
Network Security
Encrypting Network Communication

Radboud University, The Netherlands

Autumn 2015

Acknowledgement

Slides (in particular pictures) are based on lecture slides by Ruben
Niederhagen (http://polycephaly.org)

Network Security – Encrypting Network Communication 2

http://polycephaly.org

A short recap

I Hostname resolution in the Internet uses DNS
I Two kinds of servers: authoritative and caching
I Two kinds of requests: iterative and recursive
I DNS tunneling:

I Encode (SSH) traffic in DNS requests to authoritative server
I Special authoritative server extracts and handles SSH data

I DNS DDOS amplification:
I Send DNS request with spoofed target IP address
I Much larger reply launched onto target

I DNS spoofing/cache poisoning: provide wrong DNS data
I Blind spoofing: cannot see (but trigger) request
I Countermeasure against blind spoofing: randomization
I Most powerful attack: sniffing DNS spoofing
I Countermeasures: Use crypto to protect DNS

I DNSSEC (with various problems)
I Alternative: DNSCurve

Network Security – Encrypting Network Communication 3

A longer recap

I So far in this lecture: various attacks (often MitM):
I ARP spoofing
I Routing attacks
I DNS Attacks

I Conclusion: sniffing (and modifying) network traffic is not dark arts
I It’s doable for 2nd-year Bachelor students
I It’s even easier for administrators of routers
I So far, relatively little on countermeasures. . . so, what now?

Network Security – Encrypting Network Communication 4

Network Security – Encrypting Network Communication 5

Cryptography in the TCP/IP stack

application layer

transport layer

network layer

data-link layer

physical layer

Alice

application layer

transport layer

network layer

data-link layer

physical layer

Bob

application data (HTTP, SMTP...)

session (TCP, UDP, ...)

IP packets

frames

I Application-layer security (e.g., PGP, S/MIME, OTR)
I Transport-layer security (e.g., TLS/SSL)
I Network-layer security (e.g., IPsec)
I Link-layer security (e.g., WEP, WPA, WPA2)

Network Security – Encrypting Network Communication 6

Link-layer security

data-link layer security

I Encrypt all network packets between network links, e.g., WPA2
I Point-to-point security between network interfaces
I “Encrypt to a MAC address”

Network Security – Encrypting Network Communication 7

Network-layer security

LAN router ISP router

Internet

network layer security

I Encrypt IP packets, main protocol: IPsec
I Point-to-point security between entities identified by IP addresses,

typically routers or firewalls
I Routers encrypt and decrypt unnoticed by higher layers
I “Encrypt to an IP address”

Network Security – Encrypting Network Communication 8

Transport-layer security

Internet

web server application server

transport layer security

I Encrypt sessions and messages, e.g. TLS/SSL
I communication between web browser and server,

or email clients and servers
I entities identified by connections, port numbers
I “Encrypt to a server process”
I part of the communication might still be unprotected

(to application server or between mail servers)

Network Security – Encrypting Network Communication 9

Transport-layer security

mail server

Internet

mail server

SMTP

transport layer security

IMAP

transport layer security

Network Security – Encrypting Network Communication 10

Application-layer security

mail server

Internet

mail server

application layer security

I Add security to standard message formats
I For email: entire link between two user mail clients is protected
I authentication of sender and data
I end users have control over their keys

(but need to know what they are doing, how to use PKI)
I end-to-end security (“encrypt to an e-mail address”)

Network Security – Encrypting Network Communication 11

IPsec

I Obvious first reflex: we want end-to-end security
I How many people here regularly encrypt e-mail?
I How many people here already did before first-semester “Security”

lecture?
I Problem with application-level security: users

I Need to rewrite every single application
I Need users to switch to secured applications
I Need users to take care of keys

I Transport-layer security needs applications to be modified to use
secure transport layer

I Idea of network-layer security: No need to change applications (or
user behavior)

I IPsec’s promise: network security happening without you even
noticing

Network Security – Encrypting Network Communication 12

IPsec – Modes of Operation

Transport mode:
I Only the payload of the IP packet is protected
I Data is protected from source to destination
I Header information is completely in the clear
I Used only between hosts

