
Pointers (continued),
arrays and strings

1

Last week

We have seen pointers, e.g. of type char *p

with the operators * and &
These are tricky to understand, unless you draw pictures

2

Pointer arithmetic

You can use + and - with pointers.
The semantics depends on the type of the pointer:

adding 1 to a pointer will go to the “next” location, given the size and
the data type that it points to.

3

Pointer arithmetic

You can use + and - with pointers.
The semantics depends on the type of the pointer:

adding 1 to a pointer will go to the “next” location, given the size and
the data type that it points to.

For example, if

int *ptr; char *str;

then
ptr + 2 means ptr + 2 * sizeof(int)

str + 2 means str + 2

because sizeof(char) is 1

3

Using pointers as arrays

The way pointer arithmetic works means that a pointer to the head of an
array behaves like an array.

Suppose

int a[10] = {1,2,3,4,5,6,7,8,9,19};

int *p = (int *) &a; // the address of the head of a

// treated as pointer to an int

4

Using pointers as arrays

The way pointer arithmetic works means that a pointer to the head of an
array behaves like an array.

Suppose

int a[10] = {1,2,3,4,5,6,7,8,9,19};

int *p = (int *) &a; // the address of the head of a

// treated as pointer to an int

Now

p + 3

points to

a[3]

So we use addition to pointer p to access the array

4

Pointer arithmetic for strings

What is the output of

char *msg = "hello world";

char *t = msg + 6;

printf("t points to the string %s.", t);

5

Pointer arithmetic for strings

What is the output of

char *msg = "hello world";

char *t = msg + 6;

printf("t points to the string %s.", t);

This will print

t points to the string world.

5

Arrays vs pointers

Arrays and pointers behave similarly, but are very different in memory
Consider

int a[]; int *p

6

Arrays vs pointers

Arrays and pointers behave similarly, but are very different in memory
Consider

int a[]; int *p

A difference: a will always refer to the same array,
whereas p can point to different arrays over time

6

Using pointers as arrays

Suppose

int a[10] = {1,2,3,4,5,6,7,8,9,10};

Then

int sum = 0;

for (int i = 0; i != 10; i++) {

sum = sum + a[i];

}

can also be implemented using pointer arithmetic

7

Using pointers as arrays

Suppose

int a[10] = {1,2,3,4,5,6,7,8,9,10};

Then

int sum = 0;

for (int i = 0; i != 10; i++) {

sum = sum + a[i];

}

can also be implemented using pointer arithmetic

int sum = 0;

for (int *p = (int

This cast is needed
because a is an
integer array, so
&a is a pointer to
int[], not pointer
to an int.
An alternative
would be to write
*p = &(a[0])

*)&a; p != &(a

Instead of p != &(a[10])

we could also write
p != ((int *)&a)+10

[10]); p++) {

sum = sum + *p;

}

7

Using pointers as arrays

Suppose

int a[10] = {1,2,3,4,5,6,7,8,9,10};

Then

int sum = 0;

for (int i = 0; i != 10; i++) {

sum = sum + a[i];

}

can also be implemented using pointer arithmetic

int sum = 0;

for (int *p = (int

This cast is needed
because a is an
integer array, so
&a is a pointer to
int[], not pointer
to an int.
An alternative
would be to write
*p = &(a[0])

*)&a; p != &(a

Instead of p != &(a[10])

we could also write
p != ((int *)&a)+10

[10]); p++) {

sum = sum + *p;

}

But nobody in their right mind would ,

7

A problem with pointers: . . .

int i; int j; int *x;

...

// lots of code omitted

i = 5;

j++

// what is the value of i here?

(*x)++;

// what is the value of i here?

8

A problem with pointers: . . .

int i; int j; int *x;

...

// lots of code omitted

i = 5;

j++

// what is the value of i here?

(*x)++;

// what is the value of i here?

5

5 or 6, depending on
whether *x points to
i

8

Two pointers are called aliases if they point to the same

location

int i = 5;

int *x = &i;

int *y = &i;

// x and y are aliases now

(*x)++;

// now i and *y have also changed to 6

9

Two pointers are called aliases if they point to the same

location

int i = 5;

int *x = &i;

int *y = &i;

// x and y are aliases now

(*x)++;

// now i and *y have also changed to 6

Keeping track of pointers, in the presence of potential aliasing, can be
really confusing, and really hard to debug. . .

