
Hacking in C
Pointers

Radboud University, Nijmegen, The Netherlands

Spring 2019

Allocation of multiple variables

Consider the program

main(){

char x;

int i;

short s;

char y;

....

}

What will the layout of this data in memory be?
Assuming 4-byte ints, 2-byte shorts, and little endian architecture

2

Printing addresses where data is located

We can use & to see where data is located

char x; int i; short s; char y;

printf("x is allocated at %p \n", &x);

printf("i is allocated at %p \n", &i);

printf("s is allocated at %p \n", &s);

printf("y is allocated at %p \n", &y);

// Here %p is used to print pointer values

Compiling with or without -O2 will reveal different alignment strategies

3

Data alignment

Memory as a sequence of bytes
. . . x i0 i1 i2 i3 s0 s1 y . . .

But on a 32-bit machine, the memory is a sequence of 4-byte words

x i0 i1 i2
i3 s0 s1 y

. . .

Now the data elements are not nicely aligned with the words,
which will make execution slow, since CPU instructions act on words.

4

Data alignment

Different allocations, with better/worse alignment

x i0 i1 i2
i3 s0 s1 y

. . .

Lousy alignment, but
uses minimal memory

x

i0 i1 i2 i3
s0 s1

y

Optimal alignment,
but wastes memory

s0 s1 x y

i0 i1 i2 i3

. . .

Possible compromise

5

Data alignment

Compilers may introduce padding or change the order of data in memory
to improve alignment.

There are trade-offs here between speed and memory usage.

Most C compilers can provide many optional optimizations. E.g., use

man gcc

to check out the many optimization options of gcc.

6

Arrays

7

Arrays

An array contains a collection of data elements with the same type.
The size is constant.

int test_array[10];

int a[] = {30,20};

test_array[0] = a[1];

printf("oops %d \n", a[2]); //will compile & run

Array bounds are not checked.
Anything may happen when accessing outside array bounds. The
program may crash, usually with a segmentation fault (segfault).

8

Array bounds checking

The historic decision not to check array bounds is responsible for in the
order of 50% of all the security vulnerabilities in software, in the form of
so-called buffer overflow attacks.

Other languages took a different (more sensible?) choice here. E.g.
ALGOL60, defined in 1960, already included array bound checks.

9

Typical software security vulnerabilities

Security bugs found in Microsoft’s first security bug fix month (2002)

Here buffer overflows are platform-specific.
Some of the code defects and input validation problems might also be.
Crypto problems are much more rare, but can be of very high impact.

10

Array bounds checking

Tony Hoare in Turing Award
speech on the design principles of ALGOL 60

“The first principle was
security: . . . A consequence of this principle is that
every subscript was checked at run time against
both the upper and the lower declared bounds
of the array. Many years later we asked our
customers whether they wished us to provide an
option to switch off these checks in the interests
of efficiency. Unanimously, they urged us not to –
they knew how frequently subscript errors occur on production runs
where failure to detect them could be disastrous. I note with fear and
horror that even in 1980, language designers and users have not learned
this lesson. In any respectable branch of engineering, failure to observe
such elementary precautions would have long been against the law.”

[C.A.R.Hoare, The Emperor’s Old Clothes, Communications of the ACM, 1980]

11

Overrunning arrays

Consider the program

int y = 7;

char a[2];

int x = 6;

printf("oops %d \n", a[2]);

What would you expect this program to print?

If the compiler allocates x directly after a, then (on a little-endian
machine) it will print 6.
There are no guarantees! The program could simply crash, or return any
other number, re-format the hard drive, explode, . . .

By overrunning an array we can try to reverse-engineer the memory
layout

12

Arrays and alignment

The memory space allocated for an array is guaranteed to be contiguous,
i.e. a[1] is allocated right after a[0].

For good alignment, a compiler could again add padding at the end of
arrays.
E.g. a compiler might allocate 16 bytes rather than 15 bytes for

char text[15];

13

Arrays are passed by reference

Arrays are always passed by reference.

For example, given the function

void increase_elt(int x[]) {

x[1] = x[1]+23;

}

What is the value of a[1] after executing the following code?

int a[2] = {1, 2};

increase_elt(a);

25

Recall call by reference from Imperative Programming

14

Pointers

15

Retrieving addresses of pointers using &

We can find out where some data is allocated using the & operation.
If

int x = 12;

then &x is the memory address where the value of x is stored,
aka a pointer to x.

