (Internet) applications

OS Security – SELinux and Ethos 9



Motivation
I “A secure OS by itself is meaningless”
I Main goal and motivation of Ethos: make it easy to write robust

applications:

A program is robust if it continues to operate as intended even in
the face of an intelligent adversary.

I Typical security-critical application-level failures:
I Fail to provide adequate security services, e.g., encryption,

authentication, authorization
I Programming flaws like buffer overflows, race conditions, missing or

incorrectly used security services
I Failures at the intersection of mechanisms

I Problem: Too much responsibility for application programmers
I Example: Hundreds of LoC to use OpenSSL in typical server

applications
I Solution in Ethos: provide higher-level API (system calls) that takes

care of security issues
I Ethos is designed for network (Internet) applications

OS Security – SELinux and Ethos 9



Design on top of Xen

I Ethos is not running on bare hardware
I Ethos is running inside the Xen Virtual Machine Monitor (VMM)
I Xen Dom0 OS is typically Linux
I Virtualization allows to run Ethos alongside Linux

I Ethos started with Mini-OS (provided by Xen)
I Additions of Ethos to Mini-OS:

I Processes and system calls
I Networking and Inter-process communication (IPC)
I Filesystem
I Cryptography
I Authentication
I Types
I User-space Debugger

I Also cleaned up lots of code

OS Security – SELinux and Ethos 10



Design on top of Xen

I Ethos is not running on bare hardware
I Ethos is running inside the Xen Virtual Machine Monitor (VMM)
I Xen Dom0 OS is typically Linux
I Virtualization allows to run Ethos alongside Linux
I Ethos started with Mini-OS (provided by Xen)

I Additions of Ethos to Mini-OS:
I Processes and system calls
I Networking and Inter-process communication (IPC)
I Filesystem
I Cryptography
I Authentication
I Types
I User-space Debugger

I Also cleaned up lots of code

OS Security – SELinux and Ethos 10



Design on top of Xen

I Ethos is not running on bare hardware
I Ethos is running inside the Xen Virtual Machine Monitor (VMM)
I Xen Dom0 OS is typically Linux
I Virtualization allows to run Ethos alongside Linux
I Ethos started with Mini-OS (provided by Xen)
I Additions of Ethos to Mini-OS:

I Processes and system calls
I Networking and Inter-process communication (IPC)
I Filesystem
I Cryptography
I Authentication
I Types
I User-space Debugger

I Also cleaned up lots of code

OS Security – SELinux and Ethos 10



Design on top of Xen

I Ethos is not running on bare hardware
I Ethos is running inside the Xen Virtual Machine Monitor (VMM)
I Xen Dom0 OS is typically Linux
I Virtualization allows to run Ethos alongside Linux
I Ethos started with Mini-OS (provided by Xen)
I Additions of Ethos to Mini-OS:

I Processes and system calls
I Networking and Inter-process communication (IPC)
I Filesystem
I Cryptography
I Authentication
I Types
I User-space Debugger

I Also cleaned up lots of code

OS Security – SELinux and Ethos 10



“Laziness”

Building on top of Xen makes development of a new OS feasible:
I Use a Linux program called shadowdæmon that provides services to

Ethos running in another Xen domain
I Use RPC over Xen’s virtual network interfaces
I Eventually replace shadowdæmon by native Ethos implementations

I Filesystem: Use existing filesystem in Dom0 and shadowdæmon
calls to read/write. ext4 has >25000 LoC; Ethos file-system
component has 1754 + 814 in shadowdæmon

I Networking: Use ARP implementation in Dom0 with static ARP
tables

I Drivers: >5 Mio. LoC for drivers in Linux. Ethos’ network driver is
462 LoC, console driver is 296 LoC

I Debugging: Use gdbsx debugger of Xen
I Testing: “Fast” to get a prototype working, can automate testing

from Dom0

OS Security – SELinux and Ethos 11



“Laziness”

Building on top of Xen makes development of a new OS feasible:
I Use a Linux program called shadowdæmon that provides services to