Tunnel mode:
I Entire IP packet is protected (i.e. IP header and data)
I Becomes the payload of a new IP packet
I May contain different source and destination addresses
I Can be used between hosts, gateways, or host-gateway

Network Security – Encrypting Network Communication 13

IPsec – Modes of Operation

host gateway

Internet

gateway host

transport mode (or tunnel mode)

host

local network

gateway

Internet

gateway

local network

tunnel modetunnel mode

Network Security – Encrypting Network Communication 14

IPsec Protocols

I Authentication Header (AH)
I Encapsulating Security Payloads (ESP)
I Security Associations (SA)

Network Security – Encrypting Network Communication 15

IPsec – Authentication Header

The Authentication Header provides
I data integrity,
I authentication of IP packets,
I protection against replay attacks.

First two by use of a Message Authentication Code (MAC),
e.g. HMAC-SHA1-96.

IP packet is expanded with an AH that contains items such as:
I next header — type of the header following this header,
I payload length — length of AH,
I Security Parameter Index (SPI) — identifies an SA,
I sequence number,
I authentication data — contains the MAC of the packet,

also called Integrity Check Value (ICV).

Network Security – Encrypting Network Communication 16

IPsec – Authentication Header

original IP Datagram (encapsulated)Auth. Header

Next Header
4

IP Header

Protocol
51

Authenticated Fields

IP DataIP Header

Protocol
6

Auth. Header

Next Header
6

IP Header

Protocol
51

Authenticated Fields

IPSec Transport ModeIPSec Tunnel Mode

TCP
Header

TCP Segment Data

ICV (truncated HMAC) is computed over:

I immutable IP header fields (fields that do not change in transit),
e.g., source address, IP header length,

I Auth. Header (except authentication data field),
I IP data.

Excluded fields are set to zero for HMAC computation.

Network Security – Encrypting Network Communication 17

IPsec – Authentication Header

Anti-replay protection prevents resending copies of authenticated packets.

I Uses sequence number field.
I For each new SA, sequence counter set to 0.
I Keep track of overflow (sequence number is 32 bits),

negotiate new SA when counter reaches 232 − 1.
I Check whether counter is in window of fixed size.
I Right edge = highest sequence number so far received

(with valid authentication).
I Mark numbers of received packets with valid authentication.
I Advance window if new sequence number falls to the right of window

and packet authenticates.
I Discard packet if number falls to the left of window or packet does

not authenticate.

Network Security – Encrypting Network Communication 18

IPsec – Encapsulating Security Payload (ESP)

The Encapsulating Security Payload provides:
I confidentiality, i.e. encryption with block cipher in CBC mode, e.g.

AES-CBC,
I functionality as in AH-like authentication, anti-replay (optional).

ESP adds an ESP header, encrypts the payload and adds an ESP trailer.
An ESP packet contains:

I security parameter index (SPI),
I sequence number,
I payload data (encrypted),
I padding – to achieve data length a multiple of 32 bits (encrypted),
I padding length (encrypted),
I next header (encrypted),
I (optional) authentication data.

Network Security – Encrypting Network Communication 19

IPsec – Encapsulating Security Payload

original IP Datagram (encapsulated and encrypted)ESP Header ESP Trailer

Next Header
4

ESP Auth.
DataIP Header

Protocol
50

Encrypted Fields

Authenticated Fields

IP DataIP Header

Protocol
6

ESP Header ESP Trailer

Next Header
6

ESP Auth.
DataIP Header

Protocol
50

Encrytped Fields

Authenticated Fields

IPSec Transport ModeIPSec Tunnel Mode

TCP
Header

TCP Segment Data

I In transport mode, only data is encrypted,
i.e. source and destination are in the clear

I In tunnel mode, the whole package is encrypted,
i.e. real source and destination addresses are hidden

