
Network Security
Assignment 2, Wednesday, April 25, 2018, version 1.0

Handing in your answers: Submission via Blackboard (https://blackboard.ru.nl)

Deadline: Wednesday, May 9, 23:59:59 (midnight)

Goals: In this exercise, you are going to break into a WEP-“secured” network, map the network and its
traffic flows, redirect some of the traffic, and change its contents. Once again, the exercise is long and intended
to be challenging to everyone. Feel free to stop after putting in enough time, but include a note saying when
and why.

Tools: In this exercise you will be using the following tools:

• Aircrack-ng suite: http://www.aircrack-ng.org/

• Wireshark: https://www.wireshark.org/

• Arpspoof: http://www.monkey.org/~dugsong/dsniff/

• The Python 3 network sniffer from the previous assignment (a reference implementation will be made
available online after the deadline for assignment 1).

For aircrack-ng, wireshark and arpspoof you are allowed to substitute other programs which do the job, as
long as you document the steps you took in detail. However, you have to expand the Python 3 network sniffer
yourself. Do not compile these programs from source. Rather, use your Linux distribution’s package manager
to install the packages aircrack-ng, wireshark and dsniff (e.g. Ubuntu / Debian: apt-get install dsniff,
Arch: pacman -S dsniff).

Many commands in this exercise need to be run with root rights. This is denoted by a prefix #. When a
command should be run without root rights, it will be prefixed with $. Do not include the prefix when typing
the command.

Hardware compatibility: Let’s test your hardware for compatibility. To successfully complete the exercise
your wireless network card must support monitoring mode. First, disconnect from any wireless network you
are on. Then, temporarily disable any network management software you may have running (e.g. in Ubuntu:
sudo stop NetworkManager). Next, find out the name of your wireless interface (e.g. ip l, iw dev). It is
likely called something along the lines of wlan0 or wlpXsY.

Then, issue the following commands as root, substituting your own interface name for wlan0:

# airmon-ng stop mon0

# airmon-ng start wlan0

The first command may complain that there is no such interface. This is expected, proceed as normal. The
second command should end with a message along the lines of (monitor mode enabled on mon0). If it does,
your device is likely compatible, and you can directly continue to exercise 1. If it does not, but instead gives
something like mon0: ERROR while getting interface flags: No such device, issue the commands:

# airmon-ng stop mon0

# airmon-ng stop wlan0

If that command complains with You are trying to stop a device that isn’t in monitor mode., that’s
fine, recent versions of airmon-ng do that. This is just to make sure that the device isn’t already accidentally
in monitor mode. However, do not execute the command it suggests (iw wlan0 del). Continue with:

# iw dev wlan0 set monitor none

If it complains about iw not being found, try

# iwconfig wlan0 mode monitor

If either command returns an error along the lines of command failed: operation not supported, your
wireless card does not support monitor mode and you must contact us as soon as possible. We will then
provide a USB wireless dongle that’s guaranteed to work.

https://blackboard.ru.nl
http://www.aircrack-ng.org/
https://www.wireshark.org/
http://www.monkey.org/~dugsong/dsniff/


Read the entire exercise before starting. If you are stuck on one part, or would like to do some things
from home, you can skip parts of exercises and come back to them later (e.g. you can try to edit the sniffer /
forwarder without being connected to the network).

1. The WPA2 suite of security protocols is a (currently) secure replacement for WEP and WPA. It can
operate in two modes: WPA2-Enterprise, where each client authenticates against a RADIUS master
server and then exchanges keys, and WPA2-Personal, or pre-shared key mode, where every client knows
the network’s master key.

Do you think a secured network running in WPA2 pre-shared key mode using a strong random passphrase
is secure against connected clients sniffing traffic in the network? If so, why do you think so? If not,
explain in general terms the principle behind an attack. Note that you do not need to have a strong
understanding of the cryptography used in WPA2; use your intuition. Write your answer to a file called
exercise1.

2. (a) Your first task is to find and map the network. It will be present at the werkcollege, and will be
reachable from the central common area on the ground floor of the Mercator 1 building. (You may
be able to pick up the network from the common area on the first floor, but we do not have any
guarantees as to the signal strength and suitability for sniffing there.) Go there. Get comfortable.
Have some free coffee.

We will use the aircrack-ng suite for this exercise, but feel free to use something else if it has the
same functionality.

Create a folder called exercise2. Document all the steps you take in a file in this folder called
exercise2a.

Now, as described before, put your wireless card in monitor mode. Don’t forget to disconnect from
any connected networks and to disable any network management software that might interfere.