Ethos running in another Xen domain
I Use RPC over Xen’s virtual network interfaces
I Eventually replace shadowdæmon by native Ethos implementations
I Filesystem: Use existing filesystem in Dom0 and shadowdæmon

calls to read/write. ext4 has >25000 LoC; Ethos file-system
component has 1754 + 814 in shadowdæmon

I Networking: Use ARP implementation in Dom0 with static ARP
tables

I Drivers: >5 Mio. LoC for drivers in Linux. Ethos’ network driver is
462 LoC, console driver is 296 LoC

I Debugging: Use gdbsx debugger of Xen
I Testing: “Fast” to get a prototype working, can automate testing

from Dom0

OS Security – SELinux and Ethos 11



“Laziness”

Building on top of Xen makes development of a new OS feasible:
I Use a Linux program called shadowdæmon that provides services to

Ethos running in another Xen domain
I Use RPC over Xen’s virtual network interfaces
I Eventually replace shadowdæmon by native Ethos implementations
I Filesystem: Use existing filesystem in Dom0 and shadowdæmon

calls to read/write. ext4 has >25000 LoC; Ethos file-system
component has 1754 + 814 in shadowdæmon

I Networking: Use ARP implementation in Dom0 with static ARP
tables

I Drivers: >5 Mio. LoC for drivers in Linux. Ethos’ network driver is
462 LoC, console driver is 296 LoC

I Debugging: Use gdbsx debugger of Xen
I Testing: “Fast” to get a prototype working, can automate testing

from Dom0

OS Security – SELinux and Ethos 11



“Laziness”

Building on top of Xen makes development of a new OS feasible:
I Use a Linux program called shadowdæmon that provides services to

Ethos running in another Xen domain
I Use RPC over Xen’s virtual network interfaces
I Eventually replace shadowdæmon by native Ethos implementations
I Filesystem: Use existing filesystem in Dom0 and shadowdæmon

calls to read/write. ext4 has >25000 LoC; Ethos file-system
component has 1754 + 814 in shadowdæmon

I Networking: Use ARP implementation in Dom0 with static ARP
tables

I Drivers: >5 Mio. LoC for drivers in Linux. Ethos’ network driver is
462 LoC, console driver is 296 LoC

I Debugging: Use gdbsx debugger of Xen
I Testing: “Fast” to get a prototype working, can automate testing

from Dom0

OS Security – SELinux and Ethos 11



“Laziness”

Building on top of Xen makes development of a new OS feasible:
I Use a Linux program called shadowdæmon that provides services to

Ethos running in another Xen domain
I Use RPC over Xen’s virtual network interfaces
I Eventually replace shadowdæmon by native Ethos implementations
I Filesystem: Use existing filesystem in Dom0 and shadowdæmon

calls to read/write. ext4 has >25000 LoC; Ethos file-system
component has 1754 + 814 in shadowdæmon

I Networking: Use ARP implementation in Dom0 with static ARP
tables

I Drivers: >5 Mio. LoC for drivers in Linux. Ethos’ network driver is
462 LoC, console driver is 296 LoC

I Debugging: Use gdbsx debugger of Xen

I Testing: “Fast” to get a prototype working, can automate testing
from Dom0

OS Security – SELinux and Ethos 11



“Laziness”

Building on top of Xen makes development of a new OS feasible:
I Use a Linux program called shadowdæmon that provides services to

Ethos running in another Xen domain
I Use RPC over Xen’s virtual network interfaces
I Eventually replace shadowdæmon by native Ethos implementations
I Filesystem: Use existing filesystem in Dom0 and shadowdæmon

calls to read/write. ext4 has >25000 LoC; Ethos file-system
component has 1754 + 814 in shadowdæmon

I Networking: Use ARP implementation in Dom0 with static ARP
tables

I Drivers: >5 Mio. LoC for drivers in Linux. Ethos’ network driver is
462 LoC, console driver is 296 LoC

I Debugging: Use gdbsx debugger of Xen
I Testing: “Fast” to get a prototype working, can automate testing

from Dom0

OS Security – SELinux and Ethos 11



Pitfalls of using a VMM

I VMM itself can have bugs (Ethos helped one such problem)
I Dom0 in Xen has direct access to

