
Engineering Cryptographic Software
Elliptic-curve arithmetic

Radboud University, Nijmegen, The Netherlands

Winter 2022

Diffie-Hellman
◮ Let G be a cyclic, finite, abelian Group (written additively) and let

P be a generator of G

2

Diffie-Hellman
◮ Let G be a cyclic, finite, abelian Group (written additively) and let

P be a generator of G

◮ Alice chooses random a ∈ {0, . . . , |G| − 1}, computes aP , sends to
Bob

◮ Bob chooses random b ∈ {0, . . . , |G| − 1}, computes bP , sends to
Alice

2

Diffie-Hellman
◮ Let G be a cyclic, finite, abelian Group (written additively) and let

P be a generator of G

◮ Alice chooses random a ∈ {0, . . . , |G| − 1}, computes aP , sends to
Bob

◮ Bob chooses random b ∈ {0, . . . , |G| − 1}, computes bP , sends to
Alice

◮ Alice computes joint key a(bP)

◮ Bob computes joint key b(aP)

2

Diffie-Hellman
◮ Let G be a cyclic, finite, abelian Group (written additively) and let

P be a generator of G

◮ Alice chooses random a ∈ {0, . . . , |G| − 1}, computes aP , sends to
Bob

◮ Bob chooses random b ∈ {0, . . . , |G| − 1}, computes bP , sends to
Alice

◮ Alice computes joint key a(bP)

◮ Bob computes joint key b(aP)

◮ DLP in G: given kP ∈ G and P , find k

◮ Solving the DLP breaks security of Diffie-Hellman

2

Diffie-Hellman
◮ Let G be a cyclic, finite, abelian Group (written additively) and let

P be a generator of G

◮ Alice chooses random a ∈ {0, . . . , |G| − 1}, computes aP , sends to
Bob

◮ Bob chooses random b ∈ {0, . . . , |G| − 1}, computes bP , sends to
Alice

◮ Alice computes joint key a(bP)

◮ Bob computes joint key b(aP)

◮ DLP in G: given kP ∈ G and P , find k

◮ Solving the DLP breaks security of Diffie-Hellman

Groups with hard DLP

◮ Traditional answer: Z∗

p with large prime-order subgroup

2

Diffie-Hellman
◮ Let G be a cyclic, finite, abelian Group (written additively) and let

P be a generator of G

◮ Alice chooses random a ∈ {0, . . . , |G| − 1}, computes aP , sends to
Bob

◮ Bob chooses random b ∈ {0, . . . , |G| − 1}, computes bP , sends to
Alice

◮ Alice computes joint key a(bP)

◮ Bob computes joint key b(aP)

◮ DLP in G: given kP ∈ G and P , find k

◮ Solving the DLP breaks security of Diffie-Hellman

Groups with hard DLP

◮ Traditional answer: Z∗

p with large prime-order subgroup

◮ Modern answer: Elliptic curve over Fq with large prime-order
subgroup

2

Diffie-Hellman
◮ Let G be a cyclic, finite, abelian Group (written additively) and let

P be a generator of G

◮ Alice chooses random a ∈ {0, . . . , |G| − 1}, computes aP , sends to
Bob

◮ Bob chooses random b ∈ {0, . . . , |G| − 1}, computes bP , sends to
Alice

◮ Alice computes joint key a(bP)

◮ Bob computes joint key b(aP)

◮ DLP in G: given kP ∈ G and P , find k

◮ Solving the DLP breaks security of Diffie-Hellman

Groups with hard DLP

◮ Traditional answer: Z∗

p with large prime-order subgroup

◮ Modern answer: Elliptic curve over Fq with large prime-order
subgroup

◮ Sophisticated answer (not in this lecture): hyperelliptic curves of
genus 2

2

Diffie-Hellman
◮ Let G be a cyclic, finite, abelian Group (written additively) and let

P be a generator of G

◮ Alice chooses random a ∈ {0, . . . , |G| − 1}, computes aP , sends to
Bob

◮ Bob chooses random b ∈ {0, . . . , |G| − 1}, computes bP , sends to
Alice

◮ Alice computes joint key a(bP)

◮ Bob computes joint key b(aP)

◮ DLP in G: given kP ∈ G and P , find k

◮ Solving the DLP breaks security of Diffie-Hellman

Groups with hard DLP

◮ Traditional answer: Z∗

p with large prime-order subgroup

◮ Modern answer: Elliptic curve over Fq with large prime-order
subgroup

◮ Sophisticated answer (not in this lecture): hyperelliptic curves of
genus 2

2

Typical view on elliptic curves

Definition
Let K be a field and let a1, a2, a3, a4, a6 ∈ K. Then the following
equation defines an elliptic curve E:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

if the discriminant ∆ of E is not equal to zero. This equation is called
the Weierstrass form of an elliptic curve.