I Authentication not over IP header fields, only ESP header and data

Network Security – Encrypting Network Communication 20

IPsec – Security Associations

I Concept to formalize unidirectional security relationships between
two parties

I Security Association Database (SADB) contains list of active
security associations (SA)

SA parameters:
I sequence number, sequence number overflow
I anti-replay window
I AH information: authentication algorithm, key, key lifetime, etc.
I ESP information: encryption algorithm, key, key lifetime, etc.
I lifetime of the SA
I IPsec protocol mode (tunnel or transport)
I maximal packet size

Network Security – Encrypting Network Communication 21

IPsec - crypto algorithms (until 2014)

See RFC 4835 (now obsolete)
I Encryption: block ciphers in Cipher Block Chaining (CBC) mode

Must have:
I NULL encryption (RFC 2410)
I AES-CBC with 128-bit keys
I TripleDES-CBC (168-bit keys)

I Message authentication/integrity: Hash-based Message
Authentication Code (HMAC),
Must have:

I HMAC-SHA1-96
May have:

I HMAC-MD5-96
I These are symmetric algorithms, need a pre-shared secret key
I Different options for key-agreement protocols: PSK, Internet Key

Exchange (IKE, IKE2), Kerberos (KINK), IPSECKEY DNS records

Network Security – Encrypting Network Communication 22

http://www.ietf.org/rfc/rfc4835.txt
https://www.ietf.org/rfc/rfc2410.txt

IPsec - crypto algorithms (since 2014)

See RFC 7321

Old Requirement New Requirement Algorithm
MAY SHOULD+ AES-GCM with a 16 octet ICV
MAY SHOULD+ AES-GMAC with AES-128
MUST- MAY TripleDES-CBC
SHOULD NOT MUST NOT DES-CBC
SHOULD+ SHOULD AES-XCBC-MAC-96
SHOULD MAY AES-CTR

Network Security – Encrypting Network Communication 23

http://www.ietf.org/rfc/rfc7321.txt

IPsec problems
I Crypto of IPsec is not really state of the art
I IPsec ESP allows (in principle) encryption without authentication
I Attack by Degabriele and Paterson, 2007
I Consequence: don’t use encrypt-only!
I IPsec AH authenticates IP header (incl. source and dest.)
I NAT changes IP header (source or dest.)
I Possible to get IPsec through NAT, but requires extra effort
I Most important problem: It’s complicated!

“The first two generations of these documents (principally RFCs
1825–1829, published in 1995, and 2401–2412, published in 1998) are
really only intended to provide a guide for implementors and are
notoriously complex, difficult to interpret and lacking in overall structure.

. . .

The third and latest incarnation of the core IPsec standards were
published as RFCs 4301–4309 in December 2005, and are somewhat
more accessible.

. . .

However, the new RFCs are still a long and complex set of documents,
totalling over 300 pages.” —Paterson, 2006

Network Security – Encrypting Network Communication 24

Some more quotes. . .

“We are of two minds about IPsec. On the one hand, IPsec is far better
than any IP security protocol that has come before: Microsoft PPTP,
L2TP, etc. On the other hand, we do not believe that it will ever result in
a secure operational system. It is far too complex, and the complexity
has lead to a large number of ambiguities, contradictions, inefficiencies,
and weaknesses. It has been very hard work to perform any kind of
security analysis; we do not feel that we fully understand the system, let
alone have fully analyzed it.” —Ferguson, Schneier, 2003

Network Security – Encrypting Network Communication 25

Userspace VPN

I Sort-of alternative to IPsec tunnel: sshuttle (“poor-man’s VPN”)
I Disadvantages:

I You need SSH access to the target
I Need iptables rules to redirect traffic

I Generalize this idea: user-space VPN
I Software that authenticates users and tunnels traffic
I Examples: SSH, OpenVPN
I Question: How does the software get the traffic to tunnel (preferably

without iptables)

Network Security – Encrypting Network Communication 26

TUN interfaces
I Linux provides TUN (tunneling) “software network interface”
I For routing, this acts like any other interface
I Output IP packets are fed into software that reads from file

