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A short recap

◮ The & operator gives us the address of data

◮ Inverse of & is the * operator (dereferencing)

◮ Aligning data to word (or larger) limits makes access more efficient

◮ Compilers may introduce padding to align data

◮ Arrays are passed by reference (decay to pointer to the first element)

◮ Can do “pointer arithmetic”, i.e., increase and decrease pointers

◮ x++ for type *x increases address by sizeof(type)

◮ Strings are null-terminated arrays of bytes

◮ Array access can be expressed as pointers: a[i] is the same as
*(a+i)

◮
. . . is the same as i[a]! (try it out ;-))

◮ Can use pointers ot inspect raw memory content

This lecture: look at the systematics of what is stored where
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Memory segments

The OS allocates memory for data
and code of each running process

◮ stack: for local variables
(including command-line
arguments)

◮ heap: For dynamic memory

◮ data segment:
◮ global and static uninitialized

variables (.bss)
◮ global and static initialized

variables (.data)

◮ code segment: code (and
possibly constants)

high addresses

Command-line arguments

Stack

(grows downwards)

unused space

Heap

(grows upwards)

.bss

.data

code

(.text)

low addresses
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/proc/<pid>/maps, ps, and size

◮ Find information about memory allocation for process with PID
<pid> in

/proc/<pid>/maps

◮ For example:

008e6000-00b11000 rw-p 00000000 00:00 0 [heap]

7ffd739cb000-7ffd739ec000 rw-p 00000000 00:00 0 [stack]

◮ Also information about dynamic libraries used by process

◮ List all processes with PID: ps

◮ Find information about memory segment sizes using size

◮ Use size on binary (.o file or executable)

◮ For more verbatim output can use size -A
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Virtual memory

◮ Central idea:
◮ Don’t let processes use addresses in physical memory
◮ Instead, use virtual addresses

◮ For each access to a virtual address, map to actual physical address

◮ Obviously, don’t want to map byte-by-byte

◮ Chop the memory into pages of fixed size (typically 4KB)

◮ Use a page table to establish the mapping

◮ Essentially, use a different page table for each process

◮ If there is no entry for a virtual address in a processes’ page table:
exit with segmentation fault
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Advantages of virtual memory

◮ Processes can use (seemingly) contiguous memory locations

◮ Those addresses don’t have to be contiguous in physical memory

◮ Can even assign more memory than is physically available

◮ Need to swap memory content to and from hard drive

◮ Can separate address spaces of different programs!

◮ OS can now ensure that one process cannot read/write another
processes’ memory
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Bare-metal “memory management”

◮ C is also used to program small
embedded microcontrollers

◮ Sometimes run code bare
metal, i.e., without OS

◮ No virtual memory, no segfaults

◮ Stack can happily grow into
heap or data segment

◮ Typically rather little RAM, so
this happens easily

◮ Nasty to debug behavior
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Global variables

◮ Global variables are declared outside of all functions

◮ Example:

#include <stdio.h>

long n = 12345678;

char *s = "hello world!\n";

int a[256];

...

◮ The initialized variables n and s will be in .data

◮ The uninialized variable a will be in .bss

◮ The .bss section is typically initialized to zero

◮ An OS can do this “on-demand”, i.e., when reading a variable for
the first time

◮ Some platforms have a special non-initialized .bss subsection

◮ Example: AVR microcontrollers with a .noinit section
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Static variables

◮ A static variable is local, but keeps its value across calls

◮ Example:

void f()

{

static int x = 0;

printf("%d\n", x++);

}

◮ If x was not declared static, this function would always print 0

◮ Different for static x; output increases by one for every call

◮ Would get the same behavior if x was global

◮
. . . but a global x could be modified also by other functions
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The stack – a simple datastructure

◮ A stack is essentially a LIFO queue; two operations
◮ PUSH(x)
◮ x = POP()

◮ The memory stack, very much simplified:
◮ Function calls push local data on the stack
◮ Returns from functions pop that data again

◮ Often also possible: access data relative to the top

◮ Required for all these operations: pointer to the top

◮ Pointer can be
◮ “hidden” (only modified by PUSH or POP)
◮ “exposed” (allowing relative data access)

◮ On AVR: extra instructions to expose the stack pointer
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Stack frames and the stack pointer

◮ Stack consists of stack frames

◮ Each function on the current
call stack has its own frame

◮ Active frame is on top of the
stack

◮ “Top of the stack”: at low
addresses

◮ Stack pointer points to end
(low address) of active frame

◮ Stack pointer is typically in
special register (rsp on
AMD64)

high addresses

Command-line arguments

stack pointer −→

Stack

(grows downwards)

unused space

Heap

(grows upwards)

.bss

.data

code

(.text)

low addresses
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Stack frames and the stack pointer

Example:

int func(int a, int b)

{

...

return 10001;

}

high addresses

Command-line arguments

stack pointer −→

stack frame of

main()

Heap

.bss

.data

code

(.text)

low addresses

high addresses
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A zoom into the stack frame

◮ Stack before the function call

◮ Caller (main) first puts
arguments for func on the
stack

◮ Caller pushes the return

address onto the stack

◮ ???

