
Hacking in C
Memory layout

Radboud University, Nijmegen, The Netherlands

Spring 2018

A short recap

◮ The & operator gives us the address of data

◮ Inverse of & is the * operator (dereferencing)

◮ Aligning data to word (or larger) limits makes access more efficient

◮ Compilers may introduce padding to align data

◮ Arrays are passed by reference (decay to pointer to the first element)

◮ Can do “pointer arithmetic”, i.e., increase and decrease pointers

◮ x++ for type *x increases address by sizeof(type)

◮ Strings are null-terminated arrays of bytes

◮ Array access can be expressed as pointers: a[i] is the same as
*(a+i)

◮
. . . is the same as i[a]! (try it out ;-))

◮ Can use pointers ot inspect raw memory content

This lecture: look at the systematics of what is stored where

2

Memory segments

The OS allocates memory for data
and code of each running process

◮ stack: for local variables
(including command-line
arguments)

◮ heap: For dynamic memory

◮ data segment:
◮ global and static uninitialized

variables (.bss)
◮ global and static initialized

variables (.data)

◮ code segment: code (and
possibly constants)

high addresses

Command-line arguments

Stack

(grows downwards)

unused space

Heap

(grows upwards)

.bss

.data

code

(.text)

low addresses

3

/proc/<pid>/maps, ps, and size

◮ Find information about memory allocation for process with PID
<pid> in

/proc/<pid>/maps

◮ For example:

008e6000-00b11000 rw-p 00000000 00:00 0 [heap]

7ffd739cb000-7ffd739ec000 rw-p 00000000 00:00 0 [stack]

◮ Also information about dynamic libraries used by process

◮ List all processes with PID: ps

◮ Find information about memory segment sizes using size

◮ Use size on binary (.o file or executable)

◮ For more verbatim output can use size -A

4

Virtual memory

◮ Central idea:
◮ Don’t let processes use addresses in physical memory
◮ Instead, use virtual addresses

◮ For each access to a virtual address, map to actual physical address

◮ Obviously, don’t want to map byte-by-byte

◮ Chop the memory into pages of fixed size (typically 4KB)

◮ Use a page table to establish the mapping

◮ Essentially, use a different page table for each process

◮ If there is no entry for a virtual address in a processes’ page table:
exit with segmentation fault

5

Advantages of virtual memory

◮ Processes can use (seemingly) contiguous memory locations

◮ Those addresses don’t have to be contiguous in physical memory

◮ Can even assign more memory than is physically available

◮ Need to swap memory content to and from hard drive

◮ Can separate address spaces of different programs!

◮ OS can now ensure that one process cannot read/write another
processes’ memory

6

Bare-metal “memory management”

◮ C is also used to program small
embedded microcontrollers

◮ Sometimes run code bare
metal, i.e., without OS

◮ No virtual memory, no segfaults

◮ Stack can happily grow into
heap or data segment

◮ Typically rather little RAM, so
this happens easily

◮ Nasty to debug behavior

7

Global variables

◮ Global variables are declared outside of all functions

◮ Example:

#include <stdio.h>

long n = 12345678;

char *s = "hello world!\n";

int a[256];

...

◮ The initialized variables n and s will be in .data

◮ The uninialized variable a will be in .bss

◮ The .bss section is typically initialized to zero

◮ An OS can do this “on-demand”, i.e., when reading a variable for
the first time

◮ Some platforms have a special non-initialized .bss subsection

◮ Example: AVR microcontrollers with a .noinit section

8

Static variables

◮ A static variable is local, but keeps its value across calls

◮ Example:

void f()

{

static int x = 0;

printf("%d\n", x++);

}

◮ If x was not declared static, this function would always print 0

◮ Different for static x; output increases by one for every call

◮ Would get the same behavior if x was global

◮
. . . but a global x could be modified also by other functions

9

The stack – a simple datastructure

◮ A stack is essentially a LIFO queue; two operations
◮ PUSH(x)
◮ x = POP()

◮ The memory stack, very much simplified:
◮ Function calls push local data on the stack
◮ Returns from functions pop that data again

◮ Often also possible: access data relative to the top

◮ Required for all these operations: pointer to the top

◮ Pointer can be
◮ “hidden” (only modified by PUSH or POP)
◮ “exposed” (allowing relative data access)

◮ On AVR: extra instructions to expose the stack pointer

10

Stack frames and the stack pointer

◮ Stack consists of stack frames

◮ Each function on the current
call stack has its own frame

◮ Active frame is on top of the
stack

◮ “Top of the stack”: at low
addresses

◮ Stack pointer points to end
(low address) of active frame

◮ Stack pointer is typically in
special register (rsp on
AMD64)

high addresses

Command-line arguments

stack pointer −→

Stack

(grows downwards)

unused space

Heap

(grows upwards)

.bss

.data

code

(.text)

low addresses

11

Stack frames and the stack pointer

Example:

int func(int a, int b)

{

...

return 10001;

}

high addresses

Command-line arguments

stack pointer −→

stack frame of

main()

Heap

.bss

.data

code

(.text)

low addresses

high addresses
12

A zoom into the stack frame

◮ Stack before the function call

◮ Caller (main) first puts
arguments for func on the
stack

◮ Caller pushes the return

address onto the stack

◮ ???