9

Recap – so far

We have seen pointers, e.g. of type char *p

with the operations * and &

These are tricky to understand, unless you draw pictures

10

Recap – so far

We have seen pointers, e.g. of type char *p

with the operations * and &

These are tricky to understand, unless you draw pictures

We can have aliasing, where two names, say *p and c, can refer to the
same variable (location in memory)

10

Recap – so far

We have seen pointers, e.g. of type char *p

with the operations * and &

These are tricky to understand, unless you draw pictures

We can have aliasing, where two names, say *p and c, can refer to the
same variable (location in memory)

We can use pointer arithmetic, and e.g. write *(p+1), and use this to
access arrays

10

Recap – so far

We have seen pointers, e.g. of type char *p

with the operations * and &

These are tricky to understand, unless you draw pictures

We can have aliasing, where two names, say *p and c, can refer to the
same variable (location in memory)

We can use pointer arithmetic, and e.g. write *(p+1), and use this to
access arrays

Confusingly, the meaning of addition for pointers depends on their
type, as +1 for pointers of type int * really means +sizeof(int)

10

The potential of pointers: inspecting raw memory

To inspect a piece of raw memory, we can cast it to a

unsigned char *

and then inspect the bytes

float f = 3.14;

unsigned char *p = (unsigned char *) &f;

printf("The representation of float %f is", f);

for (int i = 0; i < sizeof(float); i++, p++);) {

printf("%d", *p);

}

printf("\n");

11

Turning pointers into numbers

intptr_t defined in stdint.h is an integral type that is guaranteed to
be wide enough to hold pointers.

int *p; // p points to an int

intptr_t i = (intptr_t) p; // the address as a number

p++;

i++;

// Will i and p be the same?

12

Turning pointers into numbers

intptr_t defined in stdint.h is an integral type that is guaranteed to
be wide enough to hold pointers.

int *p; // p points to an int

intptr_t i = (intptr_t) p; // the address as a number

p++;

i++;

// Will i and p be the same?

// No! i++ increases by 1, p++ with sizeof(int)

12

Turning pointers into numbers

intptr_t defined in stdint.h is an integral type that is guaranteed to
be wide enough to hold pointers.

int *p; // p points to an int

intptr_t i = (intptr_t) p; // the address as a number

p++;

i++;

// Will i and p be the same?

// No! i++ increases by 1, p++ with sizeof(int)

There is also an unsigned version of intptr_t: uintptr_t

12

Strings

13

Strings

Having seen arrays and pointers, we can now understand C strings

char *s = "hello world\n";

14

Strings

Having seen arrays and pointers, we can now understand C strings

char *s = "hello world\n";

C strings are char arrays, which are terminated by a special null
character, aka a null terminator, which is written as \0

14

Strings

Having seen arrays and pointers, we can now understand C strings

char *s = "hello world\n";

C strings are char arrays, which are terminated by a special null
character, aka a null terminator, which is written as \0

There is a special notation for string literals, between double quotes,
where the null terminator is implicit.

14

Strings

Having seen arrays and pointers, we can now understand C strings

char *s = "hello world\n";

C strings are char arrays, which are terminated by a special null
character, aka a null terminator, which is written as \0

There is a special notation for string literals, between double quotes,
where the null terminator is implicit.

As other arrays, we can use both the array type char[] and the pointer
type char * for them.

14

String problems

Working with C strings is highly error prone!
There are two problems

15

String problems

Working with C strings is highly error prone!
There are two problems

1. As for any array, there are no array bounds checks
so it’s the programmer’s responsibility not to go outside the array
bounds

15

String problems

Working with C strings is highly error prone!
There are two problems

1. As for any array, there are no array bounds checks
so it’s the programmer’s responsibility not to go outside the array
bounds

2. It is also the programmer’s responsibility to make sure that the
string is properly terminated with a null character.
If a string lacks its null terminator, e.g. due to problem 1, then
standard functions to manipulate strings will go off the rails.

15

Safer strings and array?

There is no reason why programming language should not provide safe
versions of strings (or indeed arrays).
Other languages offer strings and arrays which are safer in that:

16

Safer strings and array?

There is no reason why programming language should not provide safe
versions of strings (or indeed arrays).
Other languages offer strings and arrays which are safer in that:

1. Going outside the array bounds will be detected at runtime (e.g.
Java)

16

Safer strings and array?

There is no reason why programming language should not provide safe
versions of strings (or indeed arrays).
Other languages offer strings and arrays which are safer in that:

1. Going outside the array bounds will be detected at runtime (e.g.
Java)

2. Which will be resized automatically if they do not fit (e.g. Python)

16

Safer strings and array?

There is no reason why programming language should not provide safe
versions of strings (or indeed arrays).
Other languages offer strings and arrays which are safer in that:

1. Going outside the array bounds will be detected at runtime (e.g.
Java)

2. Which will be resized automatically if they do not fit (e.g. Python)

3. The language will ensure that all strings are null-terminated (e.g.
C++, Java and Python)

16

Safer strings and array?

