Network Security
Security aspects of TCP/IP

Radboud University, The Netherlands

5 %
4 E
=) ($)
1, &
MiNe <

Spring 2018

A short recap

» Within the same subnet, it's fairly easy to sniff traffic
> Hubs distribute data to everyone (but are largely obsolete)

» Use ARP cache poisoning on switched Ethernet
» Wireless LAN behaves a lot like hubbed Ethernet

» Protecting against ARP spoofing is hard: ARP does not support
authentication

> WiFi is generally easier to access than wired network (no physical
protection)

» WiFi uses encryption to protect access to the network
» WEP (Wired Equivalent Privacy) is broken (aircrack-ng)

» WPA (Wireless Protected Access) fixes some problems but still uses
weak RC4 (TKIP)

> Problems properly solved in WPA2: uses AES (CCMP) instead of
RC4

» Most threatening in WPA2: bad passphrases, backwards-compatible
TKIP

» Additional threat: WiFi Protected Setup (WPS)

Network Security — Security aspects of TCP/IP

How bad is the TKIP problem?

» Current attacks do not recover TKIP key
» But they do:
» Decrypt, re-encrypt and re-use short TKIP packets up to seven times
(Becks—Tews, 2009)
» ARP spoofing trivially possible
> Inject arbitrary amounts of packets, each up to 112 bytes
(Vanhoef—Piessens, 2013)
» Port scanner against any client using WPA-TKIP
> Decryption of arbitrary packets sent to client
> Can be used to hijack TCP
> Also works when TKIP is used as a group cipher (common setup)
» Stop using TKIP

> iw dev wlp3s0 scan | grep TKIP

Network Security — Security aspects of TCP/IP

Layers and layers

v

Recall the 4-layer IP model:
» Link layer
Internet layer
Transport layer
Application layer
Political layer (https://tools.ietf.org/html/rfc2321)

vy vy VvVy

» Cracking WEP: attacking physical part of link layer
» ARP spoofing: attacking logical part of link layer

» UDP manipulation: attacking transport layer
» What about the internet layer?

Network Security — Security aspects of TCP/IP

https://tools.ietf.org/html/rfc2321

IP spoofing

vV Yy vy

Generally: Send IP packet with wrong (“spoofed”) source address
Easy to achieve with raw sockets (see first homework assignment)
Very problematic with services that use host-based authentication

Classic example: rlogin, rcp, rsh

> rlogin: Log into remote machine
» rsh: Run command on remote machine
» rcp: Copy files to remote machine

No password required if the IP address is in /etc/hosts.equiv or
~/.rhosts

This is to some extent fixed in recent versions of rlogin

From the ssh manpage: “the rlogin/rsh protocol in general, are
inherently insecure and should be disabled if security is desired”

IP spoofing is today mainly important in a larger attack context

Network Security — Security aspects of TCP/IP

SYN flooding

» Remember the three-way TCP handshake (SYN-SYN/ACK-ACK)

> After client sends SYN, server allocates resources for connection in
the SYN queue, sends SYN/ACK

» Attack: send many SYN packets, never reply to SYN/ACK with
ACK

» Server's SYN queue will fill up
» DOS attack, preventing server from responding

> Need to send SYN packets faster than server is “discarding”
half-open connections

» Time to discard is configured by the TCP SYN-RECEIVED timer

Countermeasures

» Decrease the SYN-RECEIVED timer
» Increase the size of the queue
» Recycle oldest half-open connection

» Firewalls (later in this course)

Network Security — Security aspects of TCP/IP 6

Solving the real problem

» SYN flooding countermeasures don't really solve the problem

The recipient will be left with multiple half-open connections that are
occupying limited resources. Usually, these connection requests have
forged source addresses that specify nonexistent or unreachable hosts
that cannot be contacted. Thus, there is also no way to trace the
connections back. ... There is little you can do in these situations. ...
any finite limit can be exceeded.”