◮ Callee pushes local variables
onto the stack

high addresses

Command-line arguments

stack frame of

main()

arguments of func()

return address

???

local variables

stack pointer −→

stack pointer −→

stack pointer −→

stack pointer −→

stack pointer −→

Heap

...

low addresses
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The frame pointer

◮ So what’s with the ???. . . ?

◮ Traditionally also have an frame
pointer

◮ Pointing to the end (high
address) of the active stack frame

◮ On x86 in ebp register (AMD64:
rbp)

◮ Function call also saves previous
frame pointer on the stack

◮ On AMD64 commonly omitted:
◮ Faster function calls
◮ One additional register

available

high addresses

Command-line arguments

stack frame of

main()

arguments of func()

return address

saved frame pointer

local variables

frame pointer −→

stack pointer −→

Heap

...

low addresses
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Size of the stack

◮ C does not limit the size of the stack in the language

◮ In practice, of course stack space is limited

◮ In bare-metal environments, limited by hardware

◮ Otherwise limited by OS

◮ Under Linux, use ulimit -s to see stack size (in KB)

◮ Inside a C program, can use getrlimit

◮ Can also use setrlimit to request larger (or smaller) stack
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Things that may go wrong on the stack

◮ Obviously, we may exhaust stack space

◮ Simple example: infinite recursion (exhauststack.c)

◮ This is known as stack overflow

◮ In safety critical environments need to avoid this!

◮ Generally, don’t put “big data” on the stack

◮ Variables on the stack are not auto-initialized

◮ Reading uninitalized local variables allows to read local data from
previous functions

◮ The stack mixes program and control data

◮ Writing beyond buffers may overwrite return addresses

◮ Main attack vector for “targeted undefined behavior”
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. . . how bad is “wrong” exactly?

“On Thursday October 24, 2013, an Oklahoma court ruled against
Toyota in a case of unintended acceleration that lead to the death of one
the occupants. Central to the trial was the Engine Control Module’s
(ECM) firmware.”
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What went wrong?

◮ Critical variables were not mirrored (stored twice)

◮ Most importantly, result value TargetThrottleAngle wasn’t
mirrored

◮ Also critical data structes of the real-time OS weren’t mirrored

◮ Stack overflow
◮ Toyota claimed stack upper bound of 41% of total memory
◮ Stack was actually using 94% of total memory
◮ Analysis ignored stack used by some 350 assembly functions

◮ Code used recursion (forbidden by MISRA-C guidelines)

◮ MISRA-C: guidelines by the Motor Industry Software Reliability
Association

“A litany of other faults were found in the code, including buffer
overflow, unsafe casting, and race conditions between tasks.”
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Hardware specifics

◮ Stack layout shown so far is typical

◮ Many details look different on different architectures:
◮ Memory-segment layout may be different
◮ (Some) function arguments may be passed through registers
◮ Return values often passed through registers (sometimes also over

the stack)
◮ Frame pointer may be omitted

◮ Example: AMD64
◮ Integer and pointer arguments are passed through rdi, rsi, rdx,

rcx, r8, r9
◮ Return value in rax
◮

. . . at least for Linux, Windows is subtly different
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Limitations of the stack

int * table_of(int num, int len) {

int table[len];

for ( int i =0; i <= len ; i ++) {

table[ i ] = i *num;

}

return table; /* an int [] can be used as an int * */

}

What happens if we call this function as follows?:

int *table3 = table_of(3,10);

printf("5 times 3 is %d \n", table3[5]);

◮ The stack cannot preserve data beyond return of a function.

◮ Except of course of returned data (not pointers!)

◮ Obvious other limitation: size!
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The heap

◮ Think about the heap as a large piece of scrap paper

◮ We can request (large) continuous space on the piece of paper

◮ Note that “continuous” is easily ensured by virtual memory

◮ This space is accessible through a pointer (what else ;-))

◮ Space remains valid across function calls

◮ Every function that “knows” a pointer to the space can use it
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malloc

◮ Function to request space: void *malloc(size_t nbytes)

◮ Need to #include <stdlib.h> to use malloc

◮ size_t is an unsigned integer type

◮ Returns a void pointer to nbytes of memory

◮ Can also fail, in that case, it returns NULL

◮ Usually pointers in C are typed, void *x is an “untyped” pointer

◮ A void * implicitly casts to and from any other pointer type

◮ Remember that this is not the case in C++!