3

Typical view on elliptic curves

Definition
Let K be a field and let a1, a2, a3, a4, a6 ∈ K. Then the following
equation defines an elliptic curve E:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

if the discriminant ∆ of E is not equal to zero. This equation is called
the Weierstrass form of an elliptic curve.

Characteristic 6= 2, 3

If char(K) 6= 2, 3 we can use a simplified equation:

E : y2 = x3 + ax+ b

3

Typical view on elliptic curves

Definition
Let K be a field and let a1, a2, a3, a4, a6 ∈ K. Then the following
equation defines an elliptic curve E:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

if the discriminant ∆ of E is not equal to zero. This equation is called
the Weierstrass form of an elliptic curve.

Characteristic 6= 2, 3

If char(K) 6= 2, 3 we can use a simplified equation:

E : y2 = x3 + ax+ b

Characteristic 2

If char(K) = 2 we can (usually) use a simplified equation:

E : y2 + xy = x3 + ax2 + b

3

Rational points

Setup for cryptography

◮ Choose K = Fq

◮ Consider the set of Fq-rational points:

E(Fq) = {(x, y) ∈ Fq×Fq : y
2+a1xy+a3y = x3+a2x

2+a4x+a6}∪{O}

4

Rational points

Setup for cryptography

◮ Choose K = Fq

◮ Consider the set of Fq-rational points:

E(Fq) = {(x, y) ∈ Fq×Fq : y
2+a1xy+a3y = x3+a2x

2+a4x+a6}∪{O}

◮ The element O is the “point at infinity”

4

Rational points

Setup for cryptography

◮ Choose K = Fq

◮ Consider the set of Fq-rational points:

E(Fq) = {(x, y) ∈ Fq×Fq : y
2+a1xy+a3y = x3+a2x

2+a4x+a6}∪{O}

◮ The element O is the “point at infinity”

◮ This set forms a group (together with addition law)

4

Rational points

Setup for cryptography

◮ Choose K = Fq

◮ Consider the set of Fq-rational points:

E(Fq) = {(x, y) ∈ Fq×Fq : y
2+a1xy+a3y = x3+a2x

2+a4x+a6}∪{O}

◮ The element O is the “point at infinity”

◮ This set forms a group (together with addition law)

◮ Order of this group: |E(Fq)| ≈ |Fq|

4

The group law
Example curve: y

2
= x

3
− x over R

Graph of E over R

0 1−1−2
0

−1

−2

1

2

5

The group law
Example curve: y

2
= x

3
− x over R

Addition of points

◮ Add points
P = (−0, 9;−0, 4135) and
Q = (−0, 1; 0, 3146)

Graph of E over R

0 1−1−2
0

−1

−2

1

2

•

•

5

The group law
Example curve: y

2
= x

3
− x over R

Addition of points

◮ Add points
P = (−0, 9;−0, 4135) and
Q = (−0, 1; 0, 3146)

◮ Compute line through the two
points

Graph of E over R

0 1−1−2
0

−1

−2

1

2

•

•

5

The group law
Example curve: y

2
= x

3
− x over R

Addition of points

◮ Add points
P = (−0, 9;−0, 4135) and
Q = (−0, 1; 0, 3146)

◮ Compute line through the two
points

◮ Determine third intersection
T = (xT , yT) with the elliptic
curve

Graph of E over R

0 1−1−2
0

−1

−2

1

2

•

•

•

5

The group law
Example curve: y

2
= x

3
− x over R

Addition of points

◮ Add points
P = (−0, 9;−0, 4135) and
Q = (−0, 1; 0, 3146)

◮ Compute line through the two
points

◮ Determine third intersection
T = (xT , yT) with the elliptic
curve

◮ Result of the addition:
P +Q = (xT ,−yT)

Graph of E over R

0 1−1−2
0

−1

−2

1

2

•

•

•

•

5

The group law
Example curve: y

2
= x

3
− x over R

Graph of E over R

0 1−1−2
0

−1

−2

1

2

6

The group law
Example curve: y

2
= x

3
− x over R

Point doubling

◮ Double the point
P = (−0.7, 0.5975)