—Practical UNIX and Internet Security, Garfinkel and Spafford (1996)

Network Security — Security aspects of TCP/IP

SYN cookies

> Better idea (Bernstein, Schenk, 1996): SYN cookies

» Reason for allocating resources after receiving SYN: need to
remember properties of the connection

> ldea: Securely encode this information in the server's initial sequence
number (ISN) of SYN/ACK

» Reconstruct information when ACK from client is received

» Compute ISN as the client’s ISN plus offset of

> top 5 bits: ¢ mod 32, where t is a 32-bit time counter that increases
every 64 seconds

> next 3 bits: an encoding of a maximal segment size (MSS) selected
by the server in response to the client's MSS

> bottom 24 bits: a server-selected secret function of the client IP
address and port number, the server IP address and port number,
and t.

Network Security — Security aspects of TCP/IP

SYN cookies ctd.

» When receiving an ACK,
» check that the ACK number —1 corresponds to value of the secret
function for a recent ¢
» reconstruct the entry in the SYN queue
> continue as usual
> SYN cookies have some limitations (in particular TCP options), so
only use them after the SYN queue is full

» Enable SYN cookies under Linux:
echo 1 > /proc/sys/net/ipv4/tcp_syncookies

Network Security — Security aspects of TCP/IP

Ping of death

>
|
>
>

DOS attack sometimes also possible by malformed packets

Idea: target does not know how to handle packet and crashes

Classical famous example: ping of death

Idea is the following:

>

>

Yy Yy vy VvV VvYyYy

IP packets are limited to a length of 65535 bytes

IP packets get “chopped” into fragments for transportation through,
e.g., Ethernet

IP header has a fragment offset

Fragment offset + packet size must not exceed 65535

... but it can

With fragmentation, it is possible to send IP packets of size > 65535
Receiving host will assemble the fragments into a buffer of size 65535
Overlong IP packet will overflow this buffer

» This bug was present in UNIX, Linux, Windows, Mac, routers,
printers ...

» Trivially easy to exploit with some implementations of ping:

ping -s 65510 target

Network Security — Security aspects of TCP/IP

10

The return of the ping of death

» CVE-2013-3183: IPv6 ping of death against Windows Vista SP2,
Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows
8, Windows Server 2012, and Windows RT

» CVE-2016-1409: IPv6 ping of death against Cisco's 10S, 10S XR,
I0S XE, and NX-OS software

Network Security — Security aspects of TCP/IP 11

ISN guessing

v

Can we do more with IP spoofing than DOS?

v

An man-in-the-middle attacker does not really need IP spoofing
Problem without MitM (off-path attack):

» TCP handshake SYN/ACK packet won't arrive at attacker

» Attacker needs to generate valid ACK to establish connection
> Valid ACK means: correct ACK number (server’'s ISN plus 1)
» Can knock out the “real” receiver with DOS

v

v

Attack the transport layer as well

v

Can an attacker guess the server's ISN?

Network Security — Security aspects of TCP/IP

12

When new connections are created, an initial sequence number (ISN)
generator is employed which selects a new 32 bit ISN. The generator is
bound to a (possibly fictitious) 32 bit clock whose low order bit is
incremented roughly every 4 microseconds. Thus, the ISN cycles
approximately every 4.55 hours. Since we assume that segments will stay
in the network no more than the Maximum Segment Lifetime (MSL) and
that the MSL is less than 4.55 hours we can reasonably assume that
ISN’s will be unique.” —RFC 793 (September 1981)

Network Security — Security aspects of TCP/IP

12

TCP SHOULD generate its Initial Sequence Numbers with the expression:
ISN = M + F(localip, localport, remoteip, remoteport, secretkey)

where M is the 4 microsecond timer, and F() is a pseudorandom function
(PRF) of the connection-id. F() MUST NOT be computable from the
outside, or an attacker could still guess at sequence numbers from the
ISN used for some other connection. The PRF could be implemented as
a cryptographic hash of the concatenation of the connection-id and some
secret data; MD5 [RFC1321] would be a good choice for the hash
function.” —RFC 6528 (February 2012)

Network Security — Security aspects of TCP/IP

12

in the Linux kernel (4.2)

u32 secure_tcp_sequence_number (__be32 saddr, __be32 daddr,
__bel6 sport, __bel6 dport, u32 *tsoff)
{
u64 hash;
net_secret_init();
hash = siphash_3u32((__force u32)saddr, (__force u32)daddr,
(__force u32)sport << 16 | (__force u32)dport,
&net_secret);
*tsoff = secure_tcp_ts_off(saddr, daddr);
return seq_scale(hash);

Network Security — Security aspects of TCP/IP 12

ISN guessing

» Can we do more with IP spoofing than DOS?

