Network Security DNS (In)security

Radboud University, The Netherlands

Spring 2017

Security in Times of Surveillance

No lecture on May 29

Use the opportunity and register for

Security in Times of Surveillance

https://www.win.tue.nl/eipsi/surveillance.html

A short recap

- Routing means directing (Internet) traffic to its target
- \blacktriangleright Internet is divided into $\approx 57,000$ Autonomous Systems
- Routing inside an AS uses Interior Gateway Protocols (RIP, OSPF)
- Routing between ASs uses Border Gateway Protocol (BGP)
- Large-scale routing attacks are not suitable for homework...
- Smaller-scale attacks:
 - Source-routing attacks
 - ICMP redirect attacks
 - Rogue DHCP (attacks not only routing)
- Firewalls are concepts to separate networks
- Common firewall concept: Packet filtering (iptables)
- iptables can also be used for NAT (and port forwarding)
- Tunneling can be used to circumvent a packet filter

Last week's last slide: sshuttle

- Tunneling every connection separately is a hassle
- Often want to tunnel all traffic through SSH
- Extremely convenient tool: sshuttle
- Modify local firewall rules to tunnel all traffic through SSH: sshuttle --dns -vr mysshhost.nl 0/0
- Three main use cases for sshuttle:
 - Tunnel everything through a firewall (once you have SSH access to somewhere)
 - Tunnel from an untrusted network to a (more) trusted network (VPN, later this lecture)
 - Circumvent country filters (e.g., watch a German stream of the worldcup in NL)
 - This last case needs SSH access to an unblocked country

Proxy Servers

- Additional to packet filtering on TCP/IP level: proxy servers
- A proxy server acts as an intermediary
- Two kinds of typical proxy servers:
 - Application-level proxy (understands high-level protocols, such as HTTP)
 - SOCKS proxy (for secure forwarding of TCP connections), can use SSH for this:

ssh -fND localhost:8080 mysshhost.nl

- Similar to Proxy: Application-level gateway (ALG)
- Both (application-level) proxy and ALG can filter high-level protocols
- Can place proxies/ALGs in DMZ, then have no traffic go directly from the LAN to the Internet

Tunneling through an HTTP proxy

- Most common form of proxies: HTTP(S) proxies
- ► Fairly common restrictive firewall configuration:
 - Allow only HTTP(S) traffic (and DNS through UDP)
 - Allow HTTPS traffic only through local (filtering) proxy
- Can imagine an HTTP(S) server and client that tunnel SSH from HTTP payload
- Serious configuration effort
- HTTP CONNECT() to the rescue: HTTP command for tunneling
- Very often allowed to support HTTPS
- Can use HTTP CONNECT() to tunnel SSH through an HTTP(S) proxy:

ssh user@server -o "ProxyCommand corkscrew \ PROXY_IP PROXY_PORT \ DESTINATION_IP DESTINATION_PORT"

Additional homework: apt-get install sshuttle corkscrew (some day you'll thank me ;-))

DNS and domain names

- So far: Configure hostname/IP pairs in /etc/hosts
- Important for local configuration (and overrides), but does not scale
- More flexible solution: Domain Name System (DNS)
- Idea: Query a server for a domain name, receive answer
- DNS typically uses UDP on port 53
- Domain names have a hierarchy (different levels separated by '.')
- Highest domain: root domain (empty string)
- ▶ Next highest: top-level domains (TLDs), e.g., .nl, .org, .sucks
- Administration of top-level domains by Internet Corporation for Assigned Names and Numbers (ICANN)
- Administrations of domains below a TLD by registries, e.g., Stichting Internet Domeinregistratie Nederland (SIDN) for .nl
- DNS servers are typically resposible for one specific domain (DNS zone)

DNS servers and requests

- Two kind of DNS servers: recursive and authoritative
- Recursive servers (or DNS caches)
 - forward requests to other servers,
 - remember (cache) the reply for a certain amount of time
- Authoritative servers are responsible for a certain domain (or DNS zone) and
 - know the hosts in their domain,
 - know the authoritative DNS servers of their subdomains
- ▶ Two types of requests: recursive or iterative
- Recursive request (to a DNS cache): give me the answer or an error
- Iterative request (to an authoritative server): give me the answer or tell me who might know

DNS example

- You try to access sandor.cs.ru.nl, send request to DNS cache (e.g., 131.174.117.20)
- 131.174.117.20 may know the DNS server for top-level domain .nl: ns1.dns.nl 193.176.144.5
- 131.174.117.20 asks ns1.dns.nl for ru.nl nameserver: ns1.surfnet.nl 192.87.106.101
- 131.174.117.20 asks ns1.surfnet.nl for cs.ru.nl nameserver: ns2.science.ru.nl 131.174.16.133
- 131.174.117.20 asks ns2.science.ru.nl for sandor.cs.ru.nl IP address:

sandor.cs.ru.nl 131.174.142.4

131.174.117.20 tells your client (e.g., SSH client) the IP address of sandor.cs.ru.nl