1. hardware I/O devices
2. the virtual memory of other virtual machines

I Address problem 1 by encrypting all data sent to communication
devices and file systems

I Problem 2 could be addressed in Xen by encrypting memory pages
before Dom0 access

I Long-term plans (ideas) for Ethos:
I Microkernel implementation
I Develop minimalist VMM
I Verify VMM

OS Security – SELinux and Ethos 12



Pitfalls of using a VMM

I VMM itself can have bugs (Ethos helped one such problem)
I Dom0 in Xen has direct access to

1. hardware I/O devices
2. the virtual memory of other virtual machines

I Address problem 1 by encrypting all data sent to communication
devices and file systems

I Problem 2 could be addressed in Xen by encrypting memory pages
before Dom0 access

I Long-term plans (ideas) for Ethos:
I Microkernel implementation
I Develop minimalist VMM
I Verify VMM

OS Security – SELinux and Ethos 12



Pitfalls of using a VMM

I VMM itself can have bugs (Ethos helped one such problem)
I Dom0 in Xen has direct access to

1. hardware I/O devices
2. the virtual memory of other virtual machines

I Address problem 1 by encrypting all data sent to communication
devices and file systems

I Problem 2 could be addressed in Xen by encrypting memory pages
before Dom0 access

I Long-term plans (ideas) for Ethos:
I Microkernel implementation
I Develop minimalist VMM
I Verify VMM

OS Security – SELinux and Ethos 12



What Ethos ensures

Protection mechanisms are compulsory, most important ones:
I P1: Processes cannot change owners; instead, processes spawn

special children that run as a different owner from inception

I P2: Applications do not have access to secret keys; instead, Ethos
isolates keys and provides access to cryptographic operations
through system calls

I P3: All network connections are authenticated
I P4: Authentication uses strong techniques
I P5: Confidentiality of authentication databases is not essential to

security because Ethos uses public-key cryptography
I P6: All communication made (client-side/local user) or received

(server-side/remote user) are subject to authorization based on the
requesting host and user

I P7: All data written to disk or network devices is protected using
strong cryptography

OS Security – SELinux and Ethos 13



What Ethos ensures

Protection mechanisms are compulsory, most important ones:
I P1: Processes cannot change owners; instead, processes spawn

special children that run as a different owner from inception
I P2: Applications do not have access to secret keys; instead, Ethos

isolates keys and provides access to cryptographic operations
through system calls

I P3: All network connections are authenticated
I P4: Authentication uses strong techniques
I P5: Confidentiality of authentication databases is not essential to

security because Ethos uses public-key cryptography
I P6: All communication made (client-side/local user) or received

(server-side/remote user) are subject to authorization based on the
requesting host and user

I P7: All data written to disk or network devices is protected using
strong cryptography

OS Security – SELinux and Ethos 13



What Ethos ensures

Protection mechanisms are compulsory, most important ones:
I P1: Processes cannot change owners; instead, processes spawn

special children that run as a different owner from inception
I P2: Applications do not have access to secret keys; instead, Ethos

isolates keys and provides access to cryptographic operations
through system calls

I P3: All network connections are authenticated

I P4: Authentication uses strong techniques
I P5: Confidentiality of authentication databases is not essential to

security because Ethos uses public-key cryptography
I P6: All communication made (client-side/local user) or received

(server-side/remote user) are subject to authorization based on the
requesting host and user

I P7: All data written to disk or network devices is protected using
strong cryptography

OS Security – SELinux and Ethos 13



What Ethos ensures

Protection mechanisms are compulsory, most important ones:
I P1: Processes cannot change owners; instead, processes spawn

special children that run as a different owner from inception
I P2: Applications do not have access to secret keys; instead, Ethos

isolates keys and provides access to cryptographic operations
through system calls

I P3: All network connections are authenticated
I P4: Authentication uses strong techniques

I P5: Confidentiality of authentication databases is not essential to
security because Ethos uses public-key cryptography

I P6: All communication made (client-side/local user) or received
(server-side/remote user) are subject to authorization based on the
requesting host and user