» An man-in-the-middle attacker does not really need IP spoofing
» Problem without MitM (off-path attack):

» TCP handshake SYN/ACK packet won't arrive at attacker
> Attacker needs to generate valid ACK to establish connection
> Valid ACK means: correct ACK number (server’s ISN plus 1)

» Can an attacker guess the server's ISN?
» Probably not easily (anymore)

» Keep in mind: No exact guess needed, attacker can try many
sequence numbers!

Network Security — Security aspects of TCP/IP

13

Good sequence numbers are not a replacement for cryptographic
authentication, such as that provided by IPsec [RFC4301] or the TCP
Authentication Option (TCP-AQO) [RFC5925]. At best, they're a
palliative measure.” —RFC 6528 (February 2012)

Network Security — Security aspects of TCP/IP 13

TCP session hijacking

» Let's put all of this together, assume an off-track attacker

» Attack works as follows:

>

vyvyvVYVvYyy

Attacker launches DOS attack against A

Attacker sends SYN packet to server B with source IP of A
Server sends SYN/ACK to A, but A does not reply (DOS)
Attacker sends ACK to B, guessing B's ISN

Now B believes to have an established connection with A
Attacker can now send packets through connection (but won't
receive any)

» One-directional communication is enough to execute commands
(e.g., passwd)

» Attacker can also take over existing, legitimate connection between
Aand B

Network Security — Security aspects of TCP/IP

14

TCP hijacking bites again

ISNs today are hard to predict

» Classical TCP hijacking attack does not work anymore
» Cao, Qian, Wang, Dao, Krishnamurthy, Marvel, 2016: Obtain TCP

vV vV V. vV vV VY

sequence numbers in Linux > 3.6

Exploit against implementation of RFC 5961

Idea of RFC 5961: protection against blind session termination
Use “challenge ACK" packets

Limit challenge ACKSs per second

Linux: use global counter for number of challenge ACKS

This creates a side channel between connections

Results:

> 10 seconds to infer whether any two hosts are communicating
> Another 10 seconds to infer TCP sequence numbers

Details: http://www.cs.ucr.edu/"zhiyunq/pub/sec16_TCP_
pure_offpath.pdf

Network Security — Security aspects of TCP/IP

15

https://tools.ietf.org/html/rfc5961
http://www.cs.ucr.edu/~zhiyunq/pub/sec16_TCP_pure_offpath.pdf
http://www.cs.ucr.edu/~zhiyunq/pub/sec16_TCP_pure_offpath.pdf

Ports and Services

v

TCP/IP communication first needs a server to open a port

“Speaking” to the service on the other side needs knowledge about
the higher-level protocol

Some services announce what they are through a “banner”

Internet Assigned Numbers Authority (IANA) defines list of known
ports and services

Same port for UDP and TCP (but service is not necessarily listening
on both)

List in file /etc/services

It is of course not mandatory to use these ports, but it's what clients
assume

Network Security — Security aspects of TCP/IP

16

Common services and their ports

TCP/UDP port

Service

21
22
25
53
80
110
143
443
465
993
995

File Transfer Protocol (FTP)

Secure Shell (SSH)

Simple Mail Transfer Protocol (SMTP)
Domain Name Server

Hypertext Transfer Protocol (HTTP)
Post Office Protocol (POP3)

Interim Mail Access Protocol (IMAP)
HTTP over SSL/TLS (HTTPS)
SMTP over SSL/TLS (SMTPS)
IMAP over SSL/TLS (IMAPS)
POP3 over SSL/TLS (POP3S)

Network Security — Security aspects of TCP/IP

17

netstat

» Very important to know and understand: local listening
programs/ports
» Various examples:

» netstat -tl: All listening TCP ports
> netstat -ul: All listening UDP ports
> netstat -al: All listening ports (also UNIX ports)

» The --program option also shows which process opened the
connection

» Run as root to see all --program information

Network Security — Security aspects of TCP/IP

18

telnet, netcat, and openssl

Can use netcat to connect to any port:

netcat www.google.com 80

Alternative: telnet, for example

telnet www.google.com 80

Originally made to provide command-line interface to remote host
Telnet server’s standard port is 23 (insecure and obsolete today)