Graph of E over R

0 1−1−2
0

−1

−2

1

2

•

6

The group law
Example curve: y

2
= x

3
− x over R

Point doubling

◮ Double the point
P = (−0.7, 0.5975)

◮ Compute the tangent on P

Graph of E over R

0 1−1−2
0

−1

−2

1

2

•

6

The group law
Example curve: y

2
= x

3
− x over R

Point doubling

◮ Double the point
P = (−0.7, 0.5975)

◮ Compute the tangent on P

◮ Determine second intersection
T = (xT , yT) with the elliptic
curve

Graph of E over R

0 1−1−2
0

−1

−2

1

2

•

•

6

The group law
Example curve: y

2
= x

3
− x over R

Point doubling

◮ Double the point
P = (−0.7, 0.5975)

◮ Compute the tangent on P

◮ Determine second intersection
T = (xT , yT) with the elliptic
curve

◮ Result of the addition:
P +Q = (xT ,−yT)

Graph of E over R

0 1−1−2
0

−1

−2

1

2

•

•

•

6

Group law in formulas

Curve equation: y2 = x3 + ax+ b

7

Group law in formulas

Curve equation: y2 = x3 + ax+ b

Point addition
◮ P = (xP , yP), Q = (xQ, yQ) → P +Q = R = (xR, yR) with

7

Group law in formulas

Curve equation: y2 = x3 + ax+ b

Point addition
◮ P = (xP , yP), Q = (xQ, yQ) → P +Q = R = (xR, yR) with

◮ xR =
(

yQ−yP

xQ−xP

)2

− xP − xQ

◮ yR =
(

yQ−yP

xQ−xP

)

(xP − xR)− yP

7

Group law in formulas

Curve equation: y2 = x3 + ax+ b

Point addition
◮ P = (xP , yP), Q = (xQ, yQ) → P +Q = R = (xR, yR) with

◮ xR =
(

yQ−yP

xQ−xP

)2

− xP − xQ

◮ yR =
(

yQ−yP

xQ−xP

)

(xP − xR)− yP

Point doubling

◮ P = (xP , yP), 2P = (xR, yR) with

7

Group law in formulas

Curve equation: y2 = x3 + ax+ b

Point addition
◮ P = (xP , yP), Q = (xQ, yQ) → P +Q = R = (xR, yR) with

◮ xR =
(

yQ−yP

xQ−xP

)2

− xP − xQ

◮ yR =
(

yQ−yP

xQ−xP

)

(xP − xR)− yP

Point doubling

◮ P = (xP , yP), 2P = (xR, yR) with

◮ xR =
(

3x2

P+a

2yP

)2

− 2xP

◮ yR =
(

3x2

P+a

2yP

)

(xP − xR)− yP

7

More Weierstrass curve group law

◮ Neutral element is O

◮ Inverse of a point (x, y) is (x,−y)

8

More Weierstrass curve group law

◮ Neutral element is O

◮ Inverse of a point (x, y) is (x,−y)

◮ Note: Formulas don’t work for P + (−P), also don’t work for O

◮ Need to distinguish these cases!

8

More Weierstrass curve group law

◮ Neutral element is O

◮ Inverse of a point (x, y) is (x,−y)

◮ Note: Formulas don’t work for P + (−P), also don’t work for O

◮ Need to distinguish these cases!

◮ “Uniform” addition law in Hışıl’s Ph.D. thesis, Section 5.5.2
(http://eprints.qut.edu.au/33233/):
◮ Move special cases to other points
◮ Not safe to use on arbitrary input points!

8

http://eprints.qut.edu.au/33233/

More Weierstrass curve group law

◮ Neutral element is O

◮ Inverse of a point (x, y) is (x,−y)

◮ Note: Formulas don’t work for P + (−P), also don’t work for O

◮ Need to distinguish these cases!

◮ “Uniform” addition law in Hışıl’s Ph.D. thesis, Section 5.5.2
(http://eprints.qut.edu.au/33233/):
◮ Move special cases to other points
◮ Not safe to use on arbitrary input points!