12

↑

&x

It depends on the underlying architecture how many bytes are needed to
represent addresses: 4 on 32-bit machines, 8 on a 64-bit machine.

16

Declaring pointers

Pointers are typed:
the compiler keeps track of what data type a pointer points to

int *p; // p is a pointer that points to an int

float *f; // f is a pointer that points to a float

17

Creating and dereferencing pointers

Suppose

int y, z; int *p; // i.e. p points to an int

How can we create a pointer to some variable? Using &

y = 7

p = &y; // assign the address of y to p

How can we get the value that a pointer points to? Using *

y = 7

p = &y; // pointer p now points to y

z = *p; // give z the value of what p points to

Looking up what a pointer points to, with *, is called dereferencing.

18

Confused? draw pictures!

int y = 7;

int *p = &y; // pointer p now points to cell y

int z = *p; // give z the value of what p points to

19

Pointer quiz

What is the value of y?

int y = 2;

int x = y;

y++;

x++;

3

What is the value of y?

int y = 2;

int *x = &y;

y++;

(*x)++;

4

20

Note that * is used for 3 different purposes, with 3 different meanings

1. In declarations, to declare pointer types

int *p; // p is a pointer to an int

// i.e. *p is an int

2. As a prefix operator on pointers

int z = *p;

3. Multiplication of numeric values

Some legal C code can get confusing, e.g.

z = 3 * *p

21

Style debate: int* p or int *p?

What can be confusing in

int *p = &y;

is that this is an assignment to p, not *p

Some people prefer to write

int* p = &y;

but C purists will argue this is C++ style.

Downside of writing int*

int* x, y, z;

declares x as a pointer to an int and y and z as int. . .

22

Still not confused?

x = 3;

p1 = &x;

p2 = &p1;

z = **p2 + 1;

What will the value of z be?

What should the types of p1 and p2 be?

23

Still not confused? pointers to pointers

int x = 3;

int *p1 = &x; // p1 points to an int

int **p2 = &p1; // p2 points to a pointer to an int

int z = **p2 + 1;

24

Pointer test (Hint: example exam question)

int y = 2;

int z = 3;

int* p = &y;

int* q = &z;

(*q)++;

*p = *p + *q;

q = q + 1;

printf("y is %d\n", y);

What is the value of y at the end?
6
What is the value of *p at the end?
6
What is the value of *q at the end?
We don’t know! q points to some memory cell after z in the memory

25

Pointer arithmetic

You can use + and - with pointers.
The semantics depends on the type of the pointer:

adding 1 to a pointer will go to the “next” location, given the size and
the data type that it points to.

For example, if

int *ptr; char *str;

then
ptr + 2 means “Add 2 * sizeof(int) to the address in ptr”
str + 2 means “Add 2 to the address in str”
(because sizeof(char) is 1)

26

Using pointers as arrays

The way pointer arithmetic works means that a pointer to the head of an
array behaves like an array.

Suppose

int a[10] = {1,2,3,4,5,6,7,8,9,19};

int *p = (int *) &a; // the address of the head of a

// treated as pointer to an int

Now

p + 3

points to

a[3]

So we use addition to pointer p to move through the array

27

Pointer arithmetic for strings

What is the output of

char *msg = "hello world";

char *t = msg + 6;

printf("t points to the string %s.", t);

This will print

t points to the string world.

28

Arrays vs pointers

Arrays and pointers behave similarly, but are very different in memory
Consider

int a[]; int *p

A difference: a will always refer to the same array,
whereas p can point to different arrays over time

29

Using pointers as arrays
Suppose

int a[10] = {1,2,3,4,5,6,7,8,9,10};

Then

int sum = 0;

for (int i = 0; i != 10; i++) {

sum = sum + a[i];

}

can also be implemented using pointer arithmetic

int sum = 0;

for (int *p = (int

This cast is needed
because a is an
integer array, so
&a is a pointer to
int[], not pointer
to an int.
An alternative
would be to write
*p = &(a[0])

*)&a; p != &(a

Instead of p != &(a[10])

we could also write
p != ((int *)&a)+10

[10]); p++) {

sum = sum + *p;

}

But nobody in their right mind would ,
30

A problem with pointers: . . .

int i; int j; int *x;

...

