
Hacking in C
Alignment, arrays and pointers

Radboud University, Nijmegen, The Netherlands

Spring 2018

Allocation of multiple variables

Consider the program

main(){
char x;
int i;
short s;
char y;
....

}

What will the layout of this data in memory be?
Assuming 2 byte ints, 2 byte shorts, and little endian architecture

2

Printing addresses where data is located

We can use & to see where data is located

char x; int i; short s; char y;

printf("x is allocated at %p \n", &x);
printf("i is allocated at %p \n", &i);
printf("s is allocated at %p \n", &s);
printf("y is allocated at %p \n", &y);

// Here %p is used to print pointer values

Compiling with or without -O2 will reveal different alignment strategies

3

Data alignment

Memory as a sequence of bytes
. . . x i4 i3 i2 i1 s2 s1 y . . .

But on a 32-bit machine, the memory is a sequence of 4-byte words

x i4 i3 i2
i1 s2 s1 y

. . .

Now the data elements are not nicely aligned with the words,
which will make execution slow, since CPU instructions act on words.

4

Data alignment

Different allocations, with better/worse alignment

x i4 i3 i2
i1 s2 s1 y

. . .

Lousy alignment, but
useses minimal
memory

x
i4 i3 i2 i1
s2 s1
y

Optimal alignment,
but wastes memory

s2 s1 x y
i4 i3 i2 i1

. . .

Possible compromise

5

Data alignment

Different allocations, with better/worse alignment

x i4 i3 i2
i1 s2 s1 y

. . .

Lousy alignment, but
useses minimal
memory

x
i4 i3 i2 i1
s2 s1
y

Optimal alignment,
but wastes memory

s2 s1 x y
i4 i3 i2 i1

. . .

Possible compromise

5

Data alignment

Different allocations, with better/worse alignment

x i4 i3 i2
i1 s2 s1 y

. . .

Lousy alignment, but
useses minimal
memory

x
i4 i3 i2 i1
s2 s1
y

Optimal alignment,
but wastes memory

s2 s1 x y
i4 i3 i2 i1

. . .

Possible compromise

5

Data alignment

Compilers may introduce padding or change the order of data in memory
to improve alignment.

There are trade-offs here between speed and memory usage.

Most C compilers can provide many optional optimisations. Eg use
man gcc

to check out the many optimisation options of gcc.

6

Data alignment

Compilers may introduce padding or change the order of data in memory
to improve alignment.

There are trade-offs here between speed and memory usage.

Most C compilers can provide many optional optimisations. Eg use
man gcc

to check out the many optimisation options of gcc.

6

Arrays

7

Arrays

An array contains a collection of data elements with the same type.
The size is constant.

int test_array[10];
int a[] = {30,20};
test_array[0] = a[1];

printf("oops %d \n", a[2]); //will compile & run

Array bounds are not checked.
Anything may happen when accessing outside array bounds. The
program may crash, usually with a segmentation fault (segfault).

8

Arrays

An array contains a collection of data elements with the same type.
The size is constant.

int test_array[10];
int a[] = {30,20};
test_array[0] = a[1];

printf("oops %d \n", a[2]); //will compile & run

Array bounds are not checked.
Anything may happen when accessing outside array bounds. The
program may crash, usually with a segmentation fault (segfault).

8

Array bounds checking

The historic decision not to check array bounds is responsible for in the
order of 50% of all the security vulnerabilities in software, in the form of
so-called buffer overflow attacks.

Other languages took a different (more sensible?) choice here. E.g.
ALGOL60, defined in 1960, already included array bound checks.

9

Typical software security vulnerabilities

Security bugs found in Microsoft’s first security bug fix month (2002)6HFXULW\�EXJV�IRXQG�LQ�0LFURVRIW¶V�ILUVW�VHFXULW\�EXJ�IL[�PRQWK�������

Here buffer overflows are platform-specific.
Some of the code defects and input validation problems might also be.
Crypto problems are much rarer, but can be very high impact.

37%

20%

26%

17%
0%

Typical software security vulnerabilities

buffer overflow

input validation

code defect

design defect

crypto

11hic

Here buffer overflows are platform-specific.
Some of the code defects and input validation problems might also be.
Crypto problems are much more rare, but can be of very high impact.