# airmon-ng stop wlan0

# airmon-ng start wlan0

A listing of your network interfaces (ip l) should now also list mon0. If it does not, check whether
it says link/ieee802.11/radiotap for wlan0. If the latter is the case, use wlan0 instead of mon0
for the monitor interface.

Now let’s see what’s on the network:

# airodump-ng mon0

This will show you a listing of wireless networks, their security level, the access points’ MAC ad-
dresses (BSSID), channel they operate on (CH), and some other information. List the networks you
see. You do not have to list duplicate network names. Identify your target network’s name, the
access point’s MAC address, and channel. In most of this exercise you will identify the network by
the BSSID. If the target network is not obvious at first glance, it is probably down and you should
contact us as soon as possible.

This list will also show you wireless network clients (“stations”). Using the information you have
on the target network, identify those clients that are connected to the target network. Write down
their MAC addresses. When you look at the MAC addresses, does anything strike you as interesting
or peculiar? If so, what? Try to explain it.

If you do see networks and unassociated clients, but do not see any clients connected to the target
network, the network is down or you’ve hit a bug we’ve observed in several machines running
Ubuntu. You will not be able to capture enough traffic in a reasonable amount of time to crack the
network, so contact us as soon as possible.



(b) Now, let’s go ahead and crack this network. First, exit airodump-ng (using ˆc).

Document all the steps you take here in a file called exercise2b.

Cracking WEP is done by capturing enough packets from a network to enable some cryptographic
attacks on the algorithms used. Capturing is also done by airodump-ng, with some extra command
line switches. See the manual page for airodump-ng (man airodump-ng) for a detailed explanation
of what each switch does, and substitute the desired values for <channel> and <target BSSID>:

# airodump-ng -c <channel> --bssid <target BSSID> -w outputnetsec mon0

Leave this running. Collecting enough packets in the file specified will take a few minutes.

In a different terminal, open the manual page for aircrack-ng. Read what it does. Identify what
option to use to select the target network. This is the only option you really need, but feel free to
play around. Just document what you do.

Run aircrack-ng with the option you need, and the file(s) to which airodump-ng is currently writing
its output. Once again, document what you use.

If the attack fails at first, just leave it running for a while while airodump-ng captures more packets,
and it will retry every 5.000 packets. The attack should succeed in a reasonable amount of time,
half an hour at most. I’ve had success with only 45.000 packets collected, but also had a run where
it took nearly 200.000. The network is generating enough traffic to accommodate this. Have some
more free coffee while you wait. Cracking WEP is boring work, and you need to stay awake.

If the key still isn’t found after 300.000 packets, you may have hit a bug with the hard- or firmware
of your network card. Contact us.

When the attack finally succeeds, you are provided with the WEP key. Also document this. Leave
airodump to capture some more data for good measure, 200.000 frames should be more than enough
for the next exercise. Then, exit airodump and put the wireless card back into normal mode
(airmon-ng stop mon0).

3. This exercise can be done from home after successfully completing exercise 2 and capturing a fair amount
of data.

(a) We now have the WEP key, but we also have a generous chunk of data from the network to work
with. Let’s work with that and see what we can learn from the network.

In exercise 2 you had airodump-ng write its output to a few files, all prefixed with “outputnetsec”. In
the folder where you ran airodump, you should now see at least a file called outputnetsec-01.cap.

Start wireshark. Since we’re not going to capture anything, you can run it as a normal user. In
wireshark, open the file outputnetsec-01.cap (or, if there are multiple .cap-files, the file on which
you successfully ran aircrack-ng).

Create a folder called exercise3. Describe what you see in wireshark, after opening the capture file,
in a file called exercise3a in that folder. Try to explain why there is very little useful information
in this capture file.

(b) There is some useful information, however, and we are going to try to extract that. Wireshark has
several very nice analysis tools built into it. They can be accessed in the Analyze and Statistics

menus. Play around with the tools in the top part of the Statistics menu. Document which
clients appear to be most active on the network and whom they seem to be communicating with, in
a file called exercise3b. Also add the output from the Comments Summary tool, and try to explain
why the Protocol Hierarchy looks the way it does.

If you see more than a few very active clients, limit your description to the clients you identified in
the previous exercise as connected to the network.

If your protocol hierarchy contains more than a few reasonably explainable protocols, there’s some-
thing wrong with your encrypted capture. Please contact us as soon as possible for the encrypted
reference file.



(c) Now, to solve the problem identified in exercise 3a, aircrack-ng has the tool airdecap-ng. Open its
manual page (man airdecap-ng), identify what options you need to pass, then run it with these
options on outputnetsec-01.cap. This will create a file outputnetsec-01-dec.cap.