Can also be used to connect to any other port, behaves much like
netcat (with small differences for line endings etc.)

netcat and telnet don't work with SSL connections

Use OpenSSL's s_client instead, e.g.:

openssl s_client -connect encrypted.google.com:443

Network Security — Security aspects of TCP/IP

19

Port scanning — nmap

vV v vy

Typical thing to first figure out about a remote, unknown computer:
list of open ports

Port scanning means “trying all ports”
Widely used tool for port scans: nmap
A simple nmap arya will scan 1000 ports on arya

Default scan method for non-privileged user: connect () scan:

Use the OS’s connect () system call to connect to a remote port
connect () succeeds: port is open

connect () fails: port is closed

Immediately close connection after successful connect ()

This scanning method does not need root privileges

v

vVYyVvYyYy

“Filtered” means that a firewall blocks access (more later in this
lecture)

Scan all ports (including high ports) through
nmap -p 1-65535 arya

Network Security — Security aspects of TCP/IP

20

SYN, Null, FIN and Xmas scans

» connect () scans appear in the servers’ log files
» Sometimes a more “stealthy” scan is desired
» Only need a “distinguisher” between open and closed ports

SYN scan

Send SYN packet

Receiving SYN/ACK: port is open

Receiving RST: port is closed

Send an RST when receiving SYN/ACK to “hang up”

Connection is never completed (service does not log it)

vV v v v v Yy

Default in nmap with root privileges (or use -sS)

Null, FIN, and Xmas scans

» RFC 793 states in Section 3.9:

» “If the port state is CLOSED ... An incoming segment not
containing a RST causes a RST to be sent in response.”

> "If the state is LISTEN ... Any other control or text-bearing
segment (not containing SYN) myst haye an ACK and thus w ulg/IP

Security - Secunt_*_aspectso TC
| T 1 - J L. 2L - ALY ot A - " _- o C '

21

Idle scans

» With TCP SYN and FIN scans there is still bidirectional
communication between scanning and scanned host

> More “stealthy”: idle scan using a zombie host

> Idle

vVYy VvV VvVyYy

v

scans use the following features:

A SYN will be answered by SYN/ACK (open) or RST (closed)
An unsolicited SYN/ACK is answered by RST

An unsolicited RST is dropped

IP packets contain the fragment identification number (IPID)
Many OS increase the IPID by one for every packet sent

A zombie host is an idle machine on the network

» Idle scan proceeds as follows:

Probe the zombie's IPID and record it, let's say IPID= X
Forge SYN packet from the zombie to the target host and port
Probe the zombie's IPID again, let say IPID=Y

Y = X 4 1: port is closed

Y = X + 2: port is open

use, for example, a printer as zombie

> Idle scan with nmap: nmap -sI zombie

Network Security — Security aspects of TCP/IP

22

How about UDP?

v

UDP is stateless, how do you scan UDP ports?

v

First option: Use ICMP port unreachable:

> No response means: port is open (or filtered)
> ICMP port unreachable means: port is closed

v

Problem: rate limitation for ICMP port unreachable
Second option: Use specific services, for example:
» DNS uses UDP on port 53

» Send DNS request to UDP port 53
» Getting a DNS reply back means that there is a DNS server

v

v

UDP scans in nmap: nmap -sU

Network Security — Security aspects of TCP/IP

23

OS fingerprinting

vV V. vV vV vV V. V. VvV VY

Important information about target host/network: OS

TCP/IP leaves details of various parameters to the implementation
Different operating systems use different parameters

Investigating those parameters gives information about OS
TCP/IP fingerprinting with nmap: nmap -0

Another way to detect OS: “talk” to open ports

Many services reveal details (e.g., banner information)

Knowing that Microsoft IIS runs on port 80 say a lot about the OS
Run nmap -sV for version detection

Convenient shortcut: nmap -A (-0 -sV -sC --traceroute)

Network Security — Security aspects of TCP/IP

24

Portscans — attack or not?

