
Network Security
Routing and Firewalls

Radboud University, The Netherlands

Spring 2019



Slow Loris

https://www.youtube.com/watch?v=XiFkyR35v2Y

Network Security – Routing and Firewalls 2

https://www.youtube.com/watch?v=XiFkyR35v2Y


A short recap

I IP spoofing by itself is easy
I Typically used in conjunction with other attacks, e.g.:

I DOS attacks (e.g., SYN flooding)
I TCP session stealing
I Ping of death (classic, could say: historic)

I TCP session stealing needs ISN guessing (quite hard today)
I Standard tool for “raw” access to an open port: netcat
I For SSL connections use openssl s_client
I Discovering services on the network: portscan (nmap)
I Discovers open ports
I Various different approaches to (stealthy) scanning
I Can also fingerprint the OS of the target
I Portknocking can hide open ports from scanner
I Various approaches, most recent one: TCP Stealth

Network Security – Routing and Firewalls 3



A short recap

I IP spoofing by itself is easy
I Typically used in conjunction with other attacks, e.g.:

I DOS attacks (e.g., SYN flooding)
I TCP session stealing
I Ping of death (classic, could say: historic)

I TCP session stealing needs ISN guessing (quite hard today)

I Standard tool for “raw” access to an open port: netcat
I For SSL connections use openssl s_client
I Discovering services on the network: portscan (nmap)
I Discovers open ports
I Various different approaches to (stealthy) scanning
I Can also fingerprint the OS of the target
I Portknocking can hide open ports from scanner
I Various approaches, most recent one: TCP Stealth

Network Security – Routing and Firewalls 3



A short recap

I IP spoofing by itself is easy
I Typically used in conjunction with other attacks, e.g.:

I DOS attacks (e.g., SYN flooding)
I TCP session stealing
I Ping of death (classic, could say: historic)

I TCP session stealing needs ISN guessing (quite hard today)
I Standard tool for “raw” access to an open port: netcat
I For SSL connections use openssl s_client

I Discovering services on the network: portscan (nmap)
I Discovers open ports
I Various different approaches to (stealthy) scanning
I Can also fingerprint the OS of the target
I Portknocking can hide open ports from scanner
I Various approaches, most recent one: TCP Stealth

Network Security – Routing and Firewalls 3



A short recap

I IP spoofing by itself is easy
I Typically used in conjunction with other attacks, e.g.:

I DOS attacks (e.g., SYN flooding)
I TCP session stealing
I Ping of death (classic, could say: historic)

I TCP session stealing needs ISN guessing (quite hard today)
I Standard tool for “raw” access to an open port: netcat
I For SSL connections use openssl s_client
I Discovering services on the network: portscan (nmap)
I Discovers open ports
I Various different approaches to (stealthy) scanning
I Can also fingerprint the OS of the target

I Portknocking can hide open ports from scanner
I Various approaches, most recent one: TCP Stealth

Network Security – Routing and Firewalls 3



A short recap

I IP spoofing by itself is easy
I Typically used in conjunction with other attacks, e.g.:

I DOS attacks (e.g., SYN flooding)
I TCP session stealing
I Ping of death (classic, could say: historic)

I TCP session stealing needs ISN guessing (quite hard today)
I Standard tool for “raw” access to an open port: netcat
I For SSL connections use openssl s_client
I Discovering services on the network: portscan (nmap)
I Discovers open ports
I Various different approaches to (stealthy) scanning
I Can also fingerprint the OS of the target
I Portknocking can hide open ports from scanner
I Various approaches, most recent one: TCP Stealth

Network Security – Routing and Firewalls 3



Routing

I IP is responsible for delivering packets from one host to another host
I Routing is the process of finding a path to the destination
I Routers are (specialized) computers that forward packets between

networks
I Routing is a very extensive and complex topic

Network Security – Routing and Firewalls 4



Routing

Source: http://www.amazon.com/Routing-TCP-IP-1-2nd/dp/1587052024/

Network Security – Routing and Firewalls 4

http://www.amazon.com/Routing-TCP-IP-1-2nd/dp/1587052024/


Routing

Source: http://www.amazon.com/Routing-TCP-IP-1-2nd/dp/1587052024/

Network Security – Routing and Firewalls 4

http://www.amazon.com/Routing-TCP-IP-1-2nd/dp/1587052024/


traceroute

I Find out what route is used to, e.g., www.google.com:
traceroute www.google.com

I IP header has a time-to-live (TTL) field
I Each hop of the packet decreases the TTL by 1

I When TTL has reached zero, send back ICMP time exceeded
I traceroute sends packets with increasing TTL:

I Find first node: TTL=1
I Find second node: TTL=2
I . . .

I Can use UDP packets, ICMP echo requests (ping), or TCP SYN
I What really matters is only the TTL in the IP header

Network Security – Routing and Firewalls 5



traceroute

I Find out what route is used to, e.g., www.google.com:
traceroute www.google.com

I IP header has a time-to-live (TTL) field
I Each hop of the packet decreases the TTL by 1

I When TTL has reached zero, send back ICMP time exceeded

I traceroute sends packets with increasing TTL:

I Find first node: TTL=1
I Find second node: TTL=2
I . . .

I Can use UDP packets, ICMP echo requests (ping), or TCP SYN
I What really matters is only the TTL in the IP header

Network Security – Routing and Firewalls 5



traceroute

I Find out what route is used to, e.g., www.google.com:
traceroute www.google.com

I IP header has a time-to-live (TTL) field
I Each hop of the packet decreases the TTL by 1

I When TTL has reached zero, send back ICMP time exceeded
I traceroute sends packets with increasing TTL:

I Find first node: TTL=1
I Find second node: TTL=2
I . . .

I Can use UDP packets, ICMP echo requests (ping), or TCP SYN
I What really matters is only the TTL in the IP header

Network Security – Routing and Firewalls 5



traceroute

I Find out what route is used to, e.g., www.google.com:
traceroute www.google.com

I IP header has a time-to-live (TTL) field
I Each hop of the packet decreases the TTL by 1

I When TTL has reached zero, send back ICMP time exceeded
I traceroute sends packets with increasing TTL:

I Find first node: TTL=1
I Find second node: TTL=2
I . . .

I Can use UDP packets, ICMP echo requests (ping), or TCP SYN
I What really matters is only the TTL in the IP header

Network Security – Routing and Firewalls 5



Routing on the Internet (highly simplified)

I The Internet is divided into multiple Autonomous Systems (AS)
I Currently about 90, 000 Autonomous Systems

I Routing within one AS uses Interior Gateway Protocols (IGPs)
I Routing between ASs uses an Exterior Gateway Protocol (EGP)
I An AS is identified by its Autonomous System Number (ASN),

managed by the Internet Assigned Numbers Authority (IANA)
I Think of an AS as all networks under the control of one Internet

Service Provider (ISP)

Network Security – Routing and Firewalls 6



Routing on the Internet (highly simplified)

I The Internet is divided into multiple Autonomous Systems (AS)
I Currently about 90, 000 Autonomous Systems
I Routing within one AS uses Interior Gateway Protocols (IGPs)

I Routing between ASs uses an Exterior Gateway Protocol (EGP)
I An AS is identified by its Autonomous System Number (ASN),

managed by the Internet Assigned Numbers Authority (IANA)
I Think of an AS as all networks under the control of one Internet

Service Provider (ISP)

Network Security – Routing and Firewalls 6



Routing on the Internet (highly simplified)

I The Internet is divided into multiple Autonomous Systems (AS)
I Currently about 90, 000 Autonomous Systems
I Routing within one AS uses Interior Gateway Protocols (IGPs)
I Routing between ASs uses an Exterior Gateway Protocol (EGP)
I An AS is identified by its Autonomous System Number (ASN),

managed by the Internet Assigned Numbers Authority (IANA)

I Think of an AS as all networks under the control of one Internet
Service Provider (ISP)

Network Security – Routing and Firewalls 6



Routing on the Internet (highly simplified)

I The Internet is divided into multiple Autonomous Systems (AS)
I Currently about 90, 000 Autonomous Systems
I Routing within one AS uses Interior Gateway Protocols (IGPs)
I Routing between ASs uses an Exterior Gateway Protocol (EGP)
I An AS is identified by its Autonomous System Number (ASN),

managed by the Internet Assigned Numbers Authority (IANA)
I Think of an AS as all networks under the control of one Internet

Service Provider (ISP)

Network Security – Routing and Firewalls 6



Routing attacks

Changing routes enables three kinds of attacks

I Detaching a target from the network (DOS)
I Flooding a target with requests (DOS)
I Becoming MitM

Network Security – Routing and Firewalls 7



Routing attacks

Changing routes enables three kinds of attacks
I Detaching a target from the network (DOS)

I Flooding a target with requests (DOS)
I Becoming MitM

Network Security – Routing and Firewalls 7



Routing attacks

Changing routes enables three kinds of attacks
I Detaching a target from the network (DOS)
I Flooding a target with requests (DOS)

I Becoming MitM

Network Security – Routing and Firewalls 7



Routing attacks

Changing routes enables three kinds of attacks
I Detaching a target from the network (DOS)
I Flooding a target with requests (DOS)
I Becoming MitM