10

Array bounds checking
Tony Hoare in Turing Award
speech on the design principles of ALGOL 60

“The first principle was
security: . . . A consequence of this principle is that
every subscript was checked at run time against
both the upper and the lower declared bounds
of the array. Many years later we asked our
customers whether they wished us to provide an
option to switch off these checks in the interests
of efficiency. Unanimously, they urged us not to -
they knew how frequently subscript errors occur on production runs
where failure to detect them could be disastrous. I note with fear and
horror that even in 1980, language designers and users have not learned
this lesson. In any respectable branch of engineering, failure to observe
such elementary precautions would have long been against the law.”

[C.A.R.Hoare, The Emperor’s Old Clothes, Communications of the ACM, 1980]

11

Overrunning arrays

Consider the program

int y = 7;
int a[2];
int x = 6;
printf("oops %d \n", a[2]);

What would you expect this program to print?

If the compiler allocates y directly after a, then it will print 6.
There are no guarantees! The program could simply crash, or return any
other number, re-format the hard drive, explode, . . .

By overrunning an array we can try to reverse-engineer the memory
layout

12

Overrunning arrays

Consider the program

int y = 7;
int a[2];
int x = 6;
printf("oops %d \n", a[2]);

What would you expect this program to print?

If the compiler allocates y directly after a, then it will print 6.
There are no guarantees! The program could simply crash, or return any
other number, re-format the hard drive, explode, . . .

By overrunning an array we can try to reverse-engineer the memory
layout

12

Overrunning arrays

Consider the program

int y = 7;
int a[2];
int x = 6;
printf("oops %d \n", a[2]);

What would you expect this program to print?

If the compiler allocates y directly after a, then it will print 6.
There are no guarantees! The program could simply crash, or return any
other number, re-format the hard drive, explode, . . .

By overrunning an array we can try to reverse-engineer the memory
layout

12

Arrays and alignment

The memory space allocated for an array is guaranteed to be contiguous,
i.e. a[1] is allocated right after a[0].

For good alignment, a compiler could again add padding at the end of
arrays.
E.g. a compiler might allocate 16 bytes rather than 15 bytes for

char text[15];

13

Arrays and alignment

The memory space allocated for an array is guaranteed to be contiguous,
i.e. a[1] is allocated right after a[0].

For good alignment, a compiler could again add padding at the end of
arrays.

E.g. a compiler might allocate 16 bytes rather than 15 bytes for

char text[15];

13

Arrays and alignment

The memory space allocated for an array is guaranteed to be contiguous,
i.e. a[1] is allocated right after a[0].

For good alignment, a compiler could again add padding at the end of
arrays.
E.g. a compiler might allocate 16 bytes rather than 15 bytes for

char text[15];

13

Arrays are passed by reference

Arrays are always passed by reference.

For example, given the function

void increase_elt(int x[0]) {
x[1] = x[1]+23;

}

What is the value of a[1] after executing the following code?

int a[2] = {1, 2};
increase_elt(a);

25

Recall call by reference from Imperatief Programmeren

14

Arrays are passed by reference

Arrays are always passed by reference.

For example, given the function

void increase_elt(int x[0]) {
x[1] = x[1]+23;

}

What is the value of a[1] after executing the following code?

int a[2] = {1, 2};
increase_elt(a);

25

Recall call by reference from Imperatief Programmeren

14

Pointers

15

Retrieving addresses of pointers using &

We can find out where some data is allocated using the & operation.
If

int x = 12;

then &x is the memory address where the value of x is stored,
aka a pointer to x.

12
↑
&x

It depends on the underlying architecture how many bytes are needed to
represent addresses: 4 on 32-bit machines, 8 on a 64-bit machine.

16

Retrieving addresses of pointers using &

We can find out where some data is allocated using the & operation.
If

int x = 12;

then &x is the memory address where the value of x is stored,
aka a pointer to x.

12
↑
&x

It depends on the underlying architecture how many bytes are needed to
represent addresses: 4 on 32-bit machines, 8 on a 64-bit machine.

16

Declaring pointers

Pointers are typed:
the compiler keeps track of what data type a pointer points to

int *p; // p is a pointer that points to an int
float *f; // f is a pointer that points to a float

17

Creating and dereferencing pointers

Suppose

int y, z; int *p; // i.e. p points to an int

How can we create a pointer to some variable?

