
Hacking in C
The C programming language

Radboud University, Nijmegen, The Netherlands

Spring 2018

The C programming language

I Invented by Dennis Ritchie in the early 70s
I First “Hello World” program written in C
I UNIX (and Linux) is written in C
I Still one of the top-5 most used

programming languages
I Compilers for almost all platforms
I Many “interesting” security issues

Source: Wikipedia

2

C standards and “standards”

I First definition in Kernighan&Ritchie: “The C Programming
Language”

I Also known as K&R C, book appared in 1978
I Standardized by ANSI in 1989 (C89) and ISO (C90)
I Second edition of K&R book used “ANSI C”, i.e., C89
I In 1995, ANSI published an amendment to the C standard (“C95”)
I In 1999, ISO standardized updated C, ANSI adopted (C99)
I Current standard is C11, standardized (ANSI and ISO) in 2011
I Standard draft online:

https://port70.net/~nsz/c/c11/n1570.html
I Compilers like gcc or clang also support GNU extensions
I Default for gcc: C11 plus GNU extensions (aka gnu11)
I You can switch gcc to other C standards using, e.g., -std=c89
I Use -pedantic flag to issue warnings if your code doesn’t conform

to the standard

3

https://port70.net/~nsz/c/c11/n1570.html

C vs. C++

I C is the basis for C++, Objective-C, and many other languages
I C is not a subset of C++, e.g.,

int *x = malloc(sizeof(int) * 10);

is valid (and perfectly reasonable) C, but not valid C++!
I You can “mix” C and C++ code, but you have to be very careful
I In C++, declare C functions as extern "C", for example:

extern "C" int mycfunction(int);

I Now you can call mycfunction from your C++ code
I Use compiler by the same vendor to compile
I Lets you use, e.g., highly optimized C libraries
I Common scenario:

I Write high-speed code in C (and assembly)
I Write so-called wrappers around this for easy access in C++

4

A “portable assembler”

C has been characterized (both admiringly and invidiously) as a portable
assembly language

—Dennis Ritchie
I Idea of assembly:

I Programmer has full control over the program
I Choice of instructions, register allocation etc. left to programmer
I Programmer has “raw access” to memory
I Need to rewrite programs for each architecture
I Need to re-optimize for each microarchitecture

I Idea of C:
I Take away some bits of control from the programmer
I Stay as close as possible to assembly, but stay portable
I In particular: give programmer raw access to memory
I Use compiler to generate code for different architectures
I Use compiler to optimize for different microarchitectures

5

“If programming languages were. . . ”
I . . . vehicles

http:
//crashworks.org/if_programming_languages_were_vehicles/

I . . . countries
https://www.quora.com/
If-programming-languages-were-countries-which-country-would-each-language-represent

I . . . GoT characters
https://techbeacon.com/
if-programming-languages-were-game-thrones-characters

I . . . beer
https:
//www.topcoder.com/blog/if-programming-languages-were-beer/

I . . . boats
http://compsci.ca/blog/if-a-programming-language-was-a-boat/

“C is a nuclear submarine. The instructions are probably in a foreign
language, but all of the hardware itself is optimized for performance.

6

http://crashworks.org/if_programming_languages_were_vehicles/
http://crashworks.org/if_programming_languages_were_vehicles/
https://www.quora.com/If-programming-languages-were-countries-which-country-would-each-language-represent
https://www.quora.com/If-programming-languages-were-countries-which-country-would-each-language-represent
https://techbeacon.com/if-programming-languages-were-game-thrones-characters
https://techbeacon.com/if-programming-languages-were-game-thrones-characters
https://www.topcoder.com/blog/if-programming-languages-were-beer/
https://www.topcoder.com/blog/if-programming-languages-were-beer/
http://compsci.ca/blog/if-a-programming-language-was-a-boat/

Syntax and semantics

Syntax of a programming language
I Spelling and grammar rules
I Defines the language of valid programs
I Syntax errors are caught by the compiler
I Classical example: forget a ; at the end of a line

Semantics of a programming language
I Defines the meaning of a valid program
I In many languages semantics are fully specified
I Runtime errors (exceptions) are part of the semantics
I C is not fully specified!

7

Unspecified behavior

I Unspecified behavior is “implementation-specific”
I Semantics not defined by the standard, but have to specified by the

compiler
I Reason: allow better optimization
I Examples:

I Shifting negative values to the right (e.g., int a = (-42) >> 3)
I Order of subexpression evaluation (e.g., f(g(), h()))
I Sizes of of various types (more later)
I Representation of data types (more later)
I Number of bits in one byte

I Fairly hard to write fully specified C programs
I For this course: if not otherwise stated assume gcc (version 6.x or

7.x) compiling for AMD64.

8

Undefined behavior
I Different from unspecified behavior: undefined behavior
I Program reaches a state in which it may do anything

I It may crash with arbitrary error code
I It may silently corrupt data
I It may give the right result
I The behavior may be “randomly” different in independent runs

I Undefined behavior means that the whole program has no
meaning anymore!