◮ Formulas for curves over F2k look slightly different, but same special
cases

8

http://eprints.qut.edu.au/33233/

Finding a suitable curve

Security requirements for ECC

◮ ℓ = |E(Fq)| must have large prime-order subgroup

◮ For n bits of security we need 2n-bit prime-order subgroup

9

Finding a suitable curve

Security requirements for ECC

◮ ℓ = |E(Fq)| must have large prime-order subgroup

◮ For n bits of security we need 2n-bit prime-order subgroup

◮ Impossible to transfer DLP to less secure groups:
◮ ℓ must not be equal to q
◮ We need ℓ ∤ pk − 1 for small k

9

Finding a suitable curve

Security requirements for ECC

◮ ℓ = |E(Fq)| must have large prime-order subgroup

◮ For n bits of security we need 2n-bit prime-order subgroup

◮ Impossible to transfer DLP to less secure groups:
◮ ℓ must not be equal to q
◮ We need ℓ ∤ pk − 1 for small k

Finding a curve

◮ Fix finite field Fq of suitable size

◮ Fix curve parameter a (quite common: a = −3)

◮ Pick curve parameter b until E fulfills desired properties

◮ This requires efficient “point counting”

◮ This requires efficient factorization or primality proving

9

Standardized curves

“The nice thing about standards is that you have so many to
choose from. ” – Andrew S. Tanenbaum

10

Standardized curves

“The nice thing about standards is that you have so many to
choose from. ” – Andrew S. Tanenbaum

◮ Various standardized curves, most well-known: NIST curves:
◮ Big-prime field curves with 192, 224, 256, 384, and 521 bits
◮ Binary curves with 163, 233, 283, 409, and 571 bits
◮ Binary Koblitz curves with 163, 233, 283, 409, and 571 bits

10

Standardized curves

“The nice thing about standards is that you have so many to
choose from. ” – Andrew S. Tanenbaum

◮ Various standardized curves, most well-known: NIST curves:
◮ Big-prime field curves with 192, 224, 256, 384, and 521 bits
◮ Binary curves with 163, 233, 283, 409, and 571 bits
◮ Binary Koblitz curves with 163, 233, 283, 409, and 571 bits

◮ SECG curves (Certicom), prime-field and binary curves

10

Standardized curves

“The nice thing about standards is that you have so many to
choose from. ” – Andrew S. Tanenbaum

◮ Various standardized curves, most well-known: NIST curves:
◮ Big-prime field curves with 192, 224, 256, 384, and 521 bits
◮ Binary curves with 163, 233, 283, 409, and 571 bits
◮ Binary Koblitz curves with 163, 233, 283, 409, and 571 bits

◮ SECG curves (Certicom), prime-field and binary curves

◮ Brainpool curves (BSI), only prime-field curves

10

Standardized curves

“The nice thing about standards is that you have so many to
choose from. ” – Andrew S. Tanenbaum

◮ Various standardized curves, most well-known: NIST curves:
◮ Big-prime field curves with 192, 224, 256, 384, and 521 bits
◮ Binary curves with 163, 233, 283, 409, and 571 bits
◮ Binary Koblitz curves with 163, 233, 283, 409, and 571 bits

◮ SECG curves (Certicom), prime-field and binary curves

◮ Brainpool curves (BSI), only prime-field curves

◮ FRP256v1 (ANSSI), one prime-field curve (256 bits)

10

Binary vs. big prime

Curves over big-prime fields

◮ Many fields of a given size ⇒ many curves

◮ Efficient in software (can use hardware multipliers)

◮ Less efficient in hardware

11

Binary vs. big prime

Curves over big-prime fields

◮ Many fields of a given size ⇒ many curves

◮ Efficient in software (can use hardware multipliers)

◮ Less efficient in hardware

Curves over binary fields

◮ Important for security: exponent k in Fpk has to be prime

◮ Not many fields (not that many curves)

◮ More efficient in hardware

◮ Efficient in software only on some microarchitectures

◮ A hell to implement securely in software on some other
microarchitectures

11

Putting it together

◮ Choose security level (e.g., 128 bits)

12

Putting it together

◮ Choose security level (e.g., 128 bits)

◮ Decide whether you want binary or big-prime field arithmetic, let’s
say big prime

12

Putting it together

◮ Choose security level (e.g., 128 bits)

◮ Decide whether you want binary or big-prime field arithmetic, let’s
say big prime

◮ Pick corresponding standard curve, e.g., NIST-P256

12

Putting it together

◮ Choose security level (e.g., 128 bits)

◮ Decide whether you want binary or big-prime field arithmetic, let’s
say big prime

◮ Pick corresponding standard curve, e.g., NIST-P256

◮ Implement field arithmetic

12

Putting it together

◮ Choose security level (e.g., 128 bits)

◮ Decide whether you want binary or big-prime field arithmetic, let’s
say big prime

◮ Pick corresponding standard curve, e.g., NIST-P256

◮ Implement field arithmetic

◮ Implement ECC addition and doubling

12

Putting it together

◮ Choose security level (e.g., 128 bits)