There is no reason why programming language should not provide safe
versions of strings (or indeed arrays).
Other languages offer strings and arrays which are safer in that:

1. Going outside the array bounds will be detected at runtime (e.g.
Java)

2. Which will be resized automatically if they do not fit (e.g. Python)

3. The language will ensure that all strings are null-terminated (e.g.
C++, Java and Python)

More precisely, the programmer does not even have to know how strings
are represented, and whether null-terminator exists and what they look
like: the representation of strings is completely transparant/invisible to
the programmer.

16

Safer strings and array?

There is no reason why programming language should not provide safe
versions of strings (or indeed arrays).
Other languages offer strings and arrays which are safer in that:

1. Going outside the array bounds will be detected at runtime (e.g.
Java)

2. Which will be resized automatically if they do not fit (e.g. Python)

3. The language will ensure that all strings are null-terminated (e.g.
C++, Java and Python)

More precisely, the programmer does not even have to know how strings
are represented, and whether null-terminator exists and what they look
like: the representation of strings is completely transparant/invisible to
the programmer.

Moral of the story: if you can, avoid using standard C strings.
E.g. in C++, use C++ type strings; in C, use safer string libraries.

16

A final string pecularity

Strig literals, as in

char *msg = "hello, world";

are meant to be constant or read-only: you are not supposed to change
the character that made up a string literal.

17

A final string pecularity

Strig literals, as in

char *msg = "hello, world";

are meant to be constant or read-only: you are not supposed to change
the character that made up a string literal.

Unfortunately, this does not mean that C will prevent this. It only means
that the C standard defines changing a character in a string literal as
having undefined behaviour /

17

A final string pecularity

Strig literals, as in

char *msg = "hello, world";

are meant to be constant or read-only: you are not supposed to change
the character that made up a string literal.

Unfortunately, this does not mean that C will prevent this. It only means
that the C standard defines changing a character in a string literal as
having undefined behaviour /

E.g.

char *t = msg + 6;

*t = ’;’;

Has undefined behaviour, i.e. anything may happen.

17

A final string pecularity

Strig literals, as in

char *msg = "hello, world";

are meant to be constant or read-only: you are not supposed to change
the character that made up a string literal.

Unfortunately, this does not mean that C will prevent this. It only means
that the C standard defines changing a character in a string literal as
having undefined behaviour /

E.g.

char *t = msg + 6;

*t = ’;’;

Has undefined behaviour, i.e. anything may happen.
Compilers can emit warnings if you change string literals, e.g.

gcc -Wwrite-strings

17

Recap

We have seen

18

Recap

We have seen

◮ The different C types

18

Recap

We have seen

◮ The different C types
◮ primitive types

(unsigned) char, short, int, long, long long, float ...

18

Recap

We have seen

◮ The different C types
◮ primitive types

(unsigned) char, short, int, long, long long, float ...
◮ implicit conversions and explicit conversions (casts) between them

18

Recap

We have seen

◮ The different C types
◮ primitive types

(unsigned) char, short, int, long, long long, float ...
◮ implicit conversions and explicit conversions (casts) between them
◮ arrays int[]

18

Recap

We have seen

◮ The different C types
◮ primitive types

(unsigned) char, short, int, long, long long, float ...
◮ implicit conversions and explicit conversions (casts) between them
◮ arrays int[]
◮ pointers int * with the operations * and &

18

Recap

We have seen

◮ The different C types
◮ primitive types

(unsigned) char, short, int, long, long long, float ...
◮ implicit conversions and explicit conversions (casts) between them
◮ arrays int[]
◮ pointers int * with the operations * and &
◮ C strings, as special char arrays

18

Recap

We have seen

◮ The different C types
◮ primitive types

(unsigned) char, short, int, long, long long, float ...
◮ implicit conversions and explicit conversions (casts) between them
◮ arrays int[]
◮ pointers int * with the operations * and &
◮ C strings, as special char arrays

◮ Their representation

18

Recap

We have seen

◮ The different C types
◮ primitive types

(unsigned) char, short, int, long, long long, float ...
◮ implicit conversions and explicit conversions (casts) between them
◮ arrays int[]
◮ pointers int * with the operations * and &
◮ C strings, as special char arrays

◮ Their representation

◮ How these representations can be ’broken’, i.e. how we can inspect
and manipulate the underlying representation (e.g. with casts)

18

Recap

We have seen

◮ The different C types
◮ primitive types

(unsigned) char, short, int, long, long long, float ...
◮ implicit conversions and explicit conversions (casts) between them
◮ arrays int[]
◮ pointers int * with the operations * and &
◮ C strings, as special char arrays

◮ Their representation

◮ How these representations can be ’broken’, i.e. how we can inspect
and manipulate the underlying representation (e.g. with casts)

◮ Some things that can go wrong
e.g. due to access outside array bounds or integer under/overflow

18

