
Network Security
Assignment 4, Tuesday, May 09, 2017, version 1.0

Handing in your answers: Submission via Blackboard (http://blackboard.ru.nl)

Deadline: Tuesday, May 16, 23:59:59 (midnight)

In this exercise you will be using the following tools:

• iptables: http://netfilter.org/projects/iptables/index.html

• sshuttle: https://github.com/apenwarr/sshuttle

Do not compile these programs from source. iptables is likely installed by default. Use your Linux distribu-
tion’s package manager to install the package sshuttle (e.g. Ubuntu / Debian: apt-get install sshuttle,
Arch: pacman -S sshuttle, Fedora: yum install sshuttle, Gentoo: emerge sshuttle).

This assignment consists of some theoretical questions and two practical exercises. Please turn in all your
work in plain text files (program source files are also plain text). If you prefer a document with formatting for
whatever reason, like including images, use the PDF format to turn in your work (most editors allow you to
export to PDF). Note that it’s okay to include images separately and then refer to them from within the text
files.

Many commands in this exercise need to be run with root rights. This is denoted by a prefix #. When a
command should be run without root rights, it will be prefixed with $. Do not include the prefix when typing
the command.

1. In this exercise you will use iptables to create two firewall configurations: one for a client machine, one
for a masquerading server. You are encouraged to test your configuration on your own (virtual) machine.

You can use the commands iptables-save and iptables-restore to save and restore iptables rules to
and from a file, respectively. Usage: # iptables-save > filename stores the firewall configuration in
the file filename. # iptables-restore < filename restores the firewall configuration from filename.
It might be a good idea to run iptables-save on the firewall configuration you have before starting this
exercise.

If you get in unrecoverable trouble, you can completely reset the firewall configuration by running the
following commands:

iptables -F

iptables -X

iptables -t nat -F

iptables -t nat -X

iptables -t mangle -F

iptables -t mangle -X

iptables -P INPUT ACCEPT

iptables -P FORWARD ACCEPT

iptables -P OUTPUT ACCEPT

This will flush (-F) all built-in chains and delete (-X) all user-defined chains in the standard tables, and
set the default policy (-P) to accept.

Create a folder called exercise1 to hold the answers to this exercise.

Note that under some Linux distributions (most notably Ubuntu), you may have to add a rule allowing
traffic from localhost to localhost in order to allow some local processes to communicate.

(a) Use the iptables manpage (man iptables), the netfilter documentation on http://www.netfilter.

org/documentation/index.html#documentation-howto (especially the Packet Filtering HOWTO),
the lecture slides, and any sources you want to build a client firewall that does the following:

• Allow all outgoing traffic.

http://blackboard.ru.nl
http://netfilter.org/projects/iptables/index.html
https://github.com/apenwarr/sshuttle
http://www.netfilter.org/documentation/index.html#documentation-howto
http://www.netfilter.org/documentation/index.html#documentation-howto

• Deny all incoming traffic, except

– traffic that belongs to an established connection, and

– incoming SSH traffic (filter on transport protocol and port).

• Allow all ICMP traffic, except ICMP redirects.1

If you use tutorials or examples, please make sure you understand what the rules do.

Write your firewall configuration, preferably dumped by # iptables-save, to exercise1a.fw

(b) If you felt exercise 1a was easy, try your hand at this one. Otherwise, skip to exercise 2 and come
back if you have time left over.

Do the same for a masquerading server / router with two network cards: eth0 with IP address
198.51.100.42 and eth1 with address 10.0.0.1/24. eth1 is the internal card, the internal network
should be obvious from its address. eth0 is the external card, which is the link to the Internet. The
firewall should do the following:

• Masquerade traffic coming from the local network going to the Internet.

• Allow outgoing traffic to the Internet that’s forwarded from the local network.

• Block all outgoing traffic from the machine itself to the Internet, except for ICMP and traffic
that belongs to an established connection.

• Allow all incoming ICMP traffic.

• Allow all outgoing traffic from the machine itself to the local network.

• Block all incoming traffic from the Internet, except traffic that belongs to an established con-
nection.

• Accept incoming TCP connections on port 80 (let’s say that’s a webinterface) and port 22 from
the Internet.