◮ Decide whether you want binary or big-prime field arithmetic, let’s
say big prime

◮ Pick corresponding standard curve, e.g., NIST-P256

◮ Implement field arithmetic

◮ Implement ECC addition and doubling

◮ Implement scalar multiplication (Amber’s lecture)

12

Putting it together

◮ Choose security level (e.g., 128 bits)

◮ Decide whether you want binary or big-prime field arithmetic, let’s
say big prime

◮ Pick corresponding standard curve, e.g., NIST-P256

◮ Implement field arithmetic

◮ Implement ECC addition and doubling

◮ Implement scalar multiplication (Amber’s lecture)

◮ You’re done with ECDH software

12

Putting it together

◮ Choose security level (e.g., 128 bits)

◮ Decide whether you want binary or big-prime field arithmetic, let’s
say big prime

◮ Pick corresponding standard curve, e.g., NIST-P256

◮ Implement field arithmetic

◮ Implement ECC addition and doubling

◮ Implement scalar multiplication (Amber’s lecture)

◮ You’re done with BAD (!) ECDH software

12

Problem I: inversions
Inversions
◮ Adding P = (xP , yP) and Q = (xQ, yQ) needs an inversion in Fq

◮ Inversions are expensive

◮ Constant-time inversions are even more expensive

13

Problem I: inversions
Inversions
◮ Adding P = (xP , yP) and Q = (xQ, yQ) needs an inversion in Fq

◮ Inversions are expensive

◮ Constant-time inversions are even more expensive

Solution: projective coordinates

◮ Store fractions of elements of Fq, invert only once at the end

13

Problem I: inversions
Inversions
◮ Adding P = (xP , yP) and Q = (xQ, yQ) needs an inversion in Fq

◮ Inversions are expensive

◮ Constant-time inversions are even more expensive

Solution: projective coordinates

◮ Store fractions of elements of Fq, invert only once at the end

◮ Represent points in projective coordinates: P = (XP : YP : ZP)
with xP = XP /ZP and yP = YP /ZP

◮ The point (1 : 1 : 0) is the point at infinity

13

Problem I: inversions
Inversions
◮ Adding P = (xP , yP) and Q = (xQ, yQ) needs an inversion in Fq

◮ Inversions are expensive

◮ Constant-time inversions are even more expensive

Solution: projective coordinates

◮ Store fractions of elements of Fq, invert only once at the end

◮ Represent points in projective coordinates: P = (XP : YP : ZP)
with xP = XP /ZP and yP = YP /ZP

◮ The point (1 : 1 : 0) is the point at infinity

◮ Also possible: weighted projective coordinates:
◮ Jacobian coordinates: P = (XP : YP : ZP) with xP = XP /Z

2

P and
yP = YP/Z

3

P

◮ López-Dahab coordinates (for binary curves): P = (XP : YP : ZP)
with xP = XP /ZP and yP = YP/Z

2

P

13

Problem I: inversions
Inversions
◮ Adding P = (xP , yP) and Q = (xQ, yQ) needs an inversion in Fq

◮ Inversions are expensive

◮ Constant-time inversions are even more expensive

Solution: projective coordinates

◮ Store fractions of elements of Fq, invert only once at the end

◮ Represent points in projective coordinates: P = (XP : YP : ZP)
with xP = XP /ZP and yP = YP /ZP

◮ The point (1 : 1 : 0) is the point at infinity

◮ Also possible: weighted projective coordinates:
◮ Jacobian coordinates: P = (XP : YP : ZP) with xP = XP /Z

2

P and
yP = YP/Z

3

P

◮ López-Dahab coordinates (for binary curves): P = (XP : YP : ZP)
with xP = XP /ZP and yP = YP/Z

2

P

◮ Important: Never send projective representation, always convert to
affine!

13

Problem II: group-law special cases

◮ Addition of P +Q needs to distinguish different cases:
◮ If P = O return Q
◮ Else if Q = O return P
◮ Else if P = Q call doubling routine
◮ Else if P = −Q return O

◮ Else use addition formulas

14

Problem II: group-law special cases

◮ Addition of P +Q needs to distinguish different cases:
◮ If P = O return Q
◮ Else if Q = O return P
◮ Else if P = Q call doubling routine
◮ Else if P = −Q return O

◮ Else use addition formulas

◮ Similar for doubling P :
◮ If P = O return P
◮ Else if yP = 0 return O

◮ Else use doubling formulas

14

Problem II: group-law special cases

◮ Addition of P +Q needs to distinguish different cases:
◮ If P = O return Q
◮ Else if Q = O return P
◮ Else if P = Q call doubling routine
◮ Else if P = −Q return O