I P7: All data written to disk or network devices is protected using
strong cryptography

OS Security – SELinux and Ethos 13



What Ethos ensures

Protection mechanisms are compulsory, most important ones:
I P1: Processes cannot change owners; instead, processes spawn

special children that run as a different owner from inception
I P2: Applications do not have access to secret keys; instead, Ethos

isolates keys and provides access to cryptographic operations
through system calls

I P3: All network connections are authenticated
I P4: Authentication uses strong techniques
I P5: Confidentiality of authentication databases is not essential to

security because Ethos uses public-key cryptography

I P6: All communication made (client-side/local user) or received
(server-side/remote user) are subject to authorization based on the
requesting host and user

I P7: All data written to disk or network devices is protected using
strong cryptography

OS Security – SELinux and Ethos 13



What Ethos ensures

Protection mechanisms are compulsory, most important ones:
I P1: Processes cannot change owners; instead, processes spawn

special children that run as a different owner from inception
I P2: Applications do not have access to secret keys; instead, Ethos

isolates keys and provides access to cryptographic operations
through system calls

I P3: All network connections are authenticated
I P4: Authentication uses strong techniques
I P5: Confidentiality of authentication databases is not essential to

security because Ethos uses public-key cryptography
I P6: All communication made (client-side/local user) or received

(server-side/remote user) are subject to authorization based on the
requesting host and user

I P7: All data written to disk or network devices is protected using
strong cryptography

OS Security – SELinux and Ethos 13



What Ethos ensures

Protection mechanisms are compulsory, most important ones:
I P1: Processes cannot change owners; instead, processes spawn

special children that run as a different owner from inception
I P2: Applications do not have access to secret keys; instead, Ethos

isolates keys and provides access to cryptographic operations
through system calls

I P3: All network connections are authenticated
I P4: Authentication uses strong techniques
I P5: Confidentiality of authentication databases is not essential to

security because Ethos uses public-key cryptography
I P6: All communication made (client-side/local user) or received

(server-side/remote user) are subject to authorization based on the
requesting host and user

I P7: All data written to disk or network devices is protected using
strong cryptography

OS Security – SELinux and Ethos 13



Etypes

I Typical input to programs in UNIX are byte arrays (from the
network, from files, from stdin)

I Parsing to typed inputs is left to applications
I Improper handling of ill-formed (e.g., malicious) inputs is common

source of security issues

I Ethos offers distributed types in the Etypes subsystem:
I A notation, ETN, for specifying types
I a machine-readable type description (“type graph”)
I A single wire format (ETE)
I Tools (userspace and kernelspace) to transform ETN into code that

will encode, decode, and recognize types
I Extensions to read and write system calls to check input and output

I Programs specify what input types they allow
I Validity of input (and outputs) enforced by OS

OS Security – SELinux and Ethos 14



Etypes

I Typical input to programs in UNIX are byte arrays (from the
network, from files, from stdin)

I Parsing to typed inputs is left to applications
I Improper handling of ill-formed (e.g., malicious) inputs is common

source of security issues
I Ethos offers distributed types in the Etypes subsystem:

I A notation, ETN, for specifying types
I a machine-readable type description (“type graph”)
I A single wire format (ETE)
I Tools (userspace and kernelspace) to transform ETN into code that

will encode, decode, and recognize types
I Extensions to read and write system calls to check input and output

I Programs specify what input types they allow
I Validity of input (and outputs) enforced by OS

OS Security – SELinux and Ethos 14



Etypes

I Typical input to programs in UNIX are byte arrays (from the
network, from files, from stdin)

I Parsing to typed inputs is left to applications
I Improper handling of ill-formed (e.g., malicious) inputs is common

source of security issues
I Ethos offers distributed types in the Etypes subsystem:

I A notation, ETN, for specifying types
I a machine-readable type description (“type graph”)
I A single wire format (ETE)
I Tools (userspace and kernelspace) to transform ETN into code that

will encode, decode, and recognize types
I Extensions to read and write system calls to check input and output

I Programs specify what input types they allow
I Validity of input (and outputs) enforced by OS