Network Security – Routing and Firewalls 7



Static routing

I Simplest form of routing: manage all routes by hand (static routing)
I Linux supports multiple routing tables
I Most important routing table: main
I Show current routes with

route -n

or
ip route show

I Add route with ip route add, e.g.:
ip route add 10.38.0.0/16 via 192.168.42.5

I Most important use of static routes: set a default gateway:
ip route add default via 192.168.42.1

Network Security – Routing and Firewalls 8



Static routing

I Simplest form of routing: manage all routes by hand (static routing)
I Linux supports multiple routing tables
I Most important routing table: main
I Show current routes with

route -n

or
ip route show

I Add route with ip route add, e.g.:
ip route add 10.38.0.0/16 via 192.168.42.5

I Most important use of static routes: set a default gateway:
ip route add default via 192.168.42.1

Network Security – Routing and Firewalls 8



Static routing

I Simplest form of routing: manage all routes by hand (static routing)
I Linux supports multiple routing tables
I Most important routing table: main
I Show current routes with

route -n

or
ip route show

I Add route with ip route add, e.g.:
ip route add 10.38.0.0/16 via 192.168.42.5

I Most important use of static routes: set a default gateway:
ip route add default via 192.168.42.1

Network Security – Routing and Firewalls 8



Example of Linux routing table

route -n

Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 192.168.178.1 0.0.0.0 UG 0 0 0 wlan0
172.16.4.0 0.0.0.0 255.255.255.0 U 0 0 0 vmnet8
172.16.51.0 0.0.0.0 255.255.255.0 U 0 0 0 vmnet1
192.168.178.0 0.0.0.0 255.255.255.0 U 0 0 0 wlan0

ip route show

default via 192.168.178.1 dev wlan0
172.16.4.0/24 dev vmnet8 proto kernel scope link src 172.16.4.1
172.16.51.0/24 dev vmnet1 proto kernel scope link src 172.16.51.1
192.168.178.0/24 dev wlan0 proto kernel scope link src 192.168.178.55

Detailed explanation, e.g, on
http://www.cyberciti.biz/faq/what-is-a-routing-table/

Network Security – Routing and Firewalls 9

http://www.cyberciti.biz/faq/what-is-a-routing-table/


Example of Linux routing table

route -n

Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 192.168.178.1 0.0.0.0 UG 0 0 0 wlan0
172.16.4.0 0.0.0.0 255.255.255.0 U 0 0 0 vmnet8
172.16.51.0 0.0.0.0 255.255.255.0 U 0 0 0 vmnet1
192.168.178.0 0.0.0.0 255.255.255.0 U 0 0 0 wlan0

ip route show

default via 192.168.178.1 dev wlan0
172.16.4.0/24 dev vmnet8 proto kernel scope link src 172.16.4.1
172.16.51.0/24 dev vmnet1 proto kernel scope link src 172.16.51.1
192.168.178.0/24 dev wlan0 proto kernel scope link src 192.168.178.55

Detailed explanation, e.g, on
http://www.cyberciti.biz/faq/what-is-a-routing-table/

Network Security – Routing and Firewalls 9

http://www.cyberciti.biz/faq/what-is-a-routing-table/


Dynamic routing

I Static routing is often not enough:
I Large risk of human error
I Complex to configure for many/large networks
I Cannot react to changes in the network

I Alternative: Dynamic (or adaptive) routing
I Routers communicate information to their neighbors
I Build a table of efficient routes dynamically from this information
I Can combine static and dynamic routing
I Example: use dynamic routing, but configure one static default

route (as backup)

Network Security – Routing and Firewalls 10



Dynamic routing

I Static routing is often not enough:
I Large risk of human error
I Complex to configure for many/large networks
I Cannot react to changes in the network

I Alternative: Dynamic (or adaptive) routing
I Routers communicate information to their neighbors
I Build a table of efficient routes dynamically from this information

I Can combine static and dynamic routing
I Example: use dynamic routing, but configure one static default

route (as backup)

Network Security – Routing and Firewalls 10



Dynamic routing

I Static routing is often not enough:
I Large risk of human error
I Complex to configure for many/large networks
I Cannot react to changes in the network

I Alternative: Dynamic (or adaptive) routing
I Routers communicate information to their neighbors
I Build a table of efficient routes dynamically from this information
I Can combine static and dynamic routing
I Example: use dynamic routing, but configure one static default

route (as backup)

Network Security – Routing and Firewalls 10



Routing Information Protocol (RIP)

I RIP is the traditional routing protocol of the Internet (RFC 1058
from 1988)

I Uses hop-count as metric (max hop-count: 15)
I Control messages on UDP, port 520
I RIPv2 introduced in 1993, latest RFC from 1998: RFC 2453
I Originally easily vulnerable to attacks (no authentication)
I MD5 authentication added in 1997 in RFC 2082
I HMAC-SHA1 and HMAC-SHA2 authentication added in 2007 in

RFC 4822

Network Security – Routing and Firewalls 11

http://tools.ietf.org/html/rfc1058
http://tools.ietf.org/html/rfc2453
http://tools.ietf.org/html/rfc2082
http://tools.ietf.org/html/rfc4822


https://www.infoworld.com/article/2942749/
obsolete-internet-protocol-once-again-becomes-an-attack-vector.html

Network Security – Routing and Firewalls 12

https://www.infoworld.com/article/2942749/obsolete-internet-protocol-once-again-becomes-an-attack-vector.html
https://www.infoworld.com/article/2942749/obsolete-internet-protocol-once-again-becomes-an-attack-vector.html


“Akamai claims that 53,693 devices on the Internet responded to RIPv1,
although only a small number of them were actually leveraged for the
attack.”

Network Security – Routing and Firewalls 12



Open Shortest Path First – OSPF

I Very commonly used in corporate Networks
I Uses IP (protocol number 89)

I Routers advertise links and costs to neighbors
I Messages are called “link state advertisements” (LSAs)
I LSAs are flooded through the network
I Routers obtain complete view: use Dijkstra’s algorithm for routing
I LSAs are authenticated using shared secret keys between neighbors
I LSAs are re-authenticated when flooding through network
I When receiving a spoofed LSA, the legitimate router will send a

“fight-back” LSA
I Fight-back LSAs have higher (newer) sequence numbers
I Fight-back LSAs overwrite illegitimate, spoofed LSAs

Network Security – Routing and Firewalls 13



Open Shortest Path First – OSPF

I Very commonly used in corporate Networks
I Uses IP (protocol number 89)
I Routers advertise links and costs to neighbors
I Messages are called “link state advertisements” (LSAs)
I LSAs are flooded through the network
I Routers obtain complete view: use Dijkstra’s algorithm for routing

I LSAs are authenticated using shared secret keys between neighbors
I LSAs are re-authenticated when flooding through network
I When receiving a spoofed LSA, the legitimate router will send a

“fight-back” LSA
I Fight-back LSAs have higher (newer) sequence numbers
I Fight-back LSAs overwrite illegitimate, spoofed LSAs

Network Security – Routing and Firewalls 13



Open Shortest Path First – OSPF

I Very commonly used in corporate Networks
I Uses IP (protocol number 89)
I Routers advertise links and costs to neighbors
I Messages are called “link state advertisements” (LSAs)
I LSAs are flooded through the network
I Routers obtain complete view: use Dijkstra’s algorithm for routing
I LSAs are authenticated using shared secret keys between neighbors
I LSAs are re-authenticated when flooding through network

I When receiving a spoofed LSA, the legitimate router will send a
“fight-back” LSA

I Fight-back LSAs have higher (newer) sequence numbers
I Fight-back LSAs overwrite illegitimate, spoofed LSAs

Network Security – Routing and Firewalls 13



Open Shortest Path First – OSPF

I Very commonly used in corporate Networks
I Uses IP (protocol number 89)
I Routers advertise links and costs to neighbors
I Messages are called “link state advertisements” (LSAs)
I LSAs are flooded through the network
I Routers obtain complete view: use Dijkstra’s algorithm for routing
I LSAs are authenticated using shared secret keys between neighbors
I LSAs are re-authenticated when flooding through network
I When receiving a spoofed LSA, the legitimate router will send a

“fight-back” LSA
I Fight-back LSAs have higher (newer) sequence numbers
I Fight-back LSAs overwrite illegitimate, spoofed LSAs

Network Security – Routing and Firewalls 13



A persistent attack against OSPF

I Assume insider attacker (control over one router)
I Usually only very local attacks
I Persistent “global” attacks prevented by fight-back

. . . or are they?
I Attack by Nakibly, Kirshon, Gonikman, Boneh, 2012:

I Assume symmetric key shared by the whole AS
I Assume insider attacker

I Exploit OSPF duplicate detection: LSA is duplicate if
I sequence numbers are the same
I checksum is the same
I age field differs by < 15 minutes

I Duplicate LSAs are simply ignored
I Actual link information is not used for duplicate detection!

Network Security – Routing and Firewalls 14



A persistent attack against OSPF

I Assume insider attacker (control over one router)
I Usually only very local attacks
I Persistent “global” attacks prevented by fight-back. . . or are they?