◮ Else use addition formulas

◮ Similar for doubling P :
◮ If P = O return P
◮ Else if yP = 0 return O

◮ Else use doubling formulas

◮ Constant-time implementations of this are horrible

14

Problem II: group-law special cases

◮ Addition of P +Q needs to distinguish different cases:
◮ If P = O return Q
◮ Else if Q = O return P
◮ Else if P = Q call doubling routine
◮ Else if P = −Q return O

◮ Else use addition formulas

◮ Similar for doubling P :
◮ If P = O return P
◮ Else if yP = 0 return O

◮ Else use doubling formulas

◮ Constant-time implementations of this are horrible

◮ Good news: Can avoid the checks when computing k · P and
k < |E(Fq)|

14

Problem II: group-law special cases

◮ Addition of P +Q needs to distinguish different cases:
◮ If P = O return Q
◮ Else if Q = O return P
◮ Else if P = Q call doubling routine
◮ Else if P = −Q return O

◮ Else use addition formulas

◮ Similar for doubling P :
◮ If P = O return P
◮ Else if yP = 0 return O

◮ Else use doubling formulas

◮ Constant-time implementations of this are horrible

◮ Good news: Can avoid the checks when computing k · P and
k < |E(Fq)|

◮ Bad news: Side-channel countermeasures use k > |E(Fq)|

14

Problem II: group-law special cases

◮ Addition of P +Q needs to distinguish different cases:
◮ If P = O return Q
◮ Else if Q = O return P
◮ Else if P = Q call doubling routine
◮ Else if P = −Q return O

◮ Else use addition formulas

◮ Similar for doubling P :
◮ If P = O return P
◮ Else if yP = 0 return O

◮ Else use doubling formulas

◮ Constant-time implementations of this are horrible

◮ Good news: Can avoid the checks when computing k · P and
k < |E(Fq)|

◮ Bad news: Side-channel countermeasures use k > |E(Fq)|

◮ More bad news: Doesn’t work for multi-scalar multiplication (next
lecture)

14

Problem II: group-law special cases

◮ Addition of P +Q needs to distinguish different cases:
◮ If P = O return Q
◮ Else if Q = O return P
◮ Else if P = Q call doubling routine
◮ Else if P = −Q return O

◮ Else use addition formulas

◮ Similar for doubling P :
◮ If P = O return P
◮ Else if yP = 0 return O

◮ Else use doubling formulas

◮ Constant-time implementations of this are horrible

◮ Good news: Can avoid the checks when computing k · P and
k < |E(Fq)|

◮ Bad news: Side-channel countermeasures use k > |E(Fq)|

◮ More bad news: Doesn’t work for multi-scalar multiplication (next
lecture)

◮ Baseline: simple implementations are likely to be wrong or insecure

14

Solution I: Montgomery ladder

◮ Use Montgomery curve: EM : By2 = x3 +Ax2 + x.

◮ Use x-coordinate-only differential addition chain (“Montgomery
ladder”, next lecture)

15

Solution I: Montgomery ladder

◮ Use Montgomery curve: EM : By2 = x3 +Ax2 + x.

◮ Use x-coordinate-only differential addition chain (“Montgomery
ladder”, next lecture)

◮ Advantages:
◮ Works on all inputs, no special cases
◮ Very regular structure, easy to protect against timing attacks
◮ Point compression/decompression for free

15

Solution I: Montgomery ladder

◮ Use Montgomery curve: EM : By2 = x3 +Ax2 + x.

◮ Use x-coordinate-only differential addition chain (“Montgomery
ladder”, next lecture)

◮ Advantages:
◮ Works on all inputs, no special cases
◮ Very regular structure, easy to protect against timing attacks
◮ Point compression/decompression for free
◮ Easy to implement, harder to screw up in hard-to-detect ways
◮ Simple implementations are likely to be correct and secure

15

Solution I: Montgomery ladder

◮ Use Montgomery curve: EM : By2 = x3 +Ax2 + x.

◮ Use x-coordinate-only differential addition chain (“Montgomery
ladder”, next lecture)

◮ Advantages:
◮ Works on all inputs, no special cases
◮ Very regular structure, easy to protect against timing attacks
◮ Point compression/decompression for free
◮ Easy to implement, harder to screw up in hard-to-detect ways
◮ Simple implementations are likely to be correct and secure

◮ Disadvantages:
◮ Not all curves can be converted to Montgomery shape
◮ Always have a cofactor of at least 4
◮ Ladders on general Weierstrass curves are much less efficient

15

Solution I: Montgomery ladder

◮ Use Montgomery curve: EM : By2 = x3 +Ax2 + x.