• Forward TCP and UDP traffic on port 2222 and 8080 to some other host in the local network.
Feel free to pick that host yourself.

Since you likely cannot test this, simply give it your best shot. This is the type of configuration
you’d use if you use a Linux machine as your home router.

Write your firewall configuration, preferably dumped by # iptables-save, to exercise1b.fw

2. In this exercise you will use sshuttle to set up a secure tunnel to the lilo login server of the Faculty of
Science, and then inspect and analyze the resulting iptables rules. For this, you will need to use your
Faculty of Science account. If you do not have one, and do not have access to an alternative SSH server
on which sshuttle works, send me an e-mail as soon as possible.

Use the manpage of sshuttle (man sshuttle) to figure out the command to route everything through the
VPN. The remote host to use is ¡username¿@lilo.science.ru.nl, where ¡username¿ is your Science login
name. Write the command you use to exercise2. Remember to run sshuttle as root.

Now, view the resulting iptables configuration using either # iptables -t <table> -L for each table
listed in the manual page, or use # iptables-save. Write the rules to exercise2, and explain what
they do and why they route everything through the VPN. Try e.g. looking for the port number you see
in a listing of listening ports.

Feel free to play with other configurations (e.g. routing only certain networks through the VPN, or using
exceptions) and explain what the different firewall rules for these configurations do as well.

1There are other ways to handle ICMP redirects securely, however. E.g. on Linux, there is the
/proc/sys/net/ipv4/conf/*/secure redirects directive, which tells the kernel to ignore all ICMP redirects on that interface that
don’t redirect to an already known gateway.

3. In a later lecture you will be told something about OpenVPN. It is another form of VPN software than
sshuttle. For now, the main difference you need to understand is that OpenVPN provides a virtual
ethernet interface to route traffic through, in contrast to sshuttle which redirects traffic using iptables.
The result is that the routing table contains rules to route normally, as well as rules to route traffic over
the VPN.

Create a folder called exercise3 to hold the answers for this exercise.

My IP address is 145.116.128.31/22. When I’m not connected to my VPN, my routing table looks like
this:

$ route -n

Kernel IP routing table

Destination Gateway Genmask Flags Iface

0.0.0.0 145.116.128.1 0.0.0.0 UG wlp3s0

145.116.128.0 0.0.0.0 255.255.252.0 U wlp3s0

$ ip r show

default via 145.116.128.1 dev wlp3s0

145.116.128.0/22 dev wlp3s0 proto kernel scope link src 145.116.128.31

Let’s say that my VPN runs on a machine with IP address 198.51.100.42. When I connect to my VPN,
a new interface (tap0) is created, and the routing table is changed (I have slightly altered the output for
clarity):

$ route -n

Kernel IP routing table

Destination Gateway Genmask Flags Iface

1. 0.0.0.0 10.50.9.1 128.0.0.0 UG tap0

2. 128.0.0.0 10.50.9.1 128.0.0.0 UG tap0

3. 10.50.9.0 0.0.0.0 255.255.255.0 U tap0

4. 10.0.0.0 145.116.128.1 255.0.0.0 UG wlp3s0

5. 172.16.0.0 145.116.128.1 255.240.0.0 UG wlp3s0

6. 192.168.0.0 145.116.128.1 255.255.0.0 UG wlp3s0

7. 0.0.0.0 145.116.128.1 0.0.0.0 UG wlp3s0

8. 131.174.117.20 145.116.128.1 255.255.255.255 UGH wlp3s0

9. 145.116.128.0 0.0.0.0 255.255.252.0 U wlp3s0

10. 198.51.100.42 145.116.128.1 255.255.255.255 UGH wlp3s0

$ ip r show

1. 0.0.0.0/1 via 10.50.9.1 dev tap0

2. 128.0.0.0/1 via 10.50.9.1 dev tap0

3. 10.50.9.0/24 dev tap0 proto kernel scope link src 10.50.9.60

4. 10.0.0.0/8 via 145.116.128.1 dev wlp3s0

5. 172.16.0.0/12 via 145.116.128.1 dev wlp3s0

6. 192.168.0.0/16 via 145.116.128.1 dev wlp3s0

7. default via 145.116.128.1 dev wlp3s0

8. 131.174.117.20 via 145.116.128.1 dev wlp3s0

9. 145.116.128.0/22 dev wlp3s0 proto kernel scope link src 145.116.128.31

10. 198.51.100.42 via 145.116.128.1 dev wlp3s0

Other relevant information is in the DHCP leases I got:

