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A short recap

◮ Program memory is partitioned into different segments

◮ Code segment (or .text) for (read-only) program code

◮ .data and .bss for global and static variables

◮ Stack for local data of functions
◮ Grows downwards, i.e., function call decreases stack pointer
◮ Also contains return addresses, function arguments, (frame pointer)
◮ Managed automatically, data is non-persistent
◮ Stack overflow: exceeding maximum stack size (e.g., massive

recursion)

◮ Heap for persistent or large data
◮ Request heap space with malloc
◮ Resize requested memory with realloc
◮ Always check whether returned pointer is NULL!
◮ Free heap space using free
◮ Heap is managed by the programmer
◮ Many possible problems: danging pointers, double-free, memory

leaks. . .
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calloc

◮ Remember that data on the stack is not initialized

◮ Global variables are initialized

◮ Memory space allocated with malloc is not initialized

◮ Alternative: use calloc:

void *calloc(size_t nitems, size_t size)

◮ Request space for nitems elements of size size each

◮ Memory space is initialized to zero

◮ Example usage:

int *p = calloc(1000, sizeof(int));

if(p == NULL) exit(-1);

◮ Request space for 1000 integers
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malloc vs. calloc

◮ Aside from initialization, any difference between
◮ int *p = malloc(nelems*sizeof(int)); and
◮ int *p = calloc(nelems,sizeof(int));?

◮ Multiplication nelems*sizeof(int) can overflow!

◮ Result: successful allocation, but of much less memory!

◮ Another difference:
◮ malloc doesn’t guarantee you that you can use the memory you

requested
◮ Linux optimistically grants you the memory
◮ Later access to this memory may still fail
◮ calloc gives you memory that is actually “backed” by the OS
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Heap management

◮ Remember free?:

int *p = malloc(1000*sizeof(int));

if(p == NULL) exit(-1);

...

free(p);

◮ Question: How does free know, how much memory belongs to a
pointer?

◮ Answer: malloc needs to write this information somewhere

◮ Obvious location: the heap

◮ One solution: maintain a table of all malloc’ed addresses and space

◮ Other solution: write information just before the pointer
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Reading and manipulating data

◮ Situation so far: program itself may do “weird” things in its own
memory space

◮ “Weird” things means: undefined behavior

◮ Easiest case: program crashes (segmentation fault)

◮ More scary case: leak data (out of bounds read)

◮ Question now: How can we use inputs to the program to
◮ Leak data
◮ Manipulate program’s data
◮ Have the program do something completely different
◮ Take full control over what the program does

◮ Remember: All of this is allowed by the C specification!
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Attack scenario

◮ Attacker does not actually run the program

◮ Attacker only provides input to the program

◮ Examples of software accepting attacker input:
◮ Internet server (web, mail, etc.) receiving packets
◮ E-mail client, receiving and parsing (html) e-mails
◮ Web browser parsing html and executing JavaScript.
◮ Messaging (chat) programs receiving messages
◮ Any program you use to open e-mail attachments

◮ Is there any program that only receives trustworthy input?
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Format-string attacks



Format-string attacks

◮ Format-string attacks were first described in 1999

◮ This is after 25 years of people programming in C!

◮ Allow an attacker to
◮ read data from the stack (and heap)
◮ manipulate data in memory

◮ Vulnerable code (typically) fairly easy to spot

◮ These attacks should be history by now

◮ Still, great first example for malicious-input attacks
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A simple main

#include<stdio.h>

extern long f(long *x);

int main(int argc, char* argv[])

long pincode = 1234;

printf (argv [1]);

return f(&pincode);

}

◮ The program prints the first command line argument

◮ The call to f() is so that gcc doesn’t optimize pincode away
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argc and argv

◮ Two options for main arguments:
◮ (void)
◮ (int argc, char **argv) or (int argc, char *argv[])

◮ char **argv and char *argv[] are equivalent

◮ char ** is a pointer to a pointer to char

◮ Can also see it as an array of strings

◮ Contains the command-line arguments:
◮ argv[0] is the name of the program
◮ argv[1] is the first argument
◮ argv[2] is the second argument
◮ . . .

◮ argc contains the length of the argv array

◮ Without any command-line argument, argc == 1
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Arguments passing, the “easy” way

◮ Let’s call our program with ./formatstring "%x"

◮ What does the program print?

◮ Answer: It depends ;-)

◮ printf has variable number of arguments

◮ For each % in the first argument, expect one more argument

◮ (To print a percent sign, use %% in the first printf argument)

◮ printf finds one %x, looks for second argument

◮ Traditionally (x86) arguments are passed through the stack

◮ On x86, we would get the top 4 bytes of the stack
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Arguments passing on AMD64

◮ Passing arguments over the stack is expensive

◮ Caller needs to store, callee needs to load

◮ Advantage: doesn’t need registers (only 8 of those on x86!)

◮ AMD64 extended register size from 32 to 64 bits

◮ AMD64 also introduced 8 more registers (r8,. . . ,r15)

◮ Major change in function-call ABI: pass up to 6 arguments through
registers:

◮ First argument passed through rdi
◮ Second argument passed through rsi
◮ . . .