◮ Use x-coordinate-only differential addition chain (“Montgomery
ladder”, next lecture)

◮ Advantages:
◮ Works on all inputs, no special cases
◮ Very regular structure, easy to protect against timing attacks
◮ Point compression/decompression for free
◮ Easy to implement, harder to screw up in hard-to-detect ways
◮ Simple implementations are likely to be correct and secure

◮ Disadvantages:
◮ Not all curves can be converted to Montgomery shape
◮ Always have a cofactor of at least 4
◮ Ladders on general Weierstrass curves are much less efficient
◮ We only get the x coordinate of the result, tricky for signatures
◮ Can reconstruct y, but that involves some additional cost

15

Solution II: (twisted) Edwards curves

◮ Edwards, 2007: New form for elliptic curves (“Edwards curves”)

◮ Bernstein, Lange, 2007: very fast addition and doubling on these
curves

◮ Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to
“twisted Edwards curves”

16

Solution II: (twisted) Edwards curves

◮ Edwards, 2007: New form for elliptic curves (“Edwards curves”)

◮ Bernstein, Lange, 2007: very fast addition and doubling on these
curves

◮ Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to
“twisted Edwards curves”

◮ Core advantage of (twisted) Edwards curves: complete group law

◮ No need to handle special cases

◮ No “point at infinity” to work with

16

Solution II: (twisted) Edwards curves

◮ Edwards, 2007: New form for elliptic curves (“Edwards curves”)

◮ Bernstein, Lange, 2007: very fast addition and doubling on these
curves

◮ Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to
“twisted Edwards curves”

◮ Core advantage of (twisted) Edwards curves: complete group law

◮ No need to handle special cases

◮ No “point at infinity” to work with

◮ Can speed up doubling, but addition formulas work for P + P

16

Solution II: (twisted) Edwards curves

◮ Edwards, 2007: New form for elliptic curves (“Edwards curves”)

◮ Bernstein, Lange, 2007: very fast addition and doubling on these
curves

◮ Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to
“twisted Edwards curves”

◮ Core advantage of (twisted) Edwards curves: complete group law

◮ No need to handle special cases

◮ No “point at infinity” to work with

◮ Can speed up doubling, but addition formulas work for P + P

◮ Efficient (for cryptography) transformation from Weierstrass to
(twisted) Edwards only for some curves

16

Solution II: (twisted) Edwards curves

◮ Edwards, 2007: New form for elliptic curves (“Edwards curves”)

◮ Bernstein, Lange, 2007: very fast addition and doubling on these
curves

◮ Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to
“twisted Edwards curves”

◮ Core advantage of (twisted) Edwards curves: complete group law

◮ No need to handle special cases

◮ No “point at infinity” to work with

◮ Can speed up doubling, but addition formulas work for P + P

◮ Efficient (for cryptography) transformation from Weierstrass to
(twisted) Edwards only for some curves

◮ Always efficient: transformation between Montgomery curves and
twisted Edwards curves

16

Solution II: (twisted) Edwards curves

◮ Edwards, 2007: New form for elliptic curves (“Edwards curves”)

◮ Bernstein, Lange, 2007: very fast addition and doubling on these
curves

◮ Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to
“twisted Edwards curves”

◮ Core advantage of (twisted) Edwards curves: complete group law

◮ No need to handle special cases

◮ No “point at infinity” to work with

◮ Can speed up doubling, but addition formulas work for P + P

◮ Efficient (for cryptography) transformation from Weierstrass to
(twisted) Edwards only for some curves

◮ Always efficient: transformation between Montgomery curves and
twisted Edwards curves

◮ Again: simple implementations are likely to be correct and secure

16

Solution II: (twisted) Edwards curves

◮ Edwards, 2007: New form for elliptic curves (“Edwards curves”)

◮ Bernstein, Lange, 2007: very fast addition and doubling on these
curves

◮ Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to
“twisted Edwards curves”

◮ Core advantage of (twisted) Edwards curves: complete group law

◮ No need to handle special cases

◮ No “point at infinity” to work with

◮ Can speed up doubling, but addition formulas work for P + P

◮ Efficient (for cryptography) transformation from Weierstrass to
(twisted) Edwards only for some curves

◮ Always efficient: transformation between Montgomery curves and
twisted Edwards curves

◮ Again: simple implementations are likely to be correct and secure

◮ Disadvantage: always have a cofactor of at least 4

16

So, what’s the deal with the cofactor?