DNS entry types

Туре	Meaning
A	Address record: returns a 32-bit IP address, used to
	map hostnames to addresses
NS	Nameserver: Lists the authoritative nameservers of a
	DNS zone
CNAME	Canonical Name: Assigns a hostname alias to a host-
	name
SOA	"Start Of Authority": Lists authoritative information
	about the zone: primary DNS server, mail address of
	administrator (with @ replaced by a .), serial number,
	refresh times and timeouts.
MX	Mail Exchanger: Gives a mail server responsible for the
	domain
TXT	Text field: Originally arbitrary human-readable text, to-
	day often used for machine-readable data

- Four sections in a DNS reply:
 - The QUESTION SECTION (repetition of the question)
 - The ANSWER SECTION
 - The AUTHORITY SECTION
 - The ADDITIONAL SECTION

- Network Security DNS (In)security 10

resolv.conf, dig, and whois

- The list of (recursive) nameservers to access is in /etc/resolv.conf
- It's typically dynamically updated from DHCP information
- This is another attack vector for rogue DHCP!
- Command-line tool to request DNS information: dig, examples:
 - Find IP address of sandor.cs.ru.nl dig sandor.cs.ru.nl
 - Ask ns1.dns.nl for ru.nl autoritative DNS servers of ru.nl: dig @ns1.dns.nl ru.nl NS
 - Ask ns1.science.ru.nl for all information of science.ru.nl dig @ns1.science.ru.nl science.ru.nl ANY
 - Reverse lookup hostname for 131.174.142.4: dig -x 131.174.142.4
- Find out about ICANN registration information of a domain: whois, e.g.:

whois cryptojedi.org

The DNS root servers

- Whenever a DNS server does not know the authoritative DNS servers of a Domain, it asks the DNS root servers
- DNS root servers are extremely critical piece of Internet infrastructure
- ▶ How many are there? Answer: 13
- Names of these servers: a.root-servers.net ...

m.root-servers.net

- Those servers are actually highly redundant, some even distributed over the globe
- Example: K-root server, run by RIPE-NCC
 - Used to be in Amsterdam
 - Now at 18 different locations

DNS root servers hit by largest DDoS ever

News By Oct. 23, 2002 12:38 pm

The largest Distributed Denial of Service (DDoS) attack in history went largely unnoticed by the general public on October 21, 2002, but it was almost a disaster, say several Internet backbone operators.

DNS tunneling

- Firewalls may block anything, but typically not DNS
- Idea: set up authoritative DNS server for some subdomain tunnel.mydomain.nl
- Encode SSH traffic as DNS requests to this server
- Tunnel SSH traffic through DNS
- This is slow (small payload, UDP is not reliable)
- Ready-made client/server: ozymandns by Kaminsky: http://dankaminsky.com/2004/07/29/51/
- Tutorial for DNS tunneling (with ozymandns): http://dnstunnel.de/

DNS DDoS amplification

- DNS (typically) uses UDP
- No session establishment: send request, get answer
- Answer can be much larger than the request
- Idea: Spoof IP address of DOS victim in DNS request
- Victim will receive much more data than attacker has to send
- This is called DNS (D)DOS amplification

DNS DDoS countermeasures?

- Very hard to defend against DDOS (and DNS amplification)
- Can (temporarily) block packets from open DNS servers
- Can (temporarily) block large DNS reply packets
- Can try to filter spoofed IP addresses ("ingres and egress filtering")

DNS spoofing

- Probably most obvious DNS attack: send wrong answer
- Send wrong answer to client: hit one target
- Send wrong answer to DNS cache: hit many targets
- Answers contain "validity period"
- It's possible to poison DNS caches for a pretty long time

In the old days

\$ dig @ns1.attacker.com www.attacker.com ;; ANSWER SECTION: www.attacker.com. 120 ΤN Α 123.45.67.8 :: AUTHORITY SECTION: attacker.com. 86400 ΤN NS nsl.attacker.com. :: ADDITIONAL SECTION: nsl.attacker.com. 604800 IN A 123 45 67 89 66.66.66.66 www.target.com. 43200 IN А

The bailiwick check

- Idea of the attack: wrong entry for www.target.com ends up in cache
- ▶ Countermeasure (since 1997): use *bailiwick* check
- Reject ADDITIONAL information if the requested server is not authorized to answer for the domain

Short interlude: A bailiwick

Definition of BAILIWICK

- 1. the office or jurisdiction of a bailiff
- 2. a special domain

Source: http://www.merriam-webster.com/dictionary/bailiwick

Definition of BAILIFF

- a: an official employed by a British sheriff to serve writs and make arrests and executions
 b: a minor officer of some United States courts usually serving as a messenger or usher
- 2. chiefly British: one who manages an estate or farm