OS Security – SELinux and Ethos 14



Available types

I Primitive types (byte, int32)

I Vectors (tuples, strings, arrays)
I Composites (structs, dictionaries, unions)
I Pointers
I RPC interfaces
I Any

OS Security – SELinux and Ethos 15



Available types

I Primitive types (byte, int32)
I Vectors (tuples, strings, arrays)

I Composites (structs, dictionaries, unions)
I Pointers
I RPC interfaces
I Any

OS Security – SELinux and Ethos 15



Available types

I Primitive types (byte, int32)
I Vectors (tuples, strings, arrays)
I Composites (structs, dictionaries, unions)

I Pointers
I RPC interfaces
I Any

OS Security – SELinux and Ethos 15



Available types

I Primitive types (byte, int32)
I Vectors (tuples, strings, arrays)
I Composites (structs, dictionaries, unions)
I Pointers

I RPC interfaces
I Any

OS Security – SELinux and Ethos 15



Available types

I Primitive types (byte, int32)
I Vectors (tuples, strings, arrays)
I Composites (structs, dictionaries, unions)
I Pointers
I RPC interfaces

I Any

OS Security – SELinux and Ethos 15



Available types

I Primitive types (byte, int32)
I Vectors (tuples, strings, arrays)
I Composites (structs, dictionaries, unions)
I Pointers
I RPC interfaces
I Any

OS Security – SELinux and Ethos 15



Directories and types

I Directories “know” what types they may contain
I Typing is enforced for all non-directory contents of a directory
I Network connections, IPC, are using the filesystem
I Example: All file objects in a directory for IPv4 addresses must have

type int32
I “Any” type allows traditional directories

OS Security – SELinux and Ethos 16



System calls

UNIX Ethos
mkdir Create directory,

given path and
mode

createDirectory Create directory,
given parent FD,
name, label, and
type hash

open Open file for succes-
sive read/write

read/writeVar Read/Write object
in its entirety

read Read a number of
bytes

read Read an object

write Write a number of
bytes

write Write an object

seek Seek within a file n/a Seek at object level
by using directory as
streaming object

OS Security – SELinux and Ethos 17



Networking in Ethos
Server

fdListen = advertise("ping"); // bind
fd , user = import(fdListen); // accept
write (fd, "Hello");

Client

// connect
fd = ipc("ping", "example.com");
v = read(fd);

I Syntax similar to POSIX, but with some cleanups (names instead of
numbers, remove excess calls)

I Core difference: semantics! (e.g., user for import is the remote
user)

OS Security – SELinux and Ethos 18



Networking in Ethos
Server

fdListen = advertise("ping"); // bind
fd , user = import(fdListen); // accept
write (fd, "Hello");

Client

// connect
fd = ipc("ping", "example.com");
v = read(fd);

I Syntax similar to POSIX, but with some cleanups (names instead of
numbers, remove excess calls)

I Core difference: semantics! (e.g., user for import is the remote
user)

OS Security – SELinux and Ethos 18



Networking in Ethos
Server

fdListen = advertise("ping"); // bind
fd , user = import(fdListen); // accept
write (fd, "Hello");

Client

// connect
fd = ipc("ping", "example.com");
v = read(fd);

I Syntax similar to POSIX, but with some cleanups (names instead of
numbers, remove excess calls)

I Core difference: semantics! (e.g., user for import is the remote
user)

OS Security – SELinux and Ethos 18



Properties of Ethos networking

I All network communication encrypted and authenticated
I Uses Networking and Cryptography library (NaCl) for crypto
I MinimaLT network protocol (faster than unencrypted TCP/IP)
I Authentication is public-key based

I user IDs are public keys
I users can mint as many identities as they like

I Services are named by paths in the file system (readability)
I Directory authorizes both

I hosts (incoming and outgoing)
I users (incoming)

I All data passed through Ethos is directory-specified type
I avoid input vulnerabilities
I encoder/decoder makes automatically achieves host-independence