I Attack by Nakibly, Kirshon, Gonikman, Boneh, 2012:
I Assume symmetric key shared by the whole AS
I Assume insider attacker

I Exploit OSPF duplicate detection: LSA is duplicate if
I sequence numbers are the same
I checksum is the same
I age field differs by < 15 minutes

I Duplicate LSAs are simply ignored
I Actual link information is not used for duplicate detection!

Network Security – Routing and Firewalls 14



A persistent attack against OSPF

I Assume insider attacker (control over one router)
I Usually only very local attacks
I Persistent “global” attacks prevented by fight-back. . . or are they?
I Attack by Nakibly, Kirshon, Gonikman, Boneh, 2012:

I Assume symmetric key shared by the whole AS
I Assume insider attacker

I Exploit OSPF duplicate detection: LSA is duplicate if
I sequence numbers are the same
I checksum is the same
I age field differs by < 15 minutes

I Duplicate LSAs are simply ignored
I Actual link information is not used for duplicate detection!

Network Security – Routing and Firewalls 14



A persistent attack against OSPF

I Assume insider attacker (control over one router)
I Usually only very local attacks
I Persistent “global” attacks prevented by fight-back. . . or are they?
I Attack by Nakibly, Kirshon, Gonikman, Boneh, 2012:

I Assume symmetric key shared by the whole AS
I Assume insider attacker

I Exploit OSPF duplicate detection: LSA is duplicate if
I sequence numbers are the same
I checksum is the same
I age field differs by < 15 minutes

I Duplicate LSAs are simply ignored
I Actual link information is not used for duplicate detection!

Network Security – Routing and Firewalls 14



A persistent attack against OSPF

I Idea: when receiving LSA, flood diguised LSA with
I same sequence number
I similar age
I same checksum
I different (attacker-chosen) link information

I Routers that haven’t received the original LSA, yet, will use
disguised LSA

I Use dummy link to make sure that checksums match
I Even better: disguise future LSA
I Disguised LSA can start the race earlier
I Problem: get the timing right
I Solution: Use fight-back to trigger legitimate LSA
I Trigger by sending illegitimate, non-disguised LSA
I Full paper:

http://crypto.stanford.edu/~dabo/papers/ospf.pdf

Network Security – Routing and Firewalls 15

http://crypto.stanford.edu/~dabo/papers/ospf.pdf


A persistent attack against OSPF

I Idea: when receiving LSA, flood diguised LSA with
I same sequence number
I similar age
I same checksum
I different (attacker-chosen) link information

I Routers that haven’t received the original LSA, yet, will use
disguised LSA

I Use dummy link to make sure that checksums match
I Even better: disguise future LSA
I Disguised LSA can start the race earlier
I Problem: get the timing right
I Solution: Use fight-back to trigger legitimate LSA
I Trigger by sending illegitimate, non-disguised LSA
I Full paper:

http://crypto.stanford.edu/~dabo/papers/ospf.pdf

Network Security – Routing and Firewalls 15

http://crypto.stanford.edu/~dabo/papers/ospf.pdf


A persistent attack against OSPF

I Idea: when receiving LSA, flood diguised LSA with
I same sequence number
I similar age
I same checksum
I different (attacker-chosen) link information

I Routers that haven’t received the original LSA, yet, will use
disguised LSA

I Use dummy link to make sure that checksums match

I Even better: disguise future LSA
I Disguised LSA can start the race earlier
I Problem: get the timing right
I Solution: Use fight-back to trigger legitimate LSA
I Trigger by sending illegitimate, non-disguised LSA
I Full paper:

http://crypto.stanford.edu/~dabo/papers/ospf.pdf

Network Security – Routing and Firewalls 15

http://crypto.stanford.edu/~dabo/papers/ospf.pdf


A persistent attack against OSPF

I Idea: when receiving LSA, flood diguised LSA with
I same sequence number
I similar age
I same checksum
I different (attacker-chosen) link information

I Routers that haven’t received the original LSA, yet, will use
disguised LSA

I Use dummy link to make sure that checksums match
I Even better: disguise future LSA
I Disguised LSA can start the race earlier

I Problem: get the timing right
I Solution: Use fight-back to trigger legitimate LSA
I Trigger by sending illegitimate, non-disguised LSA
I Full paper:

http://crypto.stanford.edu/~dabo/papers/ospf.pdf

Network Security – Routing and Firewalls 15

http://crypto.stanford.edu/~dabo/papers/ospf.pdf


A persistent attack against OSPF

I Idea: when receiving LSA, flood diguised LSA with
I same sequence number
I similar age
I same checksum
I different (attacker-chosen) link information

I Routers that haven’t received the original LSA, yet, will use
disguised LSA

I Use dummy link to make sure that checksums match
I Even better: disguise future LSA
I Disguised LSA can start the race earlier
I Problem: get the timing right
I Solution: Use fight-back to trigger legitimate LSA
I Trigger by sending illegitimate, non-disguised LSA

I Full paper:
http://crypto.stanford.edu/~dabo/papers/ospf.pdf

Network Security – Routing and Firewalls 15

http://crypto.stanford.edu/~dabo/papers/ospf.pdf


A persistent attack against OSPF

I Idea: when receiving LSA, flood diguised LSA with
I same sequence number
I similar age
I same checksum
I different (attacker-chosen) link information

I Routers that haven’t received the original LSA, yet, will use
disguised LSA

I Use dummy link to make sure that checksums match
I Even better: disguise future LSA
I Disguised LSA can start the race earlier
I Problem: get the timing right
I Solution: Use fight-back to trigger legitimate LSA
I Trigger by sending illegitimate, non-disguised LSA
I Full paper:

http://crypto.stanford.edu/~dabo/papers/ospf.pdf

Network Security – Routing and Firewalls 15

http://crypto.stanford.edu/~dabo/papers/ospf.pdf


BGP

I Routing between different ASs uses the Border Gateway Protocol
I The BGP is thus an EGP

I Can also be used as an IGP (then called iBGP)
I Uses messages over TCP port 179
I Slightly more than 813, 000 active routing-table entries (AS6447)
I BGP security vulnerabilities have their own RFC (RFC 4272)
I BGP routing can be political, see “Schengen routing”

Network Security – Routing and Firewalls 16

http://tools.ietf.org/html/rfc4272


BGP

I Routing between different ASs uses the Border Gateway Protocol
I The BGP is thus an EGP
I Can also be used as an IGP (then called iBGP)

I Uses messages over TCP port 179
I Slightly more than 813, 000 active routing-table entries (AS6447)
I BGP security vulnerabilities have their own RFC (RFC 4272)
I BGP routing can be political, see “Schengen routing”

Network Security – Routing and Firewalls 16

http://tools.ietf.org/html/rfc4272


BGP

I Routing between different ASs uses the Border Gateway Protocol
I The BGP is thus an EGP
I Can also be used as an IGP (then called iBGP)
I Uses messages over TCP port 179
I Slightly more than 813, 000 active routing-table entries (AS6447)

I BGP security vulnerabilities have their own RFC (RFC 4272)
I BGP routing can be political, see “Schengen routing”

Network Security – Routing and Firewalls 16

http://tools.ietf.org/html/rfc4272


BGP

I Routing between different ASs uses the Border Gateway Protocol
I The BGP is thus an EGP
I Can also be used as an IGP (then called iBGP)
I Uses messages over TCP port 179
I Slightly more than 813, 000 active routing-table entries (AS6447)
I BGP security vulnerabilities have their own RFC (RFC 4272)

I BGP routing can be political, see “Schengen routing”

Network Security – Routing and Firewalls 16

http://tools.ietf.org/html/rfc4272


BGP

I Routing between different ASs uses the Border Gateway Protocol
I The BGP is thus an EGP
I Can also be used as an IGP (then called iBGP)
I Uses messages over TCP port 179
I Slightly more than 813, 000 active routing-table entries (AS6447)
I BGP security vulnerabilities have their own RFC (RFC 4272)
I BGP routing can be political, see “Schengen routing”

Network Security – Routing and Firewalls 16

http://tools.ietf.org/html/rfc4272


Pakistan knocks Youtube offline

Source: http://www.datacenterknowledge.com/archives/2008/02/24/
youtube-offline-pakistan-telecom-blamed/

Network Security – Routing and Firewalls 17

http://www.datacenterknowledge.com/archives/2008/02/24/youtube-offline-pakistan-telecom-blamed/
http://www.datacenterknowledge.com/archives/2008/02/24/youtube-offline-pakistan-telecom-blamed/


TTNet claims to be the Internet

Source: https://dyn.com/blog/internetwide-nearcatastrophela/

Network Security – Routing and Firewalls 18

https://dyn.com/blog/internetwide-nearcatastrophela/


SCION

I Ongoing research: Replacement for BGP
I Scalability, Control, and Isolation on Next-Generation Networks

(SCION)
I Mainly developed at ETH Zurich
I Completely clean-slate design
I Can switch from BGP to SCION step-by-step
I Know more: http://www.scion-architecture.net/