Source: http://www.merriam-webster.com/dictionary/bailiff

The race for the answer

- ► A client is asking for an IP address; if attacker answers first, he wins
- ▶ Not quite that easy: Request contains 16-bit Query ID (QID)
- DNS reply has to have the right ID
- Attacker has to guess the ID
- This is a bit similar to the TCP ISN in a session-stealing attack
- In the old days use simply increasing IDs: easy for an attacker to figure out
- Nowadays use randomized 16-bit ID
- The attacker can start the race:
 - Lure victim to website at www.attacker.com
 - Include picture from www.target.com
 - Attacker sees website request, knows that DNS request for www.target.com will follow
- Attacker can send many packets
- Attacker can also try to run DOS against real DNS server

Kaminsky's attack (2008)

- Victim will request all of those subdomains, race for each query
 Attacker crafts answer packet for each of those requests:
 - ;; ANSWER SECTION: ΙN Α 10.10.10.10 aaaa.target.com. 120 :: AUTHORITY SECTION: target.com. 86400 ΤN NS ns.target.com. ;; ADDITIONAL SECTION: www.target.com. 604800 IN A 66.66.66.66
- The client requested the IP address with target.com domain
- The answer for www.target.com passes the bailiwick check!
- The value 604800 defines the validity period of the information: 7 days

Impact of Kaminsky's attack

SECURITYWEEK NETWORK: Information Security News Infosec Island Suits and Spooks		
SECURITY WEEK INTERNET AND ENTERPRISE SECURITY NEWS, INSIGHTS & ANASINDSCRIDE (Free) Security White Papers IC		
Malware & Threats Cybercrime Mobile & Wireless Risk & Compliance Security Architecture Manag		
Home > Network Security		
The Top Five Worst DNS Security Incidents		
By Ram Mohan on August 11, 2010		
in Share { 2 8+1 { 0 I Tweet { 22 Recommend { 7 RSS		

1. "The Kaminsky Bug" puts the whole Internet at risk

Often regarded as possibly the greatest security threat the Internet has ever faced, the so-called "Kaminsky Bug" emerged in July 2008, creating great unease and even greater hype. Researcher Dan Kaminsky discovered that It was easy to exploit a weakness in the DNS and built the software to do it. This weakness would enable malicious hackers to transparently imitate any We bpage or e-mail account by poisoning the DNS information cached by internet service providers.

LOS Angeles Times Local U.S. WORLD BUSINESS SPORTS ENTERTAINMENT HEALTH STYLE TRAVEL

Technology

Source-port randomization

- Kaminsky's attack hit most big DNS server suites
- djbdns, PowerDNS, MaraDNS, and Unbound were not affected
- Those suites randomized the UDP source port
- ▶ Not just 16 bits of entropy to guess for an attacker but 32 bits
- Today, all DNS servers randomize the source port
- Potential problem with NAT: source port is rewritten

Birthday attacks

- Imagine that a DNS server is sending out many *identical requests* (with different source port and QID)
- Attacker spoofs replies with different port+QID combinations
- Any collision with one of the requests wins
- Do servers send out identical requests?
- Some do, e.g., djbdns's dnscache (Kevin Day, 2009):
 - Trigger 200 identical queries (default size of query queue)
 - Need to be fast, send these queries before first reply is received
 - Increase attacker's success probability from $1/2^{32}$ to $200/2^{32}$

More randomization?

- The QUESTION section of a DNS request is copied to the reply
- Some bits in the QUESTION section, don't matter: www.ExAMPle.com is the same as www.example.com
- The 0x20 bit changes capitalization of letters
- Idea: Use this bit for extra entropy
- Slight problem: DNS standard does not *require* the QUESTION section to be copied bit-by-bit
- ▶ Other idea: query repetition (another 32 bits of entropy)
- Adds additional complications (not broadly implemented)
- Bernstein on randomization:

"It is clear that enough randomization effort would be able to stop all blind forgeries."

The easy way...

- A passive MitM can read DNS requests
- Becoming a passive MitM is not that hard:
 - Sniff WiFi
 - ARP spoofing
 - Be an ISP
 - Be a network administrator in a company
- A DNS attacker can poison a DNS cache
- Affects many more clients than a MitM between clients!