◮ Example of malloc usage:

int *x = malloc(10000 * sizeof(int));

◮ Request for space for 10 000 integers on the heap
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NULL

◮ The value NULL is guaranteed to not point to a valid address

◮ The following code produces undefined behavior:

int *x = NULL;

int i = *x;

◮ Important to note: NULL is not the same as 0

◮ In boolean expressions, NULL evaluates to false

◮ These two lines have the same semantics:

if(x == NULL) printf("NULL\n");

if(!x) printf("NULL\n");

◮ Not true in all programming languages, e.g., not in C#

23



ALWAYS check for malloc failure!
◮ The following code is terribly unsafe:

int *table = malloc(TABLESIZE * sizeof(int));

for(size_t i=0;i<TABLESIZE;i++)

table[i] = 42;

◮ malloc might return NULL

◮ table[i] dereferences the pointer table

◮ Consequence: undefined behavior!

◮ Correct version:

int *table = malloc(TABLESIZE * sizeof(int));

if(table == NULL) exit(-1);

for(size_t i=0;i<TABLESIZE;i++)

table[i] = 42;

◮ Could alternatively use boolean behavior of NULL:

if(!table) exit(-1);
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free

◮ You, the programmer, are in charge of releasing memory!

◮ When you don’t need some allocated memory anymore, use

free(x);

◮ Here, x is a pointer to previously malloc’ed memory

◮ Typical usage patters:

int *x = malloc(NUMX * sizeof(int));

if(x == NULL) exit(-1);

...

free(x);

◮ The calls to malloc and free can be in different functions

◮ Not freeing malloc’ed memory is known as a memory leak
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realloc
◮ Sometimes want to expand or shrink malloc’ed space
◮ Do this by using

void *realloc(void *ptr, size_t new_size);

◮ Content in the allocated area is preserved
◮ New space is created (or cut away) “at the end”
◮ This call may also return NULL
◮ If return value is NULL, previously allocated memory is not freed!
◮ Usage pattern:

xnew = realloc(x, NEWSIZE);

if(xnew == NULL)

{

free(x);

exit(-1); // or continue with old size of x

}

else

{

x = xnew;

}
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Dangling pointers, double-free, . . .

◮ Never use a pointer after it has been freed, e.g.,

int *x = malloc(SIZEX * sizeof(int));

...

free(x);

...

printf("Let’s see what the value of x is now: %p\n", x);

◮ This is undefined behaviour

◮ Also, never double-free a pointer, e.g.,

int *x = malloc(SIZEX * sizeof(int));

...

free(x);

free(x);

◮ Not always that obvious, you may have pointer aliases
◮ Pointer alias: multiple pointers to the same location
◮ Never “lose” the last pointer to a location
◮ This inevitable creates a memory leak: you cannot free anymore!
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Stack vs. heap vs. data segment

Data segment

◮ Data in the data segment exists throughout the whole execution of
the program

◮ global variables accessible to every function
◮ static local variables only accessible to the respective function

Stack

◮ Space on the stack allocated automatically

◮ Stack space automatically removed when returning from a function

◮ Certain risk of overflowing the stack

Heap

◮ Space on the heap needs to be requested manually (malloc)

◮ Request may be denied (NULL return) and this must be handled

◮ Space on the heap needs to be freed manually (free)

◮ Risk of memory leaks, double frees, etc.
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What’s wrong with this code (part 1)?

int f()

{

int *a = malloc(100 * sizeof(int));

if(a == NULL) return -1;

char *x = (char *)a;

...

free(x);

free(a);

}

◮ Fairly simple: double-free.
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What’s wrong with this code (part 2)?

int *f()

{

int a[100];

for(i=0;i<100;i++)

a[i] = i;

return a;

}

◮ Return type is int *, returning a is not a type problem

◮ Remember that an array can “decay” to a pointer to its first element

◮ Code is syntactically completely correct C

◮ Returning pointer to a local variable is undefined behavior

◮ Never do this, not even for debugging purposes

◮ Any decent compiler will put out warnings
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What’s wrong with this code (part 3)?

int f()

{

int *a = malloc(100 * sizeof(int));

int x = 5;

int *y = a;

a = &x;

free(a);

return x;

}

◮ No check whether malloc returned NULL

◮ The function is so wrong, that this isn’t even really a problem

◮ The free is used on a stack address

◮ The value of y is lost after return

◮ Cannot free the allocated memory anymore
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valgrind

◮ Memory bugs are hard to find manually

◮ They are one of the biggest problems in C code

◮ Luckily there is tool assistance: valgrind

◮ Run code is a sort of virtual machine, include memory checks

◮ Muuuuuuch slower than actually running the code, but:
◮ Find memory leaks (malloc without free)
◮ Find access to freed memory
◮ Find double-free
◮ Find branches and memory access depending on uninitialized data

◮ Many more tools beyond the memory checker in valgrind, e.g.,
◮ cachgrind, a cache profiler
◮ callgrind, generating call graphs

◮ valgrind is a dynamic analyzer, not static

◮ For example, no guarantees of branch coverage

◮ Generally good practice:
◮ run your code in valgrind before submitting/publishing
◮ make sure that valgrind reports to errors
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