/dev/net/tun
I Use this mechanism to set up VPN between tyrion and arya with

SSH:
tyrion # echo 1 > /proc/sys/net/ipv4/ip_forward
tyrion # ip tuntap add dev tun3 mode tun
tyrion # ip addr add dev tun3 10.0.5.1/24
tyrion # ip l set dev tun3 up

arya # echo 1 > /proc/sys/net/ipv4/ip_forward
arya # ip tuntap add dev tun5 mode tun
arya # ip addr add dev tun5 10.0.5.2/24
arya # ip l set dev tun5 up

tyrion # ssh -o Tunnel=point-to-point -w 3:5 arya

I Now try:
tyrion # ping 10.0.5.2

Network Security – Encrypting Network Communication 27

TAP interfaces
I TUN interfaces input/output IP packets
I Alternative: TAP interfaces that input/output ethernet frames
I Example (again with SSH)

tyrion # echo 1 > /proc/sys/net/ipv4/ip_forward
tyrion # ip tuntap add dev tap3 mode tap
tyrion # ip addr add dev tap3 10.0.5.1/24
tyrion # ip l set dev tap3 up

arya # echo 1 > /proc/sys/net/ipv4/ip_forward
arya # ip tuntap add dev tap5 mode tap
arya # ip addr add dev tap5 10.0.5.2/24
arya # ip l set dev tap5 up

tyrion # ssh -o Tunnel=ethernet -w 3:5 arya

I Now try:
tyrion # ping 10.0.5.2

I You receive ARP packets through TAP
I The hosts are logically connected on the link layer
I They in the same broadcast domain

Network Security – Encrypting Network Communication 28

SSL/TLS

Secure Sockets Layer (SSL) and Transport Layer Security
(TLS):

I TLS is a variant of SSLv3
I SSL originally designed for web environment by Netscape
I Design goals: security of web traffic, email, etc.
I Had to work well with HTTP
I Provides transparency for higher layers

SSL/TLS provides a secure channel between server and client:

I Confidentiality
I Server (and client) authentication
I Message integrity

Network Security – Encrypting Network Communication 29

SSL/TLS

SSL/TLS runs on top of TCP:

I Transparent for application-layer protocols
I SSL/TLS connection acts like a secured TCP connection
I Most protocols running over TCP can be run over SSL/TLS instead

e.g., HTTP → HTTPS, SMTP → SMTPS, . . .

Protocols in SSL/TLS:

I Handshake Protocol: initiate session,
Authenticate server/client, establish keys

I Record Protocol: data transfer,
Compute MAC for integrity, encrypt MAC and data

I Alert Protocol: alert the other side of exceptional conditions,
e.g., errors and warnings.

Network Security – Encrypting Network Communication 30

SSL/TLS Handshake

I Client → Server: ClientHello
I ClientRandom: random number,
I Session ID (when resuming a session),
I List of available CipherSuites:

pk key exchange, pk auth, sym encryption, hash alg.

Example: TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256

ECDH Elliptic curve Diffie Hellman key exchange.
ECDSA Elliptic curve digital signature algorithm.
AES_128_CBC AES with 128-bit key in CBC mode.
SHA256 SHA with 256-bit output for HMAC.

Network Security – Encrypting Network Communication 31

SSL/TLS Handshake (cont.)

I Server → Client: ServerHello
I ServerRandom: random number,
I Session ID: implementation specific, random number
I Chosen CipherSuite.

I Server → Client: Certificate
I Server sends server certificate to client,

client obtains server’s public key and verifies certificate.
I Server → Client: ServerKeyExchange

for DHE: P a, random a,
for ECDHE: [a]P , random a,
for RSA: –

I Server → Client: ServerHelloDone
I Message marks end of server messages.

Network Security – Encrypting Network Communication 32

SSL/TLS Handshake (cont.)

I Client → Server: ClientKeyExchange
for DHE: P b for a random b,
for ECDHE: [b]P for a random b,
for RSA: random value encrypted with server’s public key.