Using &

y = 7
p = &y; // assign the address of y to p

How can we get the value that a pointer points to? Using *

y = 7
p = &y; // pointer p now points to y
z = *p; // give z the value of what p points to

Looking up what a pointer points to, with *, is called dereferencing.

18

Creating and dereferencing pointers

Suppose

int y, z; int *p; // i.e. p points to an int

How can we create a pointer to some variable? Using &

y = 7
p = &y; // assign the address of y to p

How can we get the value that a pointer points to?

Using *

y = 7
p = &y; // pointer p now points to y
z = *p; // give z the value of what p points to

Looking up what a pointer points to, with *, is called dereferencing.

18

Creating and dereferencing pointers

Suppose

int y, z; int *p; // i.e. p points to an int

How can we create a pointer to some variable? Using &

y = 7
p = &y; // assign the address of y to p

How can we get the value that a pointer points to? Using *

y = 7
p = &y; // pointer p now points to y
z = *p; // give z the value of what p points to

Looking up what a pointer points to, with *, is called dereferencing.

18

Creating and dereferencing pointers

Suppose

int y, z; int *p; // i.e. p points to an int

How can we create a pointer to some variable? Using &

y = 7
p = &y; // assign the address of y to p

How can we get the value that a pointer points to? Using *

y = 7
p = &y; // pointer p now points to y
z = *p; // give z the value of what p points to

Looking up what a pointer points to, with *, is called dereferencing.

18

Confused? draw pictures!

int y = 7;
int *p = &y; // pointer p now points to cell y
int z = *p; // give z the value of what p points to

confused? draw pictures!

int y = 7;

int *p = &y; // pointer p now points to cell y

int z = *p; // give z the value of what p points to

y

p

z

5HDG�6HFWLRQ�����RI�³3UREOHP�6ROYLQJ�ZLWK�&��´�IRU�DQRWKHU�H[SODQDWLRQ�

hic 20

7

&y

7

Read Section 9.1 of “Problem Solving with C++” for another
explanation.

19

Pointer quiz

What is the value of y?

int y = 2;
int x = y;
y++;
x++;

3

What is the value of y?

int y = 2;
int *x = &y;
y++;
(*x)++;

4

20

Pointer quiz

What is the value of y?

int y = 2;
int x = y;
y++;
x++;

3

What is the value of y?

int y = 2;
int *x = &y;
y++;
(*x)++;

4

20

Pointer quiz

What is the value of y?

int y = 2;
int x = y;
y++;
x++;

3

What is the value of y?

int y = 2;
int *x = &y;
y++;
(*x)++;

4

20

Pointer quiz

What is the value of y?

int y = 2;
int x = y;
y++;
x++;

3

What is the value of y?

int y = 2;
int *x = &y;
y++;
(*x)++;

4

20

Note that * is used for 3 different purposes, with 3 different meanings

1. In declarations, to declare pointer types

int *p; // p is a pointer to an int
// i.e. *p is an int

2. As a prefix operator on pointers

int z = *p;

3. Multiplication of numeric values

Some legal C code can get confusing, e.g.

z = 3 * *p

21

Note that * is used for 3 different purposes, with 3 different meanings
1. In declarations, to declare pointer types

int *p; // p is a pointer to an int
// i.e. *p is an int

2. As a prefix operator on pointers

int z = *p;

3. Multiplication of numeric values

Some legal C code can get confusing, e.g.

z = 3 * *p

21

Note that * is used for 3 different purposes, with 3 different meanings
1. In declarations, to declare pointer types

int *p; // p is a pointer to an int
// i.e. *p is an int

2. As a prefix operator on pointers

int z = *p;

3. Multiplication of numeric values

Some legal C code can get confusing, e.g.

z = 3 * *p

21

Note that * is used for 3 different purposes, with 3 different meanings
1. In declarations, to declare pointer types

int *p; // p is a pointer to an int
// i.e. *p is an int

2. As a prefix operator on pointers

int z = *p;

3. Multiplication of numeric values

Some legal C code can get confusing, e.g.

z = 3 * *p

21

Note that * is used for 3 different purposes, with 3 different meanings
1. In declarations, to declare pointer types

int *p; // p is a pointer to an int
// i.e. *p is an int

2. As a prefix operator on pointers

int z = *p;

3. Multiplication of numeric values

Some legal C code can get confusing, e.g.

z = 3 * *p

21

Style debate: int* p or int *p?