// lots of code omitted

i = 5;

j++

// what is the value of i here?

(*x)++;

// what is the value of i here?

5

5 or 6, depending on
whether *x points to
i

31

Two pointers are called aliases if they point to the same
location

int i = 5;

int *x = &i;

int *y = &i;

// x and y are aliases now

(*x)++;

// now i and *y have also changed to 6

Keeping track of pointers, in the presence of potential aliasing, can be
really confusing, and really hard to debug. . .

32

Recap – so far

We have seen pointers, e.g. of type char *p

with the operations * and &

These are tricky to understand, unless you draw pictures

We can have aliasing, where two names, say *p and c, can refer to the
same variable (location in memory)

We can use pointer arithmetic, and e.g. write *(p+1), and use this to
access arrays

Confusingly, the meaning of addition for pointers depends on their
type, as +1 for pointers of type int * really means +sizeof(int)

33

The potential of pointers: inspecting raw memory

To inspect a piece of raw memory, we can cast it to a

unsigned char *

and then inspect the bytes

float f = 3.14;

unsigned char *p = (unsigned char *) &f;

printf("The representation of float %f is", f);

for (int i = 0; i < sizeof(float); i++, p++);) {

printf("%d", *p);

}

printf("\n");

34

Turning pointers into numbers

intptr_t defined in stdint.h is an integral type that is guaranteed to
be wide enough to hold pointers.

int *p; // p points to an int

intptr_t i = (intptr_t) p; // the address as a number

p++;

i++;

// Will i and p be the same?

// No! i++ increases by 1, p++ with sizeof(int)

There is also an unsigned version of intptr_t: uintptr_t

35

Strings

36

Strings

Having seen arrays and pointers, we can now understand C strings

char *s = "hello world\n";

C strings are char arrays, which are terminated by a special null
character, aka a null terminator, which is written as \0

There is a special notation for string literals, between double quotes,
where the null terminator is implicit.

As other arrays, we can use both the array type char[] and the pointer
type char * for them.

37

String problems

Working with C strings is highly error prone!
There are two problems

1. As for any array, there are no array bounds checks
so it’s the programmer’s responsibility not to go outside the array
bounds

2. It is also the programmer’s responsibility to make sure that the
string is properly terminated with a null character.
If a string lacks its null terminator, e.g. due to problem 1, then
standard functions to manipulate strings will go off the rails.

38

Safer strings and array?

There is no reason why programming language should not provide safe
versions of strings (or indeed arrays).
Other languages offer strings and arrays which are safer in that:

1. Going outside the array bounds will be detected at runtime (e.g.
Java)

2. Which will be resized automatically if they do not fit (e.g. Python)

3. The language will ensure that all strings are null-terminated (e.g.
C++, Java and Python)

More precisely, the programmer does not even have to know how strings
are represented, and whether null-terminator exists and what they look
like: the representation of strings is completely transparant/invisible to
the programmer.

Moral of the story: if you can, avoid using standard C strings.
E.g. in C++, use C++ type strings; in C, use safer string libraries.

39

A final string pecularity

Strig literals, as in

char *msg = "hello, world";

are meant to be constant or read-only: you are not supposed to change
the character that made up a string literal.

Unfortunately, this does not mean that C will prevent this. It only means
that the C standard defines changing a character in a string literal as
having undefined behaviour /

E.g.

char *t = msg + 6;

*t = ’;’;

Has undefined behaviour, i.e. anything may happen.
Compilers can emit warnings if you change string literals, e.g.

gcc -Wwrite-strings

40

Recap

We have seen

◮ The different C types
◮ primitive types

(unsigned) char, short, int, long, long long, float ...
◮ implicit conversions and explicit conversions (casts) between them
◮ arrays int[]
◮ pointers int * with the operations * and &
◮ C strings, as special char arrays

◮ Their representation

◮ How these representations can be ’broken’, i.e. how we can inspect
and manipulate the underlying representation (e.g. with casts)

◮ Some things that can go wrong
e.g. due to access outside array bounds or integer under/overflow

41