Network Security – Routing and Firewalls 19

http://www.scion-architecture.net/


Source routing

I IP Header has SSRR and LSRR options
I SSRR (strict source and record route): Specify the complete routing

path (go through only these hosts in exactly this order)
I LSRR (loose source and record route): Specify the a loose routing

path (the specified hosts must be visited in the specified order)
I Idea in both cases: The source specifies the route
I Receiver reverts the route back to the target for the answer

Source routing is evil
I Imagine that cersei wants to IP spoof the address of arya
I cersei can use LSRR and put herself into the route
I Now, the IP spoofing is not blind anymore: cersei gets all the

answers

Network Security – Routing and Firewalls 20



Source routing

I IP Header has SSRR and LSRR options
I SSRR (strict source and record route): Specify the complete routing

path (go through only these hosts in exactly this order)
I LSRR (loose source and record route): Specify the a loose routing

path (the specified hosts must be visited in the specified order)
I Idea in both cases: The source specifies the route
I Receiver reverts the route back to the target for the answer

Source routing is evil
I Imagine that cersei wants to IP spoof the address of arya
I cersei can use LSRR and put herself into the route
I Now, the IP spoofing is not blind anymore: cersei gets all the

answers

Network Security – Routing and Firewalls 20



ICMP redirect

I Consider three hosts, arya, tyrion, and bran in the same network
I arya’s route to www.google.com goes through bran, then tyrion

I More efficient: route directly through tyrion
I bran can notice this and inform arya about this through ICMP

redirect
I Attack scenario:

I cersei spoofs IP address of bran in ICMP redirect
I Tells arya to route through cersei
I Now cersei is MitM between arya and www.google.com

I Some limitations of this attack:
I ICMP redirects will only be accepted for a route to a recently

contacted host
I 10 minutes time frame
I arya needs to accept ICMP redirect, this is configured in

/proc/sys/net/ipv4/conf/*/accept_redirects

Network Security – Routing and Firewalls 21



ICMP redirect

I Consider three hosts, arya, tyrion, and bran in the same network
I arya’s route to www.google.com goes through bran, then tyrion
I More efficient: route directly through tyrion
I bran can notice this and inform arya about this through ICMP

redirect

I Attack scenario:
I cersei spoofs IP address of bran in ICMP redirect
I Tells arya to route through cersei
I Now cersei is MitM between arya and www.google.com

I Some limitations of this attack:
I ICMP redirects will only be accepted for a route to a recently

contacted host
I 10 minutes time frame
I arya needs to accept ICMP redirect, this is configured in

/proc/sys/net/ipv4/conf/*/accept_redirects

Network Security – Routing and Firewalls 21



ICMP redirect

I Consider three hosts, arya, tyrion, and bran in the same network
I arya’s route to www.google.com goes through bran, then tyrion
I More efficient: route directly through tyrion
I bran can notice this and inform arya about this through ICMP

redirect
I Attack scenario:

I cersei spoofs IP address of bran in ICMP redirect
I Tells arya to route through cersei
I Now cersei is MitM between arya and www.google.com

I Some limitations of this attack:
I ICMP redirects will only be accepted for a route to a recently

contacted host
I 10 minutes time frame
I arya needs to accept ICMP redirect, this is configured in

/proc/sys/net/ipv4/conf/*/accept_redirects

Network Security – Routing and Firewalls 21



ICMP redirect

I Consider three hosts, arya, tyrion, and bran in the same network
I arya’s route to www.google.com goes through bran, then tyrion
I More efficient: route directly through tyrion
I bran can notice this and inform arya about this through ICMP

redirect
I Attack scenario:

I cersei spoofs IP address of bran in ICMP redirect
I Tells arya to route through cersei
I Now cersei is MitM between arya and www.google.com

I Some limitations of this attack:
I ICMP redirects will only be accepted for a route to a recently

contacted host
I 10 minutes time frame
I arya needs to accept ICMP redirect, this is configured in

/proc/sys/net/ipv4/conf/*/accept_redirects

Network Security – Routing and Firewalls 21



DHCP

I Typical way to hand out IP addresses: Dynamic Host Configuration
Protocol (DHCP)

I When entering a network, a computer asks for an IP (and other
information)

I Sends DHCP discovery packets; DHCP server answers
I Client requests various information
I DHCP server answers, typically with a network configuration

Rogue DHCP
I Attacker can answer DHCP requests faster
I Knock clients offline by providing unroutable IP addresses
I More imporantly: communicate himself as default gateway
I Can become MitM between the requesting client and the outside

Network Security – Routing and Firewalls 22



DHCP

I Typical way to hand out IP addresses: Dynamic Host Configuration
Protocol (DHCP)

I When entering a network, a computer asks for an IP (and other
information)

I Sends DHCP discovery packets; DHCP server answers
I Client requests various information
I DHCP server answers, typically with a network configuration

Rogue DHCP
I Attacker can answer DHCP requests faster
I Knock clients offline by providing unroutable IP addresses
I More imporantly: communicate himself as default gateway
I Can become MitM between the requesting client and the outside

Network Security – Routing and Firewalls 22



Firewalls

Definition
A firewall is a concept for separating networks, typically together with
technical means to implement this concept.

I Firewalls can separate networks on different levels
I Most common: packet filtering on the internet and transport layers
I Often combined with filters on application level
I Finally: There are filters on lower level (e.g., MAC filters)

Network Security – Routing and Firewalls 23



Firewalls

Definition
A firewall is a concept for separating networks, typically together with
technical means to implement this concept.

I Firewalls can separate networks on different levels
I Most common: packet filtering on the internet and transport layers
I Often combined with filters on application level
I Finally: There are filters on lower level (e.g., MAC filters)

Network Security – Routing and Firewalls 23



“Personal Firewalls”

I Many software products called “Personal Firewall” or “Desktop
Firewall”

I Intended to protect against certain attacks on a local machine
I Typical things those products do:

I Block access to network ports
I Allow/deny network access only to certain applications
I Monitor network access of applications

I Central problem: Most users don’t have a concept
I Questionable how useful the features are:

I If I want a port closed, I don’t open it in the first place
I Can typically use an allowed application (web browser) to send data

out
I Potentially dangerous: additional piece of software with very highly

privileged access!

Network Security – Routing and Firewalls 24



“Personal Firewalls”

I Many software products called “Personal Firewall” or “Desktop
Firewall”

I Intended to protect against certain attacks on a local machine
I Typical things those products do:

I Block access to network ports
I Allow/deny network access only to certain applications
I Monitor network access of applications

I Central problem: Most users don’t have a concept

I Questionable how useful the features are:
I If I want a port closed, I don’t open it in the first place
I Can typically use an allowed application (web browser) to send data

out
I Potentially dangerous: additional piece of software with very highly

privileged access!

Network Security – Routing and Firewalls 24



“Personal Firewalls”

I Many software products called “Personal Firewall” or “Desktop
Firewall”

I Intended to protect against certain attacks on a local machine
I Typical things those products do:

I Block access to network ports
I Allow/deny network access only to certain applications
I Monitor network access of applications

I Central problem: Most users don’t have a concept
I Questionable how useful the features are:

I If I want a port closed, I don’t open it in the first place
I Can typically use an allowed application (web browser) to send data

out

I Potentially dangerous: additional piece of software with very highly
privileged access!

Network Security – Routing and Firewalls 24



“Personal Firewalls”

I Many software products called “Personal Firewall” or “Desktop
Firewall”

I Intended to protect against certain attacks on a local machine
I Typical things those products do:

I Block access to network ports
I Allow/deny network access only to certain applications
I Monitor network access of applications

I Central problem: Most users don’t have a concept
I Questionable how useful the features are:

I If I want a port closed, I don’t open it in the first place
I Can typically use an allowed application (web browser) to send data

out
I Potentially dangerous: additional piece of software with very highly

privileged access!

Network Security – Routing and Firewalls 24



Firewall layout and DMZs

I Common firewall layout separates three networks
I The Internet
I The Local Area Network
I A de-militarized zone (DMZ)

I DMZ contains the servers that are accessible from the Internet

Network Security – Routing and Firewalls 25



Firewall layout and DMZs

Source: http://en.wikipedia.org/wiki/DMZ_(computing)

Network Security – Routing and Firewalls 25

http://en.wikipedia.org/wiki/DMZ_(computing)


iptables
I Linux kernel has powerful netfilter framework
I iptables is a tool to modify netfilter rules

I iptables defines multiple tables, each table with multiple chains,
each chain with multiple rules

I Packets traverse the chains and are filtered and modified according
to the rules

I Default table is filter with 3 chains: INPUT, FORWARD, and OUTPUT
I Rules consist of packet criteria and a target
I Default targets:

I A user-defined chain
I One of ACCEPT, DROP, RETURN

I RETURN leaves the current chain and returns to calling chain
I Addionally helpful target: REJECT
I --reject-with specifies what error message to send (e.g.,

icmp-port-unreachable or tcp-reject)
I Additional to rules, each of the 3 chains also has a policy
I The policy defines the default behavior (if no rule matches)

Network Security – Routing and Firewalls 26



iptables
I Linux kernel has powerful netfilter framework
I iptables is a tool to modify netfilter rules
I iptables defines multiple tables, each table with multiple chains,

each chain with multiple rules

I Packets traverse the chains and are filtered and modified according
to the rules