◮ printf will look for second argument in rsi

◮ Output (on AMD64) is the content of rsi

◮ What happens if we run
./formatstring "%p %p %p %p %p %p %p %p %p"?
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Format strings

◮ A format string is a string containing control parameters

◮ Control parameters start with %

◮ Functions like printf (or snprintf) interpret those control
parameters

◮ Look in additional arguments for values to replace them

◮ Short recap:
◮ %d prints integer in decimal
◮ %x prints integer in hexadecimal
◮ %p prints a pointer
◮ %s prints a string
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Leaking data with format strings

◮ Exploit code of the form printf(str)

◮ Assume that str is controlled by attacker

◮ Choosing str to contain many %p prints
◮ first the values of rsi, rdx, rax, r8, r9
◮ then the content of the stack

◮ What happens if we use str == "%s"?

◮ Print memory from address in rdi up to first zero byte

◮ Use multiple %s to print memory at multiple locations
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Corrupting data with format strings
◮ So far we can use format-string attacks “only” to read data
◮ Consider the following code program:

int main(int argc, char *argv[])

{

int len;

printf("How long is %s?\n%n", argv[1], &len);

printf("%d\n", len-14);

return 0;

}

◮ The %n control parameter causes printf to write data
◮ Write number of characters printed so far to len
◮ What happens if we feed "Hello World!%n" to:

int main(int argc, char* argv[])

printf (argv [1]);

}

◮ Answer (on AMD64): Write 12 to the address in rsi
◮ Can choose arbitrary values by feeding in longer strings
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Evil formatstrings (summary)

◮ Use %p, %x to print data in (argument) registers and the stack

◮ Use %n to write data to addresses you don’t control

◮ How about writing to addresses you do control?

◮ Assumption is that attacker controls the format string

◮ Typically:
◮ format string sits somewhere on the stack
◮ Same location that will be used by printf for arguments

◮ Can choose address to write to with %n

◮ Depends on where the actual format-string is sitting in memory
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The first format-string attack

◮ Discovered by Tymm Twillman when auditing ProFTPD (1999)

◮ First ftp to vulnerabable host, login (anonymous)

ftp> ls aaaXXXX%u%u%u%u%u%u%u%u%u%u%u%u%u%u%u%u%u%u

%u%u%u%u%u%u%u%u%u%u%u%u%u%u%u%u%u%u%653300u%n

◮ replace the X’s with the characters with ASCII values
0xdc,0x4f,0x07,0x08 consecutively

◮ See http://seclists.org/bugtraq/1999/Sep/328
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The first format-string attack

ftp> ls aaaXXXX%u%u%u%u%u%u%u%u%u%u%u%u%u%u%u%u%u%u

%u%u%u%u%u%u%u%u%u%u%u%u%u%u%u%u%u%u%653300u%n

“The a’s at the beginning are just for alignment, the %u’s to skip bytes in
the stack, the %653300u is to increment the # of bytes that have been
"output", and the %n stores that value (whose LSBs have now flipped
over to 0) to the location pointed to by the current “argument” – which
just happens to point right after the a’s in this string. The bytes that
replace the X’s are the address where proftpd keeps the current user
ID...”
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Getting rid of format-string attacks

◮ Vulnerable pattern:

printf(str);

◮ Safe pattern:

printf("%s", str);

◮ Attacker does not control the first argument to printf anymore

◮ Control parameters are only in the first argument

◮ Compilers find such patterns and warn about them

◮ Need compiler flags (e.g., -Wall)

◮ Much more subtle if format string is not known at compile time

◮ Could ask a user: how would you like your output formatted

◮ Static (compile-time) analysis has no chance here

◮ Need to carefully validate user input!
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Buffer Overflows



No bounds checking – what could go wrong?

◮ April 7, 2014, OpenSSL discloses
“Heartbleed” bug

◮ Heartbleed allows remote attacker to
read out OpenSSL memory

◮ Content typically includes
cryptographic keys, passwords, etc.

◮ Bug was in OpenSSL for more than 3
years

◮ Introduced on December 31, 2010

◮ First bug with a logo

◮ Major media coverage

◮ Initiated major changes in OpenSSL

Underlying problem: Out of bounds array access in OpenSSL
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How Heartbleed works

https://xkcd.com/1354/
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Overwriting data on the stack

◮ Imagine you can send emph one packet to crash a server

◮ Classic example: ping of death (mid 90s)
◮ Idea is the following:

◮ IP packets are limited to a length of 65535 bytes
◮ IP packets get “chopped” into fragments for transportation through,

e.g., Ethernet
◮ IP header has a fragment offset
◮ Fragment offset + packet size must not exceed 65535

◮ . . . but it can
◮ With fragmentation, it is possible to send IP packets of size > 65535

◮ Receiving host will assemble the fragments into a buffer of size 65535

◮ Overlong IP packet will overflow this buffer

◮ This bug was present in UNIX, Linux, Windows, Mac, routers,
printers . . .

◮ Trivially easy to exploit with some implementations of ping:

ping -s 65510 target

◮ Fix by checking offset + packet_size <= 65525
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The return of the ping of death

◮ CVE-2013-3183: IPv6 ping of death against Windows Vista SP2,
Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows
8, Windows Server 2012, and Windows RT

◮ CVE-2016-1409: IPv6 ping of death against Cisco’s IOS, IOS XR,
IOS XE, and NX-OS software
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