Port scans: no attack

> You only look for offered services
» If you don't want a service to be found, don’t offer that service

» Port scans are important tools for administrators to verify security
policies

» Blocking port-scans through firewalls can easily break other
functionality

Port scans — (part of) an attack

» Why would | want to reveal more about my system than | have to?
» Port scans are a typical first step of an attack

» “If | want you to know about an open service, I'll tell you”

> nmap manpage gives a few hints. . .:

peter@tyrion: $ man nmap | grep -o attack | wc -1
18

Network Security — Security aspects of TCP/IP

25

NSA/GCHQ Project Hacienda

» August 2014: Leak about the NSA/GCHQ Hacienda program

» Port scan entire nations (27 completed, 5 partially completed) using
nmap
» Port scanning (reconnaissance) first step of a 4-step process:
> Reconnaissance
> Infection
» Command and Control
» Exfiltration

» Automate the process of analyzing nmap data (project OLYMPIA)

» Take control over vulnerable hosts and turn them into Operational
Relay Boxes (ORBs)

» For more details, see
http://www.heise.de/ct/artikel/
NSA-GCHQ-The-HACIENDA-Program-for-Internet-Colonization-2292681.
html

Network Security — Security aspects of TCP/IP 26

http://www.heise.de/ct/artikel/NSA-GCHQ-The-HACIENDA-Program-for-Internet-Colonization-2292681.html
http://www.heise.de/ct/artikel/NSA-GCHQ-The-HACIENDA-Program-for-Internet-Colonization-2292681.html
http://www.heise.de/ct/artikel/NSA-GCHQ-The-HACIENDA-Program-for-Internet-Colonization-2292681.html

Efficient port scanning

» By the way, if you're going to scan the entire internet...

On a typical desktop computer with a gigabit Ethernet connection, ZMap
is capable scanning the entire public IPv4 address space in under 45
minutes. With a 10gigE connection and PF_RING, ZMap can scan the
IPv4 address space in under 5 minutes.”
—https://github.com/zmap/zmap / https://zmap.io

» But we're not responsible if you do.

Network Security — Security aspects of TCP/IP

27

https://github.com/zmap/zmap
https://zmap.io

Portknocking

vV v v v.Y

Some services are meant to be public, e.g., HTTP(S), SMTP(S)

Other services are (often) only meant for one or very few users, e.g.,

SSH

Can run those service on non-standard ports (e.g., 51966): security
by obscurity

Idea: “Hide" those services, only open them for intended user
Wait for certain packets to arrive, then open port (or firewall rule)
This concept is called port knocking

Sequence of special packets is called knocking sequence

Simple example:

» Send UDP packets to ports 42, 53, 4000, 666 from IP 1.2.3.4
> This opens port 22 (SSH) for connections from IP 1.2.3.4

Port scanners won't see port 22 as open

Can still use SSH from anywhere (if you know the knocking
sequence)

Network Security — Security aspects of TCP/IP

28

More portknocking

» Various ways to implement port knocking:

> Kernel space vs. user space

» TCP vs. UDP

> Inspecting every packet with libpcap vs. lightweight methods (e.g.,
logfiles)
Multi-packet vs. single-packet (Single Packet Authorization (SPA))
Protection against replay attacks
Cryptographic protection and authentication

v

v

v

» Nice summary of the reason for port knocking: “Because you are
running network services with security vulnerabilities in them. Again,
you are running network services with security vulnerabilities in
them. If you're running a server, this is almost universally true.
Most software is complex. It changes rapidly, and innovation tends
to make it more complex. It is going to be, forever, hopelessly,
insecure.” —NMoxie Marlinspike

Network Security — Security aspects of TCP/IP

29

TCP Stealth

vV V. vV vV V. V. V. vV vY%

Proposal by Kirsch and Grothoff (August 2014): TCP Stealth

No additional packets for port knocking

Idea: Include authentication in client’s ISN

TCP traffic indistiguishable from “normal” traffic for passive attacker
Relatively low cryptographic security (232)

Integrity protection of first TCP segment

Idea: if this segment contains public-key material, shut out a MitM
Compatible with SYN cookies

Implemented for Linux kernel

Submitted as an IETF draft: https://datatracker.ietf.org/
doc/draft-kirsch-ietf-tcp-stealth/

For more details, see https://gnunet.org/kirsch2014knock

Network Security — Security aspects of TCP/IP

30

https://datatracker.ietf.org/doc/draft-kirsch-ietf-tcp-stealth/
https://datatracker.ietf.org/doc/draft-kirsch-ietf-tcp-stealth/
https://gnunet.org/kirsch2014knock