I Client → Server: ChangeCipherSpec
I Notify that client switched to new CipherSuite.

I Client → Server: Finished
I Encrypted Finished message containing hash over the previous

handshake messages.

I For DHE and ECDHE, client and server compute joint session key.

Network Security – Encrypting Network Communication 33

SSL/TLS Handshake (cont.)

I Server → Client: ChangeCipherSpec
I Notify that server switched to new CipherSuite.

I Server → Client: Finished
I Encrypted Finished message containing hash over the previous

handshake messages.

Interrupted session can be resumed:
I Server and client are supposed to store session ID and MasterSecret,
I client sends session ID in ClientHello,
I reduced protocol: Hello, ChangeCipherSpec and Finished messages,
I new keying data is exchanged,
I new session keys are derived.

Network Security – Encrypting Network Communication 34

SSL/TLS Record Protocol

Record protocol to exchange encrypted and authenticated
data:

I Payload data is split into fragments
which are protected and transmitted independently;
when received, fragments are decrypted and verified independently.

I Each fragment is authenticated with a MAC which is appended;
MAC is over a sequence number (anti-replay) and the content.

I Data fragment and MAC are encrypted.
I A record header is attached to the encrypted data,

containing information necessary for interpreting the record
such as type of data (e.g. Handshake or ApplicationData),
length, and SSL version.

I (header || encrypted fragment and MAC) is sent.

Network Security – Encrypting Network Communication 35

Which SSL/TLS Cipher Suites to use?

NULL and EXPORT
I NULL obviously provides no protection
I EXPORT ciphers are very low-security
I US export laws used to forbid strong crypto
I Strong crypto was considered a weapon
I EXPORT ciphers are a leftover from that time

Network Security – Encrypting Network Communication 36

Which SSL/TLS Cipher Suites to use?

DES
I Data Encryption Standard from 1976
I Extremely low-security 56-bit key
I Some sort of fix: 3DES (112-bit or 168-bit key)
I Main problem with 3DES: it’s slow

MD5
I Hash algorithm by Rivest from 1992
I Collision-resistance totally broken
I Also more advanced attacks (chosen-prefix collision attack)
I Weaknesses used to create a rogue CA certificate in 2008
I Weaknesses used against Windows update in Flame malware

Network Security – Encrypting Network Communication 37

Which SSL/TLS Cipher Suites to use?

RC4
I Stream cipher by Rivest from 1987
I Multiple attacks, also against its use in TLS (AlFardan, Bernstein,

Paterson, Poettering, Schuldt, 2013).
I Appelbaum, 2013: “RC4 is broken in real time by the #NSA”

CBC Mode
I CBC needs full blocks of plaintext
I Use padding to fill up to full block
I Padding oracle: Decryption leaks whether padding is correct
I TLS before 1.1: check MAC only if padding is correct
I Different error message for incorrect padding or incorrect MAC
I Fix: always check MAC, but “small timing channel” (RFC 4346)
I Timing channel exploited by “Lucky 13” attack (AlFardan and

Paterson, 2013)

Network Security – Encrypting Network Communication 38

https://tools.ietf.org/rfc/rfc4346.txt

Which SSL/TLS Cipher Suites to use?

anonymous
I “anonymous” ciphers don’t use certificates
I Susceptible to a MitM attack

PSK
I Pre-shared keys (PSK) only practical in special environments
I Advantage: faster crypto
I Can be easier in small closed environments
I Doesn’t scale for the Internet

Network Security – Encrypting Network Communication 39

Which SSL/TLS Cipher Suites to use?

Use ephemeral key exchange!
I Can encrypt with long-term public key
I Problem: key gets compromised, read all old messages
I Better: use long-term public key for authentication
I Agree on new (ephemeral) encryption key for each session
I This is known as perfect forward secrecy
I Use ciphers containing DHE or ECDHE

Network Security – Encrypting Network Communication 40

Which SSL/TLS Cipher Suites to use?