◮ Callee pushes local variables
onto the stack

high addresses

Command-line arguments

stack frame of

main()

arguments of func()

return address

???

local variables

stack pointer −→

stack pointer −→

stack pointer −→

stack pointer −→

stack pointer −→

Heap

...

low addresses

13

The frame pointer

◮ So what’s with the ???. . . ?

◮ Traditionally also have an frame
pointer

◮ Pointing to the end (high
address) of the active stack frame

◮ On x86 in ebp register (AMD64:
rbp)

◮ Function call also saves previous
frame pointer on the stack

◮ On AMD64 commonly omitted:
◮ Faster function calls
◮ One additional register

available

high addresses

Command-line arguments

stack frame of

main()

arguments of func()

return address

saved frame pointer

local variables

frame pointer −→

stack pointer −→

Heap

...

low addresses

14

Size of the stack

◮ C does not limit the size of the stack in the language

◮ In practice, of course stack space is limited

◮ In bare-metal environments, limited by hardware

◮ Otherwise limited by OS

◮ Under Linux, use ulimit -s to see stack size (in KB)

◮ Inside a C program, can use getrlimit

◮ Can also use setrlimit to request larger (or smaller) stack

15

Things that may go wrong on the stack

◮ Obviously, we may exhaust stack space

◮ Simple example: infinite recursion (exhauststack.c)

◮ This is known as stack overflow

◮ In safety critical environments need to avoid this!

◮ Generally, don’t put “big data” on the stack

◮ Variables on the stack are not auto-initialized

◮ Reading uninitalized local variables allows to read local data from
previous functions

◮ The stack mixes program and control data

◮ Writing beyond buffers may overwrite return addresses

◮ Main attack vector for “targeted undefined behavior”

16

. . . how bad is “wrong” exactly?

“On Thursday October 24, 2013, an Oklahoma court ruled against
Toyota in a case of unintended acceleration that lead to the death of one
the occupants. Central to the trial was the Engine Control Module’s
(ECM) firmware.”

17

What went wrong?

◮ Critical variables were not mirrored (stored twice)

◮ Most importantly, result value TargetThrottleAngle wasn’t
mirrored

◮ Also critical data structes of the real-time OS weren’t mirrored

◮ Stack overflow
◮ Toyota claimed stack upper bound of 41% of total memory
◮ Stack was actually using 94% of total memory
◮ Analysis ignored stack used by some 350 assembly functions

◮ Code used recursion (forbidden by MISRA-C guidelines)

◮ MISRA-C: guidelines by the Motor Industry Software Reliability
Association

“A litany of other faults were found in the code, including buffer
overflow, unsafe casting, and race conditions between tasks.”

18

Hardware specifics

◮ Stack layout shown so far is typical

◮ Many details look different on different architectures:
◮ Memory-segment layout may be different
◮ (Some) function arguments may be passed through registers
◮ Return values often passed through registers (sometimes also over

the stack)
◮ Frame pointer may be omitted

◮ Example: AMD64
◮ Integer and pointer arguments are passed through rdi, rsi, rdx,

rcx, r8, r9
◮ Return value in rax
◮

. . . at least for Linux, Windows is subtly different

19

Limitations of the stack

int * table_of(int num, int len) {

int table[len];

for (int i =0; i <= len ; i ++) {

table[i] = i *num;

}

return table; /* an int [] can be used as an int * */

}

What happens if we call this function as follows?:

int *table3 = table_of(3,10);

printf("5 times 3 is %d \n", table3[5]);

◮ The stack cannot preserve data beyond return of a function.

◮ Except of course of returned data (not pointers!)

◮ Obvious other limitation: size!

20

The heap

◮ Think about the heap as a large piece of scrap paper

◮ We can request (large) continuous space on the piece of paper

◮ Note that “continuous” is easily ensured by virtual memory

◮ This space is accessible through a pointer (what else ;-))

◮ Space remains valid across function calls

◮ Every function that “knows” a pointer to the space can use it

21

malloc

◮ Function to request space: void *malloc(size_t nbytes)

◮ Need to #include <stdlib.h> to use malloc

◮ size_t is an unsigned integer type

◮ Returns a void pointer to nbytes of memory

◮ Can also fail, in that case, it returns NULL

◮ Usually pointers in C are typed, void *x is an “untyped” pointer

◮ A void * implicitly casts to and from any other pointer type

◮ Remember that this is not the case in C++!