DNS censorship

- DNS can be used for censorship:
 - April 1997: German provider DFN blocks IPs of xs4all.nl
 - German "Zugangserschwerungsgesetz"
 - "Child Sexual Abuse Anti Distribution Filter" (CSAADF) by CIRCAMP used in Denmark, Finland, Italy, Newzealand, Norway, Sweden und der Switzerland
 - Idea in all these cases: "redirect" (spoof) DNS
 - Circumvention: Use alternative DNS

THE RUMORS ARE TRUE. GOOGLE WILL BE SHUTTING DOWN PLUS-ALONG WITH HANGOUTS, PHOTOS, VOICE, DOCS. DRIVE, MAPS, GMAIL, CHROME, ANDROID, AND SEARCH-TO FOCUS ON OUR CORE PROJECT: THE 8.8.8.8 DNS SERVER. Joogle

Source: http://xkcd.com/1361/

DNSSEC

- Idea: Use cryptographically signed DNS entries
- Initial design decision: sign information offline:
 - No need for expensive public-key crypto for each reply
 - No need to hold the private keys on DNS servers
- Public keys are authenticated through a chain of trust
- Root of trust: public keys of the DNS root servers
- Additional (cryptographic) information in new DNS entry types:
 - RRSIG: DNSSEC signature
 - DNSKEY: public key to verify signature

More amplification!

- DNSSEC does not increase the size of DNS requests
- DNSSEC does significantly increase the size of DNS replies
- Modern DDOS uses DNS+DNSSEC
- RFC 4033: "DNSSEC provides no protection against denial of service attacks. Security-aware resolvers and security-aware name servers are vulnerable to an additional class of denial of service attacks based on cryptographic operations."

DNS zone enumeration

- You want DNS to answer a request for domain names
- You do not want to hand out a list of all domain names
- Finding all hosts in a DNS zone is called *zone enumeration*
- Problem for DNSSEC: offline-signed answer for *non-existing* entries (negative answer)
- First solution: Don't sign (bad idea, can use for attack)
- Second idea: Sign "There is no name between smtp.example.com and www.example.com"
- This trivially allows zone enumeration:
 - \blacktriangleright Try some hostname, this will give you 1 or 2 valid hostnames
 - Try just before (alphabetically) a valid hostname: find previous
 - Try just after (alphabetically) a valid hostname: find next
- RFC 4033: "DNSSEC introduces the ability for a hostile party to enumerate all the names in a zone by following the NSEC chain."

NSEC3

- Idea: Hash domain names, sign information on gaps between existing *hashes*
- Example:
 - request for (non-existing) test.example.com
 - Hash test.example.com (with SHA-1), obtain: 401f83bc96721eeeba6f5c1c54cf0a83dc08a30b
 - Signed answer: "There is no name with hash between 068503358dddd23cf6cf00f5d6ad9a45cd0a8e03 and 512e9305c87f4f1ccdbacb80c559f3dce496ae29.
- Problem: Can revert these hashes
- Wait, shouldn't it be hard to compute preimages of hashes?
- Well, domain names are not that hard to guess, can just try valid domain names, e.g.

www.example.com 068503358dddd23cf6cf00f5d6ad9a45cd0a8e03 smtp.example.com 512e9305c87f4f1ccdbacb80c559f3dce496ae29

- Software by Niederhagen: Try 6000 billion hashes per week on NVIDIA GTX295 GPU
- ▶ This is *much* faster than trying domain names through DNS queries

More DNSSEC problems

Second implication of offline-signed records: replay attacks

- Attack scenario:
 - Company runs server www.example.com at 123.45.67.89
 - DNS server sends signed name resolution for this name/IP, attacker records it
 - Company moves or changes provider, now www.example.com is at 98.76.54.32
 - Attacker replays name resolution to 123.45.67.89
- DNSSEC uses bleeding-edge crypto (1024-bit RSA)
- DNSSEC does not encrypt queries; from RFC 4033: "Due to a deliberate design choice, DNSSEC does not provide confidentiality"

DNSCurve

- Alternative to DNSSEC proposed by Bernstein: DNSCurve
- Idea is to encrypt and authenticate DNS traffic (not sign records)
- The idea is a bit similar to SSL/TLS (next lecture)
- DNSCurve does not have the problems that come with offline signing:
 - No zone enumeration
 - No replay attacks
- It also has other advantages over DNSSEC:
 - Much stronger (and faster) crypto
 - Much more limited amplification issues (replies grow, but so do requests)
 - Confidentiality of DNS requests (encryption)
- Potential disadvantage of DNSCurve: crypto keys need to be on DNS servers
- Addional disadvantage: It's much easier to deploy than DNSSEC, does not create as many jobs for consultants

More reading...

Dan Bernstein about DNSCurve (and DNSSEC vulnerabilities):

- http://dnscurve.org/
- http://cr.yp.to/talks/2010.12.28/slides.pdf
- Updated: http://cr.yp.to/talks/2016.12.08/ slides-djb-20161208-dnssec-a4.pdf

Dan Kaminsky's answer:

http://dankaminsky.com/2011/01/05/djb-ccc/

"DNSSEC Is Not Necessarily An Offline Signer – In Fact, It Works Better Online!"

Dan Bernstein's answer:

http://marc.info/?l=djbdns&m=129434351607605&w=2