Close the file you currently have open in wireshark, then open this new file.

Once again, describe what you see in wireshark, now in exercise3c 1. Explain why this is different
from what you saw in exercise3a.

(d) Similar to exercise 3b, using the statistics tools, document which clients are communicating with
whom, in a file called exercise3d. Also include their IP addresses. Something should immediately
strike you as peculiar when doing this. What do you think is going on here?

You should be able to go into much more detail this time. Therefore, this time, also zoom in on the
conversations themselves (if you right-click on a conversation in the output from the Conversations
tool, you can apply this conversation as a filter so that you only see its packets). There will likely
be more than just a few conversations. Pick a few larger ones, or ones that look interesting. Briefly
describe what each conversation is, whether it looks interesting, and why.

(e) There should be at least one connection which is consistently being rejected. See if you can find
it. Document how you did this in exercise3e. Note you can filter out conversations which you
are not interested in by simply right-clicking on that conversation in the Conversations tool, and
preparing a filter. Filter out multiple conversations by using the ... and not... entry on each.
Then, apply the filter.

Most of the time, you’ll simply want to build filters using the graphical interface, but for more
documentation on their syntax, see
https://www.wireshark.org/docs/wsug_html_chunked/ChWorkBuildDisplayFilterSection.html.

(f) Finally, there should be several conversations which, when you look at the packets’ contents, are
obviously interesting for you. Find them. Document the process in exercise3f, and also include
why you think they are interesting.

4. This exercise requires you to be nice to fellow students. The attack you will perform will have you using
ARP spoofing to redirect traffic to your machine. Obviously, only one machine can do this at a time to
a single conversation. You should have been assigned a number during one of the exercise classes. The
number you received corresponds to one of the endpoints in your target conversation. Make sure you
only ARP spoof the endpoints of that specific conversation, so as not to disturb your colleagues. If you
have not received a number, try to solve it by communicating with your colleagues to figure out if there
is a free conversation at that moment. Otherwise, contact us.

We’re going to attack one of the conversations you identified in exercise 3f. Recall from the lecture that
WEP stands for Wired Equivalent Privacy. A wireless network presents itself, at a logical level, just like
a wired ethernet. What this means is that e.g. it’s not a given that you can just capture other clients’
traffic if your drivers and hardware do not support this, even though it’s all just radio waves. With
specialized hardware, much more is possible.

However, it also means that attacks which work on wired networks will often also work on wireless
networks, once you’re a “legitimate” client on the network. WEP was designed to provide only Wired
Equivalent Privacy, i.e. it’s just as bad as a wired network. Worse, in fact, when you consider that the
crypto is broken, but even if it were not, the attack we are about to carry out works regardless of whether
you broke in to the network or whether you’re a legitimate user.

1 IMPORTANT NOTE: In previous years, certain versions of airdecap-ng had a bug which mangles WEP-encrypted traffic on
decryption. If you encounter it, this is evident when viewing the decrypted capture in wireshark: missing UDP traffic, all sorts
of weird protocols in the protocol hierarchy, and more. If you see stuff like IPv6, obscure protocols you have never heard of in
the protocol hierarchy, UDP packets going to the Bank of Scotland, no UDP conversations in the “Conversations” view at all, no
packets being decrypted at all, and other weird stuff, contact us and we will work around the problem.

https://www.wireshark.org/docs/wsug_html_chunked/ChWorkBuildDisplayFilterSection.html


Start by actually connecting to the wireless network, using the WEP key you recovered in exercise 2.

The network should have a DHCP service running. If it does not, contact us, and in the meantime select
a free static IP address in the network range above .100. The network mask for this network is /24, or
255.255.255.0. It does not have an Internet gateway. If you run network management software that forces
you to enter a gateway anyway, use any address that is not actually in use, e.g. the address ending in .6.

Create a folder called exercise4.

(a) Run wireshark with root rights, and let it sniff your wireless interface. It should not use either
monitor mode or promiscuous mode; make sure that that checkmark is disabled. Ping one of the
other clients you identified in exercise 3, and see whether these pings show up in wireshark. Note
that you may have to specify which interface to ping on, use the manual page (man ping) to figure
out how.

If this works, enable IP forwarding:

# echo 1 > /proc/sys/net/ipv4/ip_forward

If using sudo, you will need a slightly different command:

$ sudo sh -c "echo 1 > /proc/sys/net/ipv4/ip_forward"

or

$ echo 1 | sudo tee /proc/sys/net/ipv4/ip_forward

This is due to nuances in when shell redirection happens.