I Ethos uses a distributed efficient public-key infrastructure called sayl

OS Security – SELinux and Ethos 19



Properties of Ethos networking

I All network communication encrypted and authenticated
I Uses Networking and Cryptography library (NaCl) for crypto
I MinimaLT network protocol (faster than unencrypted TCP/IP)
I Authentication is public-key based

I user IDs are public keys
I users can mint as many identities as they like

I Services are named by paths in the file system (readability)
I Directory authorizes both

I hosts (incoming and outgoing)
I users (incoming)

I All data passed through Ethos is directory-specified type
I avoid input vulnerabilities
I encoder/decoder makes automatically achieves host-independence

I Ethos uses a distributed efficient public-key infrastructure called sayl

OS Security – SELinux and Ethos 19



Properties of Ethos networking

I All network communication encrypted and authenticated
I Uses Networking and Cryptography library (NaCl) for crypto
I MinimaLT network protocol (faster than unencrypted TCP/IP)
I Authentication is public-key based

I user IDs are public keys
I users can mint as many identities as they like

I Services are named by paths in the file system (readability)
I Directory authorizes both

I hosts (incoming and outgoing)
I users (incoming)

I All data passed through Ethos is directory-specified type
I avoid input vulnerabilities
I encoder/decoder makes automatically achieves host-independence

I Ethos uses a distributed efficient public-key infrastructure called sayl

OS Security – SELinux and Ethos 19



Properties of Ethos networking

I All network communication encrypted and authenticated
I Uses Networking and Cryptography library (NaCl) for crypto
I MinimaLT network protocol (faster than unencrypted TCP/IP)
I Authentication is public-key based

I user IDs are public keys
I users can mint as many identities as they like

I Services are named by paths in the file system (readability)
I Directory authorizes both

I hosts (incoming and outgoing)
I users (incoming)

I All data passed through Ethos is directory-specified type
I avoid input vulnerabilities
I encoder/decoder makes automatically achieves host-independence

I Ethos uses a distributed efficient public-key infrastructure called sayl

OS Security – SELinux and Ethos 19



Implications

I Attackers cannot read/modify network communication
I Supports anonymous or pseudonymed users
I Unwanted communication eliminated before application code

I Zero LoC in applications for crypto and type conversions
I Applications cannot bypass security services
I Semantics eliminate many security holes
I Simplicity from deep integration of authentication, authorization,

and networking

OS Security – SELinux and Ethos 20



Implications

I Attackers cannot read/modify network communication
I Supports anonymous or pseudonymed users
I Unwanted communication eliminated before application code
I Zero LoC in applications for crypto and type conversions
I Applications cannot bypass security services

I Semantics eliminate many security holes
I Simplicity from deep integration of authentication, authorization,

and networking

OS Security – SELinux and Ethos 20



Implications

I Attackers cannot read/modify network communication
I Supports anonymous or pseudonymed users
I Unwanted communication eliminated before application code
I Zero LoC in applications for crypto and type conversions
I Applications cannot bypass security services
I Semantics eliminate many security holes
I Simplicity from deep integration of authentication, authorization,

and networking

OS Security – SELinux and Ethos 20



Present and future work in Ethos

Present
I Nearly complete prototype
I Ported Go programming language to Ethos
I Beginning of user-space foundation (EI shell language, graphics)
I Some small applications
I Close to releasing MinimaLT and sayl

Future
I From prototype to production kernel
I Develop EI, tools, graphics
I Build secure Ethos applications

OS Security – SELinux and Ethos 21



Present and future work in Ethos

Present
I Nearly complete prototype
I Ported Go programming language to Ethos
I Beginning of user-space foundation (EI shell language, graphics)
I Some small applications
I Close to releasing MinimaLT and sayl

Future
I From prototype to production kernel
I Develop EI, tools, graphics
I Build secure Ethos applications

OS Security – SELinux and Ethos 21



Advertisement

Interested in working on Ethos?

Jon is looking for students who are interested in working on Ethos in
their

I Bachelor’s thesis
I Master’s thesis
I Ph.D. thesis

More details on Ethos are on

http://ethos-os.org

OS Security – SELinux and Ethos 22

http://ethos-os.org