What can be confusing in

int *p = &y;

is that this is an assignment to p, not *p

Some people prefer to write

int* p = &y;

but C purists will argue this is C++ style.

Downside of writing int*

int* x, y, z;

declares x as a pointer to an int and y and z as int. . .

22

Style debate: int* p or int *p?

What can be confusing in

int *p = &y;

is that this is an assignment to p, not *p

Some people prefer to write

int* p = &y;

but C purists will argue this is C++ style.

Downside of writing int*

int* x, y, z;

declares x as a pointer to an int and y and z as int. . .

22

Style debate: int* p or int *p?

What can be confusing in

int *p = &y;

is that this is an assignment to p, not *p

Some people prefer to write

int* p = &y;

but C purists will argue this is C++ style.

Downside of writing int*

int* x, y, z;

declares x as a pointer to an int and y and z as int. . .

22

Style debate: int* p or int *p?

What can be confusing in

int *p = &y;

is that this is an assignment to p, not *p

Some people prefer to write

int* p = &y;

but C purists will argue this is C++ style.

Downside of writing int*

int* x, y, z;

declares x as a pointer to an int and y and z as int. . .

22

Still not confused?

x = 3;
p1 = &x;
p2 = &p1;
z = **p2 + 1;

What will the value of z be?

What should the types of p1 and p2 be?

23

Still not confused?

x = 3;
p1 = &x;
p2 = &p1;
z = **p2 + 1;

What will the value of z be?

What should the types of p1 and p2 be?

23

Still not confused? pointers to pointers

int x = 3;
int *p1 = &x; // p1 points to an int
int **p2 = &p1; // p2 points to a pointer to an int
int z = **p2 + 1;

still not confused? pointers to pointers

int x = 3;

int *p1 = &x; // p1 points to an int

int **p2 = &p1; //p2 points to a pointer to an int

int z = **p2 + 1;

p2 &p1 p1 x

z

hic 25

3&x

4

24

Pointer test (Hint: example exam question)

int y = 2;
int z = 3;
int* p = &y;
int* q = &z;
(*q)++;
*p = *p + *q;
q = q + 1;
printf("y is %d\n", y);

What is the value of y at the end?

6
What is the value of *p at the end?
6
What is the value of *q at the end?
We don’t know! q points to some memory cell after z in the memory

25

Pointer test (Hint: example exam question)

int y = 2;
int z = 3;
int* p = &y;
int* q = &z;
(*q)++;
*p = *p + *q;
q = q + 1;
printf("y is %d\n", y);

What is the value of y at the end?
6

What is the value of *p at the end?
6
What is the value of *q at the end?
We don’t know! q points to some memory cell after z in the memory

25

Pointer test (Hint: example exam question)

int y = 2;
int z = 3;
int* p = &y;
int* q = &z;
(*q)++;
*p = *p + *q;
q = q + 1;
printf("y is %d\n", y);

What is the value of y at the end?
6
What is the value of *p at the end?

6
What is the value of *q at the end?
We don’t know! q points to some memory cell after z in the memory

25

Pointer test (Hint: example exam question)

int y = 2;
int z = 3;
int* p = &y;
int* q = &z;
(*q)++;
*p = *p + *q;
q = q + 1;
printf("y is %d\n", y);

What is the value of y at the end?
6
What is the value of *p at the end?
6

What is the value of *q at the end?
We don’t know! q points to some memory cell after z in the memory

25

Pointer test (Hint: example exam question)

int y = 2;
int z = 3;
int* p = &y;
int* q = &z;
(*q)++;
*p = *p + *q;
q = q + 1;
printf("y is %d\n", y);

What is the value of y at the end?
6
What is the value of *p at the end?
6
What is the value of *q at the end?

We don’t know! q points to some memory cell after z in the memory

25

Pointer test (Hint: example exam question)

int y = 2;
int z = 3;
int* p = &y;
int* q = &z;
(*q)++;
*p = *p + *q;
q = q + 1;
printf("y is %d\n", y);

What is the value of y at the end?
6
What is the value of *p at the end?
6
What is the value of *q at the end?
We don’t know! q points to some memory cell after z in the memory

25