◮ Example of malloc usage:

int *x = malloc(10000 * sizeof(int));

◮ Request for space for 10 000 integers on the heap

22

NULL

◮ The value NULL is guaranteed to not point to a valid address

◮ The following code produces undefined behavior:

int *x = NULL;

int i = *x;

◮ Important to note: NULL is not the same as 0

◮ In boolean expressions, NULL evaluates to false

◮ These two lines have the same semantics:

if(x == NULL) printf("NULL\n");

if(!x) printf("NULL\n");

◮ Not true in all programming languages, e.g., not in C#

23

ALWAYS check for malloc failure!
◮ The following code is terribly unsafe:

int *table = malloc(TABLESIZE * sizeof(int));

for(size_t i=0;i<TABLESIZE;i++)

table[i] = 42;

◮ malloc might return NULL

◮ table[i] dereferences the pointer table

◮ Consequence: undefined behavior!

◮ Correct version:

int *table = malloc(TABLESIZE * sizeof(int));

if(table == NULL) exit(-1);

for(size_t i=0;i<TABLESIZE;i++)

table[i] = 42;

◮ Could alternatively use boolean behavior of NULL:

if(!table) exit(-1);

24

free

◮ You, the programmer, are in charge of releasing memory!

◮ When you don’t need some allocated memory anymore, use

free(x);

◮ Here, x is a pointer to previously malloc’ed memory

◮ Typical usage patters:

int *x = malloc(NUMX * sizeof(int));

if(x == NULL) exit(-1);

...

free(x);

◮ The calls to malloc and free can be in different functions

◮ Not freeing malloc’ed memory is known as a memory leak

25

realloc
◮ Sometimes want to expand or shrink malloc’ed space
◮ Do this by using

void *realloc(void *ptr, size_t new_size);

◮ Content in the allocated area is preserved
◮ New space is created (or cut away) “at the end”
◮ This call may also return NULL
◮ If return value is NULL, previously allocated memory is not freed!
◮ Usage pattern:

xnew = realloc(x, NEWSIZE);

if(xnew == NULL)

{

free(x);

exit(-1); // or continue with old size of x

}

else

{

x = xnew;

}

26

Dangling pointers, double-free, . . .

◮ Never use a pointer after it has been freed, e.g.,

int *x = malloc(SIZEX * sizeof(int));

...

free(x);

...

printf("Let’s see what the value of x is now: %p\n", x);

◮ This is undefined behaviour

◮ Also, never double-free a pointer, e.g.,

int *x = malloc(SIZEX * sizeof(int));

...

free(x);

free(x);

◮ Not always that obvious, you may have pointer aliases
◮ Pointer alias: multiple pointers to the same location
◮ Never “lose” the last pointer to a location
◮ This inevitable creates a memory leak: you cannot free anymore!

27

Stack vs. heap vs. data segment

Data segment

◮ Data in the data segment exists throughout the whole execution of
the program

◮ global variables accessible to every function
◮ static local variables only accessible to the respective function

Stack

◮ Space on the stack allocated automatically

◮ Stack space automatically removed when returning from a function

◮ Certain risk of overflowing the stack

Heap

◮ Space on the heap needs to be requested manually (malloc)

◮ Request may be denied (NULL return) and this must be handled

◮ Space on the heap needs to be freed manually (free)

◮ Risk of memory leaks, double frees, etc.
28

What’s wrong with this code (part 1)?

int f()

{

int *a = malloc(100 * sizeof(int));

if(a == NULL) return -1;

char *x = (char *)a;

...

free(x);

free(a);

}

◮ Fairly simple: double-free.

29

What’s wrong with this code (part 2)?

int *f()

{

int a[100];

for(i=0;i<100;i++)

a[i] = i;

return a;

}

◮ Return type is int *, returning a is not a type problem

◮ Remember that an array can “decay” to a pointer to its first element

◮ Code is syntactically completely correct C

◮ Returning pointer to a local variable is undefined behavior

◮ Never do this, not even for debugging purposes

◮ Any decent compiler will put out warnings

30

What’s wrong with this code (part 3)?

int f()

{

int *a = malloc(100 * sizeof(int));

int x = 5;

int *y = a;

a = &x;

free(a);

return x;

}

◮ No check whether malloc returned NULL

◮ The function is so wrong, that this isn’t even really a problem

◮ The free is used on a stack address

◮ The value of y is lost after return

◮ Cannot free the allocated memory anymore

31

valgrind

◮ Memory bugs are hard to find manually

◮ They are one of the biggest problems in C code

◮ Luckily there is tool assistance: valgrind

◮ Run code is a sort of virtual machine, include memory checks

◮ Muuuuuuch slower than actually running the code, but:
◮ Find memory leaks (malloc without free)
◮ Find access to freed memory
◮ Find double-free
◮ Find branches and memory access depending on uninitialized data

◮ Many more tools beyond the memory checker in valgrind, e.g.,
◮ cachgrind, a cache profiler
◮ callgrind, generating call graphs

◮ valgrind is a dynamic analyzer, not static

◮ For example, no guarantees of branch coverage

◮ Generally good practice:
◮ run your code in valgrind before submitting/publishing
◮ make sure that valgrind reports to errors

32