I Default table is filter with 3 chains: INPUT, FORWARD, and OUTPUT
I Rules consist of packet criteria and a target
I Default targets:

I A user-defined chain
I One of ACCEPT, DROP, RETURN

I RETURN leaves the current chain and returns to calling chain
I Addionally helpful target: REJECT
I --reject-with specifies what error message to send (e.g.,

icmp-port-unreachable or tcp-reject)
I Additional to rules, each of the 3 chains also has a policy
I The policy defines the default behavior (if no rule matches)

Network Security – Routing and Firewalls 26



iptables
I Linux kernel has powerful netfilter framework
I iptables is a tool to modify netfilter rules
I iptables defines multiple tables, each table with multiple chains,

each chain with multiple rules
I Packets traverse the chains and are filtered and modified according

to the rules

I Default table is filter with 3 chains: INPUT, FORWARD, and OUTPUT
I Rules consist of packet criteria and a target
I Default targets:

I A user-defined chain
I One of ACCEPT, DROP, RETURN

I RETURN leaves the current chain and returns to calling chain
I Addionally helpful target: REJECT
I --reject-with specifies what error message to send (e.g.,

icmp-port-unreachable or tcp-reject)
I Additional to rules, each of the 3 chains also has a policy
I The policy defines the default behavior (if no rule matches)

Network Security – Routing and Firewalls 26



iptables
I Linux kernel has powerful netfilter framework
I iptables is a tool to modify netfilter rules
I iptables defines multiple tables, each table with multiple chains,

each chain with multiple rules
I Packets traverse the chains and are filtered and modified according

to the rules
I Default table is filter with 3 chains: INPUT, FORWARD, and OUTPUT

I Rules consist of packet criteria and a target
I Default targets:

I A user-defined chain
I One of ACCEPT, DROP, RETURN

I RETURN leaves the current chain and returns to calling chain
I Addionally helpful target: REJECT
I --reject-with specifies what error message to send (e.g.,

icmp-port-unreachable or tcp-reject)
I Additional to rules, each of the 3 chains also has a policy
I The policy defines the default behavior (if no rule matches)

Network Security – Routing and Firewalls 26



iptables
I Linux kernel has powerful netfilter framework
I iptables is a tool to modify netfilter rules
I iptables defines multiple tables, each table with multiple chains,

each chain with multiple rules
I Packets traverse the chains and are filtered and modified according

to the rules
I Default table is filter with 3 chains: INPUT, FORWARD, and OUTPUT
I Rules consist of packet criteria and a target
I Default targets:

I A user-defined chain
I One of ACCEPT, DROP, RETURN

I RETURN leaves the current chain and returns to calling chain
I Addionally helpful target: REJECT
I --reject-with specifies what error message to send (e.g.,

icmp-port-unreachable or tcp-reject)
I Additional to rules, each of the 3 chains also has a policy
I The policy defines the default behavior (if no rule matches)

Network Security – Routing and Firewalls 26



iptables
I Linux kernel has powerful netfilter framework
I iptables is a tool to modify netfilter rules
I iptables defines multiple tables, each table with multiple chains,

each chain with multiple rules
I Packets traverse the chains and are filtered and modified according

to the rules
I Default table is filter with 3 chains: INPUT, FORWARD, and OUTPUT
I Rules consist of packet criteria and a target
I Default targets:

I A user-defined chain
I One of ACCEPT, DROP, RETURN

I RETURN leaves the current chain and returns to calling chain

I Addionally helpful target: REJECT
I --reject-with specifies what error message to send (e.g.,

icmp-port-unreachable or tcp-reject)
I Additional to rules, each of the 3 chains also has a policy
I The policy defines the default behavior (if no rule matches)

Network Security – Routing and Firewalls 26



iptables
I Linux kernel has powerful netfilter framework
I iptables is a tool to modify netfilter rules
I iptables defines multiple tables, each table with multiple chains,

each chain with multiple rules
I Packets traverse the chains and are filtered and modified according

to the rules
I Default table is filter with 3 chains: INPUT, FORWARD, and OUTPUT
I Rules consist of packet criteria and a target
I Default targets:

I A user-defined chain
I One of ACCEPT, DROP, RETURN

I RETURN leaves the current chain and returns to calling chain
I Addionally helpful target: REJECT
I --reject-with specifies what error message to send (e.g.,

icmp-port-unreachable or tcp-reject)

I Additional to rules, each of the 3 chains also has a policy
I The policy defines the default behavior (if no rule matches)

Network Security – Routing and Firewalls 26



iptables
I Linux kernel has powerful netfilter framework
I iptables is a tool to modify netfilter rules
I iptables defines multiple tables, each table with multiple chains,

each chain with multiple rules
I Packets traverse the chains and are filtered and modified according

to the rules
I Default table is filter with 3 chains: INPUT, FORWARD, and OUTPUT
I Rules consist of packet criteria and a target
I Default targets:

I A user-defined chain
I One of ACCEPT, DROP, RETURN

I RETURN leaves the current chain and returns to calling chain
I Addionally helpful target: REJECT
I --reject-with specifies what error message to send (e.g.,

icmp-port-unreachable or tcp-reject)
I Additional to rules, each of the 3 chains also has a policy
I The policy defines the default behavior (if no rule matches)

Network Security – Routing and Firewalls 26



Packet processing with the filter table

Network Security – Routing and Firewalls 27



Simple iptables examples
I Flush all tables:

iptables -F

I Flush the INPUT chain
iptables -F INPUT

I Set the INPUT policy to DROP:
iptables -P INPUT DROP

I Allow ICMP echo request/reply (ping) from outside:
iptables -A INPUT -p icmp --icmp-type echo-request -j ACCEPT
iptables -A OUTPUT -p icmp --icmp-type echo-reply -j ACCEPT

I Allow outbound DNS requests:
iptables -A OUTPUT -p udp -o eth0 --dport 53 -j ACCEPT
iptables -A INPUT -p udp -i eth0 --sport 53 -j ACCEPT

Network Security – Routing and Firewalls 28



Simple iptables examples
I Flush all tables:

iptables -F

I Flush the INPUT chain
iptables -F INPUT

I Set the INPUT policy to DROP:
iptables -P INPUT DROP

I Allow ICMP echo request/reply (ping) from outside:
iptables -A INPUT -p icmp --icmp-type echo-request -j ACCEPT
iptables -A OUTPUT -p icmp --icmp-type echo-reply -j ACCEPT

I Allow outbound DNS requests:
iptables -A OUTPUT -p udp -o eth0 --dport 53 -j ACCEPT
iptables -A INPUT -p udp -i eth0 --sport 53 -j ACCEPT

Network Security – Routing and Firewalls 28



Simple iptables examples
I Flush all tables:

iptables -F

I Flush the INPUT chain
iptables -F INPUT

I Set the INPUT policy to DROP:
iptables -P INPUT DROP

I Allow ICMP echo request/reply (ping) from outside:
iptables -A INPUT -p icmp --icmp-type echo-request -j ACCEPT
iptables -A OUTPUT -p icmp --icmp-type echo-reply -j ACCEPT

I Allow outbound DNS requests:
iptables -A OUTPUT -p udp -o eth0 --dport 53 -j ACCEPT
iptables -A INPUT -p udp -i eth0 --sport 53 -j ACCEPT

Network Security – Routing and Firewalls 28



Simple iptables examples
I Flush all tables:

iptables -F

I Flush the INPUT chain
iptables -F INPUT

I Set the INPUT policy to DROP:
iptables -P INPUT DROP

I Allow ICMP echo request/reply (ping) from outside:
iptables -A INPUT -p icmp --icmp-type echo-request -j ACCEPT
iptables -A OUTPUT -p icmp --icmp-type echo-reply -j ACCEPT

I Allow outbound DNS requests:
iptables -A OUTPUT -p udp -o eth0 --dport 53 -j ACCEPT
iptables -A INPUT -p udp -i eth0 --sport 53 -j ACCEPT

Network Security – Routing and Firewalls 28



Stateful firewalls with iptables

I So far, the rules are stateless (don’t know context)
I Most firewalls need stateful behaviour (in particular, for TCP):

I I don’t want external hosts to connect to port 12345
I I do want external hosts to send data back to client port 12345

I iptables has multiple modules, use conntrack module for stateful
firewall

I Example: Allow all incoming packets that belong to established or
related connection:
iptables -A INPUT -m conntrack \

--ctstate RELATED,ESTABLISHED -j ACCEPT

I Most important connection states:
I NEW: first packet of a connection
I ESTABLISHED: Have seen packets of this connection before
I RELATED: New connection, which is “related” to an ESTABLISHED

connection

Network Security – Routing and Firewalls 29



Stateful firewalls with iptables

I So far, the rules are stateless (don’t know context)
I Most firewalls need stateful behaviour (in particular, for TCP):

I I don’t want external hosts to connect to port 12345
I I do want external hosts to send data back to client port 12345

I iptables has multiple modules, use conntrack module for stateful
firewall

I Example: Allow all incoming packets that belong to established or
related connection:
iptables -A INPUT -m conntrack \

--ctstate RELATED,ESTABLISHED -j ACCEPT

I Most important connection states:
I NEW: first packet of a connection
I ESTABLISHED: Have seen packets of this connection before
I RELATED: New connection, which is “related” to an ESTABLISHED

connection

Network Security – Routing and Firewalls 29



Stateful firewalls with iptables

I So far, the rules are stateless (don’t know context)
I Most firewalls need stateful behaviour (in particular, for TCP):

I I don’t want external hosts to connect to port 12345
I I do want external hosts to send data back to client port 12345

I iptables has multiple modules, use conntrack module for stateful
firewall

I Example: Allow all incoming packets that belong to established or
related connection:
iptables -A INPUT -m conntrack \

--ctstate RELATED,ESTABLISHED -j ACCEPT

I Most important connection states:
I NEW: first packet of a connection
I ESTABLISHED: Have seen packets of this connection before
I RELATED: New connection, which is “related” to an ESTABLISHED

connection

Network Security – Routing and Firewalls 29



NAT

I IPv4 has 32-bit addresses, i.e., at most 4, 294, 967, 296 devices
I Very hard to use all addresses because of network separation
I We’re running out of addresses!