Now you can use arpspoof to trick the sending endpoint in the conversation to send its data to
you instead of to the receiving endpoint, and your machine will forward the data. Use the manual
page of arpspoof (man arpspoof) for details on how to use it. Note that you need to keep arpspoof
running as long as you want traffic to be redirected, and you should close it down as soon as you’re
done. Note that you will need to tell arpspoof what interface to use, since that determines how and
where it spoofs the targets.

Verify that the traffic of that conversation is flowing through your machine. You should see, among
other things, two identical sets of IPv4 packets, interleaved. One set should have as a source address
the MAC address of the endpoint you just started ARP spoofing to, and as destination address your
own MAC address. The other set should have as source address your own MAC address and as
destination address the MAC address of the original receiving endpoint of the conversation. If you
do not see the second set, IP fowarding is not working. If you do not see the first set, spoofing is
not working.

If this works, turn off arpspoof. Save the wireshark capture to a file called exercise4a.cap in the
folder exercise4. Document the commands you used in a file called exercise4a, and explain why
you’re seeing these two sets of packets in wireshark.

Turn off IP forwarding:

# echo 0 > /proc/sys/net/ipv4/ip_forward

or

$ sudo sh -c "echo 0 > /proc/sys/net/ipv4/ip_forward"

or

$ echo 0 | sudo tee /proc/sys/net/ipv4/ip_forward



(b) Start with your implementation of the sniffer from exercise 4 of last week, or use the implementation
provided. Rename it to mitm.py, and place it in the folder exercise4. Change it so that it rewrites
the packets according to the instructions contained inside the packet, then sends them on. For this,
you will need to make several changes:

• You will need to bind the socket to the wireless interface.

• You will need to select the right packets (based on e.g. the combination of ethernet source,
destination, IP destination, and port).

• You will need to find and replace the destination MAC address in the ethernet frame.

• You will need to find the correct part of the packet payload and rewrite it.

• You will need to find and zero out the packet checksum in the packet header in each frame. For
this protocol, the checksum is optional, and a zeroed checksum indicates it’s not being used.
Not as sophisticated as recaculating the checksum, but just as effective. If you do not change
the checksum, the destination will discard the packet before it reaches the application.

• You will need to use the socket.send() function to send the frame on. The documentation for
the socket library does not state this clearly, but then again, we’re not exactly doing legitimate
stuff here.

If you don’t feel confident about the above, another option is that you retrieve the payload from
each frame, create a different UDP socket, and send the payload on through that socket.

Add some print() output to show you, when it runs, that forwarding actually works.

Once you’ve made these adaptations, run the forwarder, and then run wireshark and arpspoof the
same way you did in exercise 4a. If everything goes correctly, the following will happen:

• Your forwarder will rewrite and forward the packets.

• Wireshark will show you a similar output, i.e. two sets of packets, this time there will be changes
in payloads as well as in addresses.

• The final endpoint will register the modified packets including the changes you’ve made.

• The final endpoint will acknowledge receiving a valid modified packet by broadcasting the
student numbers in a special packet. This way you have some feedback on whether or not
you succeeded, so look out for those with e.g. wireshark.

Let this run for a few packets, then stop arpspoof and the forwarder. Save the wireshark capture
file as exercise4b.cap in the folder exercise4.

5. As a completely optional extra, if you feel this was too easy, and have finished the assignment, take a
look at http://www.aircrack-ng.org/doku.php?id=simple_wep_crack.

If a network is not generating enough traffic for an attack by itself, there are more sophisticated attacks
using e.g. ARP replay and disassociation to force traffic to be generated. Feel free to play around with
this, but note that if your network driver does not support packet injection (the linked tutorial contains
instructions on how to test that) these attacks will likely not work without patching and recompiling your
driver first. Only do this if you have time left over, and DO NOT USE A DISASSOCIATION ATTACK.
I will be very unhappy if you do because it messes with the exercise setup. Document what you do in a
file called exerciseBONUS.

6. Place the files and directories exercise1, exercise2, exercise3, exercise4, and exerciseBONUS (op-
tional) and all their contents in a folder called netsec-assignment2-STUDENTNUMBER1-STUDENTNUMBER2.
If they are smaller than 10MiB, also include the airodump capture file (outputnetsec-xx.cap) you
used to crack the network and the corresponding airdecap file (outputnetsec-xx-dec.cap) analyzed
in wireshark. Replace STUDENTNUMBER1 and STUDENTNUMBER2 by your respective student numbers, and
accommodate for extra / fewer student numbers.

Make a tar.gz archive of the whole netsec-assignment2-STUDENTNUMBER1-STUDENTNUMBER2 directory
and submit this archive in Blackboard.

http://www.aircrack-ng.org/doku.php?id=simple_wep_crack