I This is essentially always a bug, often security critical
I Examples:

I Access an array outside the bounds
I More generally: access memory at “illegal” position
I Overflowing a signed integer ((INT_MAX+1))
I Left-shifting a signed integer ((-42) << 3)

I It is totally acceptable for a program to delete all your data when
running into undefined behavior

I Sometimes we can make a program do this (or something similar)
I Most attacks in the course: exploit undefined behavior

9

C compilation
I Four steps involved in compilation, can stop at any of those
I First step: Run the preprocessor (gcc -E)

I Include code from #include directives
I Expand macros from #define directives
I Expand compile-time (static) conditionals #if
I The C preprocessor is almost Turing complete
I See https://github.com/orangeduck/CPP_COMPLETE for a

Brainfuck interpreter written in the C preprocessor
I Second step: Run compilation proper (gcc -S)

I Go from C to assembly level
I This is where you get syntax errors

I Third step: Generate machine code (gcc -c)
I Generates so-called object files

I Fourth step: Linking (simply run gcc, this is default)
I Put object files together to a binary
I Linker errors include missing functions or function duplicates
I Also include external libraries here (e.g., -lm)
I Caution: order of arguments can matter!

10

https://github.com/orangeduck/CPP_COMPLETE

Memory abstraction 1: where data is stored

I Programmers typically don’t know where data is stored
I For example, a variable can sit in

I a register of the CPU
I in any of the caches of the CPU
I in RAM
I on the hard drive (in so-called swap space)

I Compiler makes decisions about register allocation
I Compiler has some bit of influence on caching
I Other decisions are made by the OS (and the CPU)
I Sometimes important: always read the variable from memory
I C has keyword volatile to enforce this
I Disables certain optimization

11

Where is data allocated?

I C has the & operator that returns the address of a variable
I Example:

I Let’s say we have a variable int x = 12
I Now &x is the address where x is stored, aka a pointer to x

I Much more on pointers later, for the moment let’s print them:
char x; int i; short s; char y;
printf("The address of x is %p\n", &x);
printf("The address of i is %p\n", &i);
printf("The address of s is %p\n", &s);
printf("The address of y is %p\n", &y);

I Note the %p format specifier for pointers
I The “inverse” of & is *, i.e., *(&x) gives the value of x

12

register

I Important task for the compiler: register allocation
I Map live variables (whose values are still needed) to registers
I Typical goal: minimize amount of “register spills”
I C lets programmers “help” the compiler with keyword register
I Quote from Erik’s slides:

“you should never ever use this! Compilers are much better than you
are at figuring out which data is best stored in CPU registers.”

I I agree that I never (?) use register
I Reason: I am (often) better than the compiler at figuring out which

data is best stored in CPU registers. . .
I . . . and then I write in assembly and avoid the compiler alltogether
I Problem with register: no guarantee that the value isn’t spilled
I Requesting the address of a register variable is invalid!

13

Memory abstraction 2: how data is stored

I You can think of memory as an array of bytes
I For this course: a byte consists of 8 bits
I Computer programs work with different data types
I Important step of compilation: map other types to bytes
I Idea of C: you can program without needing to understand this

mapping
I Idea of this course: you can have more fun with C if you do!
I The CPU likes to see the memory as an array of words
I Words typically consist of several bytes (e.g., 4 or 8 bytes)
I (Most) registers have the size of machine words
I Often loads and stores are more efficient when aligned to a word

boundary
I von Neumann architecture: also programs are just bytes in memory
I Only difference between data and program: what you do with it

14

char

I Most basic data type: char
I From the C11 standard:

“An object declared as type char is large enough to store any
member of the basic execution character set.”

I More useful definition: a char is a byte, i.e., the smallest
addressable unit of memory

I In all relevant scenarios: a char is an 8-bit integer
I Traditionally a char is used to represent ASCII characters, yields

two common ways to initialize a char:
char a = ’2’;
char b = 2;
char c = 50;

I Which of those values are equal?
I It’s a and c, because ’2’ has ASCII value 50.

15

Another quick question. . .

I What does the following code do?:
char i;
for(i=42;i>=0;i--)
{

printf("Crypto stands for cryptography\n");
}

I Answer: it depends (and it really does!)
I C standard does not define whether char is signed or unsigned
I Make explicit by using signed char or unsigned char

16

Other integral types
I C11 provides 4 more integral types (each signed and unsigned):

I short: at least 2 bytes
I int: typically 4 (but sometimes 2) bytes
I long: typically 4 or 8 bytes
I long long: at least 8 bytes (in practice: exactly 8 bytes)

I GNU extension: __int128 for architectures that support it
I Common misconception: long is as long as a machine word
I Think about how this would work on an 8-bit microcontroller. . .
I Find size of any type in bytes using sizeof, e.g.:

int a;
printf("%zd", sizeof(a));
printf("%zd", sizeof(long));

I Integral constants can be written in
I Decimal, e.g., 255
I Hexadecimal, using 0x, e.g., 0xff
I Octal, using 0, e.g., 0377

17

Floating-point and complex values
I C also defines 3 “real” types:

I float: usually 32-bit IEEE 754 “single-precision” floats
I double: usually 64-bit IEEE 754 “double-precision” floats
I long double:: usually 80-bit “extended precision” floats

I Corresponding “complex” types (need to include complex.h)
I This lecture: not much float hacking
I However, this is fun, see “What every computer scientist should

know about floating point arithmetic”
www.itu.dk/~sestoft/bachelor/IEEE754_article.pdf

I Small example:
double a; /* assume IEEE 754 standard */
...
a += 6755399441055744;
a -= 6755399441055744;

I What does this code do to a?
I Answer: it rounds a according to the currently set rounding mode

18

www.itu.dk/~sestoft/bachelor/IEEE754_article.pdf

Printing values

Have already seen various examples of format strings, let’s summarize:

printf("%d", a); /* prints signed integers in decimal */
printf("%u", b); /* prints unsigned integers in decimal */
printf("%x", c); /* prints integers in hexadecimal */
printf("%o", c); /* prints integers in octal */
printf("%lu", d); /* prints long unsigned integer in decimal */
printf("%llu", d); /* prints long long unsigned integer in decimal */
printf("%p", &d); /* prints pointers (in hexadecimal) */
printf("%f", e); /* prints single-precision floats */
printf("%lf", e); /* prints double-precision floats */
printf("%llf", e); /* prints extended-precision floats */

There’s quite a few more, but these get you fairly far.

19

stdint.h

I Often we need to know how large an integer is
I Example: crypto primitives are optimized to work on, e.g., 32-bit

words
I Solution: Fixed-size integer types defined in stdint.h

I uint8_t is an 8-bit unsigned integer
I int8_t is an 8-bit signed integer
I uint16_t is a 16-bit unsigned integer
I . . .
I int64_t is a 64-bit signed integer

I Problem: how do we print them in a portable way?
I printf("%llu\n", a); for uint64_t a may produce warnings
I Solution: printf("%" PRIu64 "\n", a)
I For signed values, e.g., PRId64
I Printing in hexadecimal: PRIx64

20

Implicit type conversion

I Sometimes we want to evaluate expressions involving different types
I Example:

float pi, r, circ;
a = 3.14159265;
circ = 2*pi*r;

I C uses complex rules to implicitly convert types
I Often these rules are perfectly intuitive:

I Convert “less precise” type to more precise type, preserve values
I Compute modulo 216, when casting from uint32_t to uint16_t

I However, these rules can be rather counterintuitive:
unsigned int a = 1;
int b = -1;
if(b < a) printf("all good\n");
else printf("WTF?\n");

21

Explicit casts
I Sometimes we need to convert explicitly
I Example: multiply two (32-bit) integers:

unsigned int a,b;
...
unsigned long long r = a*b;

I By “default”, result of a*b has 32-bits; upper 32 bits are “lost”
I Fix by casting one (or both) factors:

unsigned long long r = (unsigned long long)a*b;

I Can also use this to, e.g., truncate floats:
float a = 3.14159265;
float c = (int) a;
printf("%f\n", trunc(a));
printf("%f\n", c);

I Careful, this does not generally work (undefined behavior ahead)!
22

A small quiz

What do you think this program will print?

unsigned char x = 128;
signed char y = x;
printf("The value of y is %d\n", y);

(Obviously, the answer is “unspecified behavior” – it’s C after all)

23

Two’s complement

I Can represent a signed integer as “sign + absolute value”
I Disadvantage: zero has two representations (0 and -0)
I Other idea: flip all bits in a to obtain -a
I This is known as “ones complement”
I Still: zero has two representations
I Much more common: two’s complement

I flip all bits in a
I add 1

I Sanity test: a = -(-a)
I Range of k-bit signed integer: {−2k−1, . . . , 2k−1 − 1}
I Example: signed (8-bit) byte: {−128, . . . , 127}
I Can use the same hardware for signed and unsigned addition

24

Endianess

I Let’s consider the 32-bit integer 287454020 =0x11223344
I How would you put it into memory. . . ,like this?:

| 11 | 22 | 33 | 44 |

0x0...0 0x0...1 0x0...2 0x0...3

I How about like this?
| 44 | 33 | 22 | 11 |

0x0...0 0x0...1 0x0...2 0x0...3

I A quick poll: What do you find more intuitive?

25

Endianess, let’s try again

I Take 4-byte integer a =
∑3

i=0 ai2
8i

I The ai are the bytes of a
I How would you put it into memory. . . ,like this?:

| a0 | a1 | a2 | a3 |

0x0...0 0x0...1 0x0...2 0x0...3

I Or would you rather have this?
| a3 | a2 | a1 | a0 |

0x0...0 0x0...1 0x0...2 0x0...3

I Again a quick poll: What do you find more intuitive?

26

Endianess, the conclusion

I Least significant bytes at low addresses: little endian
I Most significant bytes at low addresses: big endian
I This is short for “little/big endian byte first”
I Most CPUs today use little endian
I Examples for big-endian CPUs:

I PowerPC
I UltraSPARC

I ARM can switch endianess (is “bi-endian”)
I The problem with little-endian intuition is just that we write

left-to-right (but use Arabic numbers)

27