I Long-term solution: IPv6 (128-bit addresses)
I Short term work-around: Network Address Translation (NAT):

I Multiple hosts in a local network (e.g., 192.168.0.0/16 or 10.0.0.0/8)
I Only one host (the gateway) has an IP address routed in the Internet
I “Shares” Internet connection to other hosts by rewriting the source

IP address for outgoing packets
I Remembers connection (IP+Port) to rewrite destination IP address

on incoming packets
I Strictly speaking, NAT is a more general concept
I This kind of NAT is also known as IP Masquerading

Network Security – Routing and Firewalls 30



NAT

I IPv4 has 32-bit addresses, i.e., at most 4, 294, 967, 296 devices
I Very hard to use all addresses because of network separation
I We’re running out of addresses!
I Long-term solution: IPv6 (128-bit addresses)
I Short term work-around: Network Address Translation (NAT):

I Multiple hosts in a local network (e.g., 192.168.0.0/16 or 10.0.0.0/8)
I Only one host (the gateway) has an IP address routed in the Internet
I “Shares” Internet connection to other hosts by rewriting the source

IP address for outgoing packets
I Remembers connection (IP+Port) to rewrite destination IP address

on incoming packets

I Strictly speaking, NAT is a more general concept
I This kind of NAT is also known as IP Masquerading

Network Security – Routing and Firewalls 30



NAT

I IPv4 has 32-bit addresses, i.e., at most 4, 294, 967, 296 devices
I Very hard to use all addresses because of network separation
I We’re running out of addresses!
I Long-term solution: IPv6 (128-bit addresses)
I Short term work-around: Network Address Translation (NAT):

I Multiple hosts in a local network (e.g., 192.168.0.0/16 or 10.0.0.0/8)
I Only one host (the gateway) has an IP address routed in the Internet
I “Shares” Internet connection to other hosts by rewriting the source

IP address for outgoing packets
I Remembers connection (IP+Port) to rewrite destination IP address

on incoming packets
I Strictly speaking, NAT is a more general concept
I This kind of NAT is also known as IP Masquerading

Network Security – Routing and Firewalls 30



NAT example
I Three nodes in a local network:

I tyrion 192.168.42.1
I arya 192.168.42.2
I bran 192.168.42.3

I tyrion additionally has the (external) address 123.45.67.89
I arya and bran use tyrion as default gateway

I arya connects (through tyrion) to www.google.com, Port 80,
using source port 11111

I bran connects (through tyrion) to www.google.com, Port 80,
using source port 22222

I tyrion rewrites source address for both connections to 123.45.67.89
I Incoming packets from www.google.com with dest. port 11111:

Rewrite destination address to 192.168.42.2
I Incoming packets from www.google.com with dest. port 22222:

Rewrite destination address to 192.168.42.3
I What happens if both bran and arya connect to www.google.com

with the same source port?
I Answer: tyrion also rewrites the port

Network Security – Routing and Firewalls 31



NAT example
I Three nodes in a local network:

I tyrion 192.168.42.1
I arya 192.168.42.2
I bran 192.168.42.3

I tyrion additionally has the (external) address 123.45.67.89
I arya and bran use tyrion as default gateway
I arya connects (through tyrion) to www.google.com, Port 80,

using source port 11111
I bran connects (through tyrion) to www.google.com, Port 80,

using source port 22222

I tyrion rewrites source address for both connections to 123.45.67.89
I Incoming packets from www.google.com with dest. port 11111:

Rewrite destination address to 192.168.42.2
I Incoming packets from www.google.com with dest. port 22222:

Rewrite destination address to 192.168.42.3
I What happens if both bran and arya connect to www.google.com

with the same source port?
I Answer: tyrion also rewrites the port

Network Security – Routing and Firewalls 31



NAT example
I Three nodes in a local network:

I tyrion 192.168.42.1
I arya 192.168.42.2
I bran 192.168.42.3

I tyrion additionally has the (external) address 123.45.67.89
I arya and bran use tyrion as default gateway
I arya connects (through tyrion) to www.google.com, Port 80,

using source port 11111
I bran connects (through tyrion) to www.google.com, Port 80,

using source port 22222
I tyrion rewrites source address for both connections to 123.45.67.89

I Incoming packets from www.google.com with dest. port 11111:
Rewrite destination address to 192.168.42.2

I Incoming packets from www.google.com with dest. port 22222:
Rewrite destination address to 192.168.42.3

I What happens if both bran and arya connect to www.google.com
with the same source port?

I Answer: tyrion also rewrites the port

Network Security – Routing and Firewalls 31



NAT example
I Three nodes in a local network:

I tyrion 192.168.42.1
I arya 192.168.42.2
I bran 192.168.42.3

I tyrion additionally has the (external) address 123.45.67.89
I arya and bran use tyrion as default gateway
I arya connects (through tyrion) to www.google.com, Port 80,

using source port 11111
I bran connects (through tyrion) to www.google.com, Port 80,

using source port 22222
I tyrion rewrites source address for both connections to 123.45.67.89
I Incoming packets from www.google.com with dest. port 11111:

Rewrite destination address to 192.168.42.2
I Incoming packets from www.google.com with dest. port 22222:

Rewrite destination address to 192.168.42.3

I What happens if both bran and arya connect to www.google.com
with the same source port?

I Answer: tyrion also rewrites the port

Network Security – Routing and Firewalls 31



NAT example
I Three nodes in a local network:

I tyrion 192.168.42.1
I arya 192.168.42.2
I bran 192.168.42.3

I tyrion additionally has the (external) address 123.45.67.89
I arya and bran use tyrion as default gateway
I arya connects (through tyrion) to www.google.com, Port 80,

using source port 11111
I bran connects (through tyrion) to www.google.com, Port 80,

using source port 22222
I tyrion rewrites source address for both connections to 123.45.67.89
I Incoming packets from www.google.com with dest. port 11111:

Rewrite destination address to 192.168.42.2
I Incoming packets from www.google.com with dest. port 22222:

Rewrite destination address to 192.168.42.3
I What happens if both bran and arya connect to www.google.com

with the same source port?

I Answer: tyrion also rewrites the port

Network Security – Routing and Firewalls 31



NAT example
I Three nodes in a local network:

I tyrion 192.168.42.1
I arya 192.168.42.2
I bran 192.168.42.3

I tyrion additionally has the (external) address 123.45.67.89
I arya and bran use tyrion as default gateway
I arya connects (through tyrion) to www.google.com, Port 80,

using source port 11111
I bran connects (through tyrion) to www.google.com, Port 80,

using source port 22222
I tyrion rewrites source address for both connections to 123.45.67.89
I Incoming packets from www.google.com with dest. port 11111:

Rewrite destination address to 192.168.42.2
I Incoming packets from www.google.com with dest. port 22222:

Rewrite destination address to 192.168.42.3
I What happens if both bran and arya connect to www.google.com

with the same source port?
I Answer: tyrion also rewrites the port

Network Security – Routing and Firewalls 31



Some NAT remarks

NAT and ICMP
I NAT or IP masquerading relies on ports (UDP or TCP)
I ICMP messages do not have ports

I For ICMP echo request/reply use the Query ID instead of the port
I FOR ICMP error messages it’s more complex, but also possible
I This is specified in RFC 5508: NAT Behavioral Requirements for

ICMP

Tethering
I Many (Android) phones offer sharing an Internet connection through

tethering
I Tethering uses NAT (IP Masquerading)

Network Security – Routing and Firewalls 32

http://tools.ietf.org/html/rfc5508


Some NAT remarks

NAT and ICMP
I NAT or IP masquerading relies on ports (UDP or TCP)
I ICMP messages do not have ports
I For ICMP echo request/reply use the Query ID instead of the port
I FOR ICMP error messages it’s more complex, but also possible
I This is specified in RFC 5508: NAT Behavioral Requirements for

ICMP

Tethering
I Many (Android) phones offer sharing an Internet connection through

tethering
I Tethering uses NAT (IP Masquerading)

Network Security – Routing and Firewalls 32

http://tools.ietf.org/html/rfc5508


Some NAT remarks

NAT and ICMP
I NAT or IP masquerading relies on ports (UDP or TCP)
I ICMP messages do not have ports
I For ICMP echo request/reply use the Query ID instead of the port
I FOR ICMP error messages it’s more complex, but also possible
I This is specified in RFC 5508: NAT Behavioral Requirements for

ICMP

Tethering
I Many (Android) phones offer sharing an Internet connection through

tethering
I Tethering uses NAT (IP Masquerading)

Network Security – Routing and Firewalls 32

http://tools.ietf.org/html/rfc5508


Port forwarding

I So far, we can only establish connections from within the NAT
network

I This is also known as “source-NAT”
I How about a server running inside a NAT network?