$ dhcpcd --dumplease wlp3s0

dhcp_server_identifier=131.174.117.20

domain_name_servers=131.174.117.20

ip_address=145.116.128.31

network_number=145.116.128.0

routers=145.116.128.1

subnet_cidr=22

subnet_mask=255.255.252.0

$ dhcpcd --dumplease tap0

dhcp_server_identifier=10.50.9.1

ip_address=10.50.9.60

network_number=10.50.9.0

subnet_cidr=24

subnet_mask=255.255.255.0

For all the following questions, keep in mind that a more specific route (i.e. one that applies to a
smaller network, a smaller number of hosts) overrides more generic routes. So a route with a netmask of
255.255.255.0 (a /24) overrides any route with a netmask of 255.0.0.0 (a /8) that covers the same hosts.

Also keep in mind that the VPN server is a machine with IP address 198.51.100.42. Internally the VPN
uses the network 10.50.9.0/24, as can be seen in the dhcp lease for tap0. Finally, the dhcp protocol
requires periodic communication with the dhcp server to keep the address lease active.

In these questions, when asked “where traffic goes”, please answer with the Gateway IP address and the
interface.

(a) Look at routes 1, 2, and 7. Where does traffic not matched by any of the other routes go, and why?
Write your answer to exercise3a.

(b) Route 9 is one of the two original routes, also present when the VPN is not active. Similarly, routes
4–6 are always added by my VPN setup script. Explain what these routes accomplish. What traffic
do they match, where does that traffic go, and why?

Note the IP ranges used, and try to imagine the usage scenario for a VPN. Write your answers to
exercise3b.

(c) Explain why route 3 is necessary, in light of what routes 4–6 accomplish. Look at the dhcp lease for
the tap0 interface. Write your answer to exercise3c.

(d) Look at route 8 and the dhcp lease for the wlp3s0 interface. Why is route 8 necessary? What
happens if it is not present? Write your answer to exercise3d.

(e) Route 10 is the most important route present. Explain what it does, and what would happen if it
was not present. Also try to explain what happens when I connect e.g. to an SSH server running
on the same machine as the VPN server. Does that traffic get tunneled or not? Explain why. Write
your answers to exercise3e.

4. Take a look at RFC 5508, “NAT Behavioral Requirements for ICMP” (http://tools.ietf.org/rfc/
rfc5508.txt). Read sections 2 (especially the part on “ICMP Message Classification”), 3, 4, and 10
(looking at 9 for the requirements).

Create a folder called exercise4 for the answers.

• Why should a NAT drop inbound ICMP Error messages which do not belong to an existing NAT
session? What should it do with inbound ICMP Error messages which do belong to an existing
NAT session, and why? Write your answers to exercise4a.

• Why should a NAT drop outbound ICMP Error messages which do not belong to an existing NAT
session? What should it do with outbound ICMP Error messages which do belong to an existing
NAT session, and why? Write your answers to exercise4b.

• Explain in your own words how NAT for ICMP works for the three different kinds of ICMP packets.
Highlight some (two or three) security concerns, explain them, and explain how they are mitigated.
Write your answers to exercise4c.

5. Place the files and directories exercise1, exercise2, exercise3, and exercise4, and all their contents
in a folder called netsec-assignment4-STUDENTNUMBER1-STUDENTNUMBER2. Replace STUDENTNUMBER1

and STUDENTNUMBER2 by your respective student numbers, and accomodate for extra / fewer student
numbers. Make a tar.gz archive of the whole netsec-assignment4-STUDENTNUMBER1-STUDENTNUMBER2

directory and submit this archive in Blackboard.

http://tools.ietf.org/rfc/rfc5508.txt
http://tools.ietf.org/rfc/rfc5508.txt