DSS and ECDSA
I DSS and ECDSA need random value for each signature
I Small biases in randomness are disastrous
I Attacker can compute signing key from various messages with few

known “random” bits
I Bad ECDSA randomness allowed Sony PS3 crack

AES-GCM
I AES-GCM only available since TLS 1.2
I Consists of AES in counter mode and GHASH
I GHASH is designed for hardware implementation
I Intel built AES and GHASH hardware support into their recent CPUs
I Terribly hard to implement fast and securely in software
I Matter of time until we see timing attacks?

Network Security – Encrypting Network Communication 41

What now?
A reasonable selection of algorithms

I AES-GCM is quite good for many CPUs
I AES-CBC is not so terrible (after implementation fixes)
I DSS and ECDSA is maybe (hopefully!) not that much of a problem
I Client-side selection of algorithms is a tradeoff:

I I really only want ECDHE, RSA, AES-GCM, SHA2
I I also want to connect to at least a few web sites

I Good test: https://howsmyssl.com

Better algorithms in the future?
I Biggest problem: no fully satisfactory symmetric authenticated

encryption
I Current IETF draft by Langley: ChaCha20 and Poly1305 for TLS:

https://tools.ietf.org/html/
draft-agl-tls-chacha20poly1305-01

I ChaCha20 is a state-of-the art stream cipher
I Poly1305 is a state-of-the art authenticator
I Both designed by Bernstein
I Both very efficient in software

Network Security – Encrypting Network Communication 42

https://howsmyssl.com
https://tools.ietf.org/html/draft-agl-tls-chacha20poly1305-01
https://tools.ietf.org/html/draft-agl-tls-chacha20poly1305-01

Who do you trust?

I HTTPS (HTTP over SSL/TLS) uses pre-installed root certificates in
the browser

I Operating systems come with various pre-installed certificates
I Authenticating a communication partner means: follow chain of

trust to root CA
I Compromise one root CA and all browsers are compromised
I Forge a root CA’s certificate and all browsers are compromised
I Rogue CA certificate from MD5 vulnerabilities, 2008:

http://www.win.tue.nl/hashclash/rogue-ca/
I DigiNotar compromised in 2011: >300,000 Iranian Gmail users

compromised

Network Security – Encrypting Network Communication 43

http://www.win.tue.nl/hashclash/rogue-ca/

SSLstrip

I Marlinspike, 2009: sslstrip
I Possible for an active attacker to “avoid” HTTPS
I Idea: rewrite links from HTTPS to HTTP
I Requires that client does not enforce HTTPS
I More details:

I Erik’s lecture on Web Security
I http://www.thoughtcrime.org/software/sslstrip/

Network Security – Encrypting Network Communication 44

http://www.thoughtcrime.org/software/sslstrip/

OpenSSL Heartbleed Bug

Bug in the implementation of the Heartbeat Extension (RFC 6520):

struct {
HeartbeatMessageType type;
uint16 payload_length;
opaque payload[HeartbeatMessage.payload_length];
opaque padding[padding_length];

} HeartbeatMessage;

[...]
When a HeartbeatRequest message is received [...],
the receiver MUST send a corresponding HeartbeatResponse
message carrying an exact copy of the payload of the received
HeartbeatRequest.

OpenSSL failed to check actual length of payload data.

Network Security – Encrypting Network Communication 45

https://tools.ietf.org/rfc/rfc6520.txt

OpenSSL Heartbleed Bug

Network Security – Encrypting Network Communication 46

How much web traffic is encrypted?

Network Security – Encrypting Network Communication 47

How much web traffic is encrypted?

From the article:

“Early last year–before the Snowden revelations–encrypted traffic
accounted for 2.29 percent of all peak hour traffic in North America,
according to Sandvine’s report. Now, it spans 3.8 percent. But that’s a
small jump compared to other parts of the world. In Europe, encrypted
traffic went from 1.47 percent to 6.10 percent, and in Latin America, it
increased from 1.8 percent to 10.37 percent.”

—Klint Finley on wired.com, May 16, 2014.

Network Security – Encrypting Network Communication 47