I Can forward incoming connections to a server
I This is called port forwarding or destination NAT

Network Security – Routing and Firewalls 33



Port forwarding

I So far, we can only establish connections from within the NAT
network

I This is also known as “source-NAT”
I How about a server running inside a NAT network?
I Can forward incoming connections to a server
I This is called port forwarding or destination NAT

Network Security – Routing and Firewalls 33



NAT and port forwarding with iptables

I iptables has a nat table
I Three chains in this table: PREROUTING, POSTROUTING, and OUTPUT
I For now, only consider chains PREROUTING, and POSTROUTING

Network Security – Routing and Firewalls 34



NAT and port forwarding with iptables

Network Security – Routing and Firewalls 34



NAT and port forwarding with iptables

I Enabling NAT (IP Masquerading) through iptables:

iptables -t nat -A POSTROUTING -j MASQUERADE

I Don’t forget to enable IP forwarding:

echo 1 > /proc/sys/net/ipv4/ip_forward
I Port forwarding from tyrion, port 1234 to arya, port 22:

iptables -A PREROUTING -t nat -p tcp \
--dport 1234 -j DNAT --to 192.168.42.2:22

iptables -A FORWARD -p tcp -d 192.168.42.2 \
--dport 22 -j ACCEPT

Network Security – Routing and Firewalls 34



NAT and port forwarding with iptables

I Enabling NAT (IP Masquerading) through iptables:

iptables -t nat -A POSTROUTING -j MASQUERADE

I Don’t forget to enable IP forwarding:

echo 1 > /proc/sys/net/ipv4/ip_forward
I Port forwarding from tyrion, port 1234 to arya, port 22:

iptables -A PREROUTING -t nat -p tcp \
--dport 1234 -j DNAT --to 192.168.42.2:22

iptables -A FORWARD -p tcp -d 192.168.42.2 \
--dport 22 -j ACCEPT

Network Security – Routing and Firewalls 34



NAT and port forwarding with iptables

I Enabling NAT (IP Masquerading) through iptables:

iptables -t nat -A POSTROUTING -j MASQUERADE
I Don’t forget to enable IP forwarding:

echo 1 > /proc/sys/net/ipv4/ip_forward

I Port forwarding from tyrion, port 1234 to arya, port 22:

iptables -A PREROUTING -t nat -p tcp \
--dport 1234 -j DNAT --to 192.168.42.2:22

iptables -A FORWARD -p tcp -d 192.168.42.2 \
--dport 22 -j ACCEPT

Network Security – Routing and Firewalls 34



NAT and port forwarding with iptables

I Enabling NAT (IP Masquerading) through iptables:

iptables -t nat -A POSTROUTING -j MASQUERADE
I Don’t forget to enable IP forwarding:

echo 1 > /proc/sys/net/ipv4/ip_forward
I Port forwarding from tyrion, port 1234 to arya, port 22:

iptables -A PREROUTING -t nat -p tcp \
--dport 1234 -j DNAT --to 192.168.42.2:22

iptables -A FORWARD -p tcp -d 192.168.42.2 \
--dport 22 -j ACCEPT

Network Security – Routing and Firewalls 34



Tunneling
I iptables looks at traffic on the TCP/IP level
I iptables cannot distinguish between HTTP going to port 80 and

SSH going to port 80
I Running an SSH server on ports 53 (DNS), 80 (HTTP), and 443

(HTTPS) gets SSH through some firewalls

I Even better: SSH supports tunneling
I Tunneling generally means: place packets of one protocol into the

payload of another protocol
I SSH tunneling example:

I You want to connect to SMTPS (port 465) server
mail.somedomain.com

I Port 465 is blocked but port 80 is open
I You have an SSH server running on mysshhost.nl, port 80

I Establish an SSH tunnel through
ssh -p 80 -L 52428:mail.somedomain.com:465 mysshhost.nl

I Connect to localhost at port 52428
I SSH will forward the connection to mail.somedomain.com, port 465
I To mail.somedomain.com, the connection looks like coming from

mysshhost.nl

Network Security – Routing and Firewalls 35



Tunneling
I iptables looks at traffic on the TCP/IP level
I iptables cannot distinguish between HTTP going to port 80 and

SSH going to port 80
I Running an SSH server on ports 53 (DNS), 80 (HTTP), and 443

(HTTPS) gets SSH through some firewalls
I Even better: SSH supports tunneling
I Tunneling generally means: place packets of one protocol into the

payload of another protocol

I SSH tunneling example:
I You want to connect to SMTPS (port 465) server

mail.somedomain.com
I Port 465 is blocked but port 80 is open
I You have an SSH server running on mysshhost.nl, port 80

I Establish an SSH tunnel through
ssh -p 80 -L 52428:mail.somedomain.com:465 mysshhost.nl

I Connect to localhost at port 52428
I SSH will forward the connection to mail.somedomain.com, port 465
I To mail.somedomain.com, the connection looks like coming from

mysshhost.nl

Network Security – Routing and Firewalls 35



Tunneling
I iptables looks at traffic on the TCP/IP level
I iptables cannot distinguish between HTTP going to port 80 and

SSH going to port 80
I Running an SSH server on ports 53 (DNS), 80 (HTTP), and 443

(HTTPS) gets SSH through some firewalls
I Even better: SSH supports tunneling
I Tunneling generally means: place packets of one protocol into the

payload of another protocol
I SSH tunneling example:

I You want to connect to SMTPS (port 465) server
mail.somedomain.com

I Port 465 is blocked but port 80 is open
I You have an SSH server running on mysshhost.nl, port 80

I Establish an SSH tunnel through
ssh -p 80 -L 52428:mail.somedomain.com:465 mysshhost.nl

I Connect to localhost at port 52428
I SSH will forward the connection to mail.somedomain.com, port 465
I To mail.somedomain.com, the connection looks like coming from

mysshhost.nl

Network Security – Routing and Firewalls 35



Tunneling
I iptables looks at traffic on the TCP/IP level
I iptables cannot distinguish between HTTP going to port 80 and

SSH going to port 80
I Running an SSH server on ports 53 (DNS), 80 (HTTP), and 443

(HTTPS) gets SSH through some firewalls
I Even better: SSH supports tunneling
I Tunneling generally means: place packets of one protocol into the

payload of another protocol
I SSH tunneling example:

I You want to connect to SMTPS (port 465) server
mail.somedomain.com

I Port 465 is blocked but port 80 is open
I You have an SSH server running on mysshhost.nl, port 80
I Establish an SSH tunnel through

ssh -p 80 -L 52428:mail.somedomain.com:465 mysshhost.nl

I Connect to localhost at port 52428
I SSH will forward the connection to mail.somedomain.com, port 465

I To mail.somedomain.com, the connection looks like coming from
mysshhost.nl

Network Security – Routing and Firewalls 35



Tunneling
I iptables looks at traffic on the TCP/IP level
I iptables cannot distinguish between HTTP going to port 80 and

SSH going to port 80
I Running an SSH server on ports 53 (DNS), 80 (HTTP), and 443

(HTTPS) gets SSH through some firewalls
I Even better: SSH supports tunneling
I Tunneling generally means: place packets of one protocol into the

payload of another protocol
I SSH tunneling example:

I You want to connect to SMTPS (port 465) server
mail.somedomain.com

I Port 465 is blocked but port 80 is open
I You have an SSH server running on mysshhost.nl, port 80
I Establish an SSH tunnel through

ssh -p 80 -L 52428:mail.somedomain.com:465 mysshhost.nl

I Connect to localhost at port 52428
I SSH will forward the connection to mail.somedomain.com, port 465
I To mail.somedomain.com, the connection looks like coming from

mysshhost.nl
Network Security – Routing and Firewalls 35



sshuttle

I Tunneling every connection separately is a hassle
I Often want to tunnel all traffic through SSH
I Extremely convenient tool: sshuttle
I Modify local firewall rules to tunnel all traffic through SSH:

sshuttle --dns -vr mysshhost.nl 0/0

I Three main use cases for sshuttle:

I Tunnel everything through a firewall (once you have SSH access to
somewhere)

I Tunnel from an untrusted network to a (more) trusted network
(VPN, later this lecture)

I Circumvent country filters (e.g., of Netflix)
I This last case needs SSH access to an unblocked country

Network Security – Routing and Firewalls 36



sshuttle

I Tunneling every connection separately is a hassle
I Often want to tunnel all traffic through SSH
I Extremely convenient tool: sshuttle
I Modify local firewall rules to tunnel all traffic through SSH:

sshuttle --dns -vr mysshhost.nl 0/0

I Three main use cases for sshuttle:

I Tunnel everything through a firewall (once you have SSH access to
somewhere)

I Tunnel from an untrusted network to a (more) trusted network
(VPN, later this lecture)

I Circumvent country filters (e.g., of Netflix)
I This last case needs SSH access to an unblocked country

Network Security – Routing and Firewalls 36



sshuttle

I Tunneling every connection separately is a hassle
I Often want to tunnel all traffic through SSH
I Extremely convenient tool: sshuttle
I Modify local firewall rules to tunnel all traffic through SSH:

sshuttle --dns -vr mysshhost.nl 0/0

I Three main use cases for sshuttle:
I Tunnel everything through a firewall (once you have SSH access to

somewhere)

I Tunnel from an untrusted network to a (more) trusted network
(VPN, later this lecture)

I Circumvent country filters (e.g., of Netflix)
I This last case needs SSH access to an unblocked country

Network Security – Routing and Firewalls 36



sshuttle

I Tunneling every connection separately is a hassle
I Often want to tunnel all traffic through SSH
I Extremely convenient tool: sshuttle
I Modify local firewall rules to tunnel all traffic through SSH:

sshuttle --dns -vr mysshhost.nl 0/0

I Three main use cases for sshuttle:
I Tunnel everything through a firewall (once you have SSH access to

somewhere)
I Tunnel from an untrusted network to a (more) trusted network

(VPN, later this lecture)

I Circumvent country filters (e.g., of Netflix)
I This last case needs SSH access to an unblocked country

Network Security – Routing and Firewalls 36



sshuttle

I Tunneling every connection separately is a hassle
I Often want to tunnel all traffic through SSH
I Extremely convenient tool: sshuttle
I Modify local firewall rules to tunnel all traffic through SSH:

sshuttle --dns -vr mysshhost.nl 0/0

I Three main use cases for sshuttle:
I Tunnel everything through a firewall (once you have SSH access to

somewhere)
I Tunnel from an untrusted network to a (more) trusted network

(VPN, later this lecture)
I Circumvent country filters (e.g., of Netflix)
I This last case needs SSH access to an unblocked country

Network Security – Routing and Firewalls 36



Proxy Servers

I Additional to packet filtering on TCP/IP level: proxy servers
I A proxy server acts as an intermediary

I Two kinds of typical proxy servers:
I Application-level proxy (understands high-level protocols, such as

HTTP)
I SOCKS proxy (for secure forwarding of TCP connections), can use

SSH for this:
ssh -fND localhost:8080 mysshhost.nl

I Similar to Proxy: Application-level gateway (ALG)
I Both (application-level) proxy and ALG can filter high-level protocols
I Can place proxies/ALGs in DMZ, then have no traffic go directly

from the LAN to the Internet

Network Security – Routing and Firewalls 37



Proxy Servers

I Additional to packet filtering on TCP/IP level: proxy servers
I A proxy server acts as an intermediary
I Two kinds of typical proxy servers:

I Application-level proxy (understands high-level protocols, such as
HTTP)

I SOCKS proxy (for secure forwarding of TCP connections), can use
SSH for this:
ssh -fND localhost:8080 mysshhost.nl

I Similar to Proxy: Application-level gateway (ALG)
I Both (application-level) proxy and ALG can filter high-level protocols
I Can place proxies/ALGs in DMZ, then have no traffic go directly

from the LAN to the Internet

Network Security – Routing and Firewalls 37



Proxy Servers

I Additional to packet filtering on TCP/IP level: proxy servers
I A proxy server acts as an intermediary
I Two kinds of typical proxy servers:

I Application-level proxy (understands high-level protocols, such as
HTTP)

I SOCKS proxy (for secure forwarding of TCP connections), can use
SSH for this:
ssh -fND localhost:8080 mysshhost.nl

I Similar to Proxy: Application-level gateway (ALG)
I Both (application-level) proxy and ALG can filter high-level protocols

I Can place proxies/ALGs in DMZ, then have no traffic go directly
from the LAN to the Internet

Network Security – Routing and Firewalls 37



Proxy Servers

I Additional to packet filtering on TCP/IP level: proxy servers
I A proxy server acts as an intermediary
I Two kinds of typical proxy servers:

I Application-level proxy (understands high-level protocols, such as
HTTP)

I SOCKS proxy (for secure forwarding of TCP connections), can use
SSH for this:
ssh -fND localhost:8080 mysshhost.nl

I Similar to Proxy: Application-level gateway (ALG)
I Both (application-level) proxy and ALG can filter high-level protocols
I Can place proxies/ALGs in DMZ, then have no traffic go directly

from the LAN to the Internet

Network Security – Routing and Firewalls 37



Tunneling through an HTTP proxy
I Most common form of proxies: HTTP(S) proxies
I Fairly common restrictive firewall configuration:

I Allow only HTTP(S) traffic (and DNS through UDP)
I Allow HTTPS traffic only through local (filtering) proxy

I Can imagine an HTTP(S) server and client that tunnel SSH from
HTTP payload

I Serious configuration effort
I HTTP CONNECT() to the rescue: HTTP command for tunneling
I Very often allowed to support HTTPS
I Can use HTTP CONNECT() to tunnel SSH through an HTTP(S)

proxy:
ssh user@server -o "ProxyCommand corkscrew \

PROXY_IP PROXY_PORT \
DESTINATION_IP DESTINATION_PORT"

I Additional homework: apt-get install sshuttle corkscrew
(some day you’ll thank me ;-))

Network Security – Routing and Firewalls 38



Tunneling through an HTTP proxy
I Most common form of proxies: HTTP(S) proxies
I Fairly common restrictive firewall configuration:

I Allow only HTTP(S) traffic (and DNS through UDP)
I Allow HTTPS traffic only through local (filtering) proxy

I Can imagine an HTTP(S) server and client that tunnel SSH from
HTTP payload

I Serious configuration effort

I HTTP CONNECT() to the rescue: HTTP command for tunneling
I Very often allowed to support HTTPS
I Can use HTTP CONNECT() to tunnel SSH through an HTTP(S)

proxy:
ssh user@server -o "ProxyCommand corkscrew \

PROXY_IP PROXY_PORT \
DESTINATION_IP DESTINATION_PORT"

I Additional homework: apt-get install sshuttle corkscrew
(some day you’ll thank me ;-))

Network Security – Routing and Firewalls 38



Tunneling through an HTTP proxy
I Most common form of proxies: HTTP(S) proxies
I Fairly common restrictive firewall configuration:

I Allow only HTTP(S) traffic (and DNS through UDP)
I Allow HTTPS traffic only through local (filtering) proxy

I Can imagine an HTTP(S) server and client that tunnel SSH from
HTTP payload

I Serious configuration effort
I HTTP CONNECT() to the rescue: HTTP command for tunneling
I Very often allowed to support HTTPS

I Can use HTTP CONNECT() to tunnel SSH through an HTTP(S)
proxy:
ssh user@server -o "ProxyCommand corkscrew \

PROXY_IP PROXY_PORT \
DESTINATION_IP DESTINATION_PORT"

I Additional homework: apt-get install sshuttle corkscrew
(some day you’ll thank me ;-))

Network Security – Routing and Firewalls 38



Tunneling through an HTTP proxy
I Most common form of proxies: HTTP(S) proxies
I Fairly common restrictive firewall configuration:

I Allow only HTTP(S) traffic (and DNS through UDP)
I Allow HTTPS traffic only through local (filtering) proxy

I Can imagine an HTTP(S) server and client that tunnel SSH from
HTTP payload

I Serious configuration effort
I HTTP CONNECT() to the rescue: HTTP command for tunneling
I Very often allowed to support HTTPS
I Can use HTTP CONNECT() to tunnel SSH through an HTTP(S)

proxy:
ssh user@server -o "ProxyCommand corkscrew \

PROXY_IP PROXY_PORT \
DESTINATION_IP DESTINATION_PORT"

I Additional homework: apt-get install sshuttle corkscrew
(some day you’ll thank me ;-))

Network Security – Routing and Firewalls 38



Tunneling through an HTTP proxy
I Most common form of proxies: HTTP(S) proxies
I Fairly common restrictive firewall configuration:

I Allow only HTTP(S) traffic (and DNS through UDP)
I Allow HTTPS traffic only through local (filtering) proxy

I Can imagine an HTTP(S) server and client that tunnel SSH from
HTTP payload

I Serious configuration effort
I HTTP CONNECT() to the rescue: HTTP command for tunneling
I Very often allowed to support HTTPS
I Can use HTTP CONNECT() to tunnel SSH through an HTTP(S)

proxy:
ssh user@server -o "ProxyCommand corkscrew \

PROXY_IP PROXY_PORT \
DESTINATION_IP DESTINATION_PORT"

I Additional homework: apt-get install sshuttle corkscrew
(some day you’ll thank me ;-))

Network Security – Routing and Firewalls 38