17

So, what’s the deal with the cofactor?

◮ Protocols need to be careful to avoid subgroup attacks

◮ Monero screwed this up, which allowed double-spending

◮ Elegant solution: “Ristretto” encoding by Hamburg, see: https://
github.com/otrv4/libgoldilocks

17

https://github.com/otrv4/libgoldilocks
https://github.com/otrv4/libgoldilocks

Solution III: Complete group law on Weierstrass curves

◮ Bosma, Lenstra, 1995: complete group law for Weierstrass curves

◮ Problem: Extremely inefficient

18

Solution III: Complete group law on Weierstrass curves

◮ Bosma, Lenstra, 1995: complete group law for Weierstrass curves

◮ Problem: Extremely inefficient

◮ Renes, Costello, Batina, 2016: Much faster complete group law for
Weierstrass curves

◮ Less efficient than (twisted) Edwards

◮ Overhead quite architecture-dependent (Schwabe, Sprenkels, 2019)

◮ Covers all curves

18

Problem III: Wrong-curve attacks

ECDH attack scenario
◮ Alice sends point on different (insecure) curve with small subgroup

◮ Bob computes “shared key” in that small subgroup

◮ Alice learns “shared key” through brute force

◮ Alice learns Bob’s secret scalar modulo the order of the small
subgroup

19

Problem III: Wrong-curve attacks

ECDH attack scenario
◮ Alice sends point on different (insecure) curve with small subgroup

◮ Bob computes “shared key” in that small subgroup

◮ Alice learns “shared key” through brute force

◮ Alice learns Bob’s secret scalar modulo the order of the small
subgroup

Countermeasures
◮ Check that input point is on the curve (functional tests will miss

this!)

19

Problem III: Wrong-curve attacks

ECDH attack scenario
◮ Alice sends point on different (insecure) curve with small subgroup

◮ Bob computes “shared key” in that small subgroup

◮ Alice learns “shared key” through brute force

◮ Alice learns Bob’s secret scalar modulo the order of the small
subgroup

Countermeasures
◮ Check that input point is on the curve (functional tests will miss

this!)

◮ Send compressed points (x, parity(y)); decompression returns (x, y)
on the curve or fails

19

Problem III: Wrong-curve attacks

ECDH attack scenario
◮ Alice sends point on different (insecure) curve with small subgroup

◮ Bob computes “shared key” in that small subgroup

◮ Alice learns “shared key” through brute force

◮ Alice learns Bob’s secret scalar modulo the order of the small
subgroup

Countermeasures
◮ Check that input point is on the curve (functional tests will miss

this!)

◮ Send compressed points (x, parity(y)); decompression returns (x, y)
on the curve or fails

◮ Send only x (Montgomery ladder); but: x could still be on the
“twist” of E

◮ Make sure that the twist is also secure (“twist security”)

19

Problem IV: Backdoors in standards?

“"I no longer trust the [NIST Elliptic Curves] constants. I believe
the NSA has manipulated them through their relationships with
industry.” – Bruce Schneier, 2013.

20

Problem IV: Backdoors in standards?

“"I no longer trust the [NIST Elliptic Curves] constants. I believe
the NSA has manipulated them through their relationships with
industry.” – Bruce Schneier, 2013.

◮ It is pretty clear that NSA put a backdoor in Dual_EC_DRBG

◮ Constants of NIST curves have been obtained by hashing random
values

◮ No-backdoor claim: We know the preimages

20

Problem IV: Backdoors in standards?

“"I no longer trust the [NIST Elliptic Curves] constants. I believe
the NSA has manipulated them through their relationships with
industry.” – Bruce Schneier, 2013.

◮ It is pretty clear that NSA put a backdoor in Dual_EC_DRBG

◮ Constants of NIST curves have been obtained by hashing random
values

◮ No-backdoor claim: We know the preimages

◮ Possible attack if you know a class of vulnerable curves: Generate
random seeds until you have found a vulnerable (and seemingly
secure) curve

20

Problem IV: Backdoors in standards?

“"I no longer trust the [NIST Elliptic Curves] constants. I believe
the NSA has manipulated them through their relationships with
industry.” – Bruce Schneier, 2013.

◮ It is pretty clear that NSA put a backdoor in Dual_EC_DRBG

◮ Constants of NIST curves have been obtained by hashing random
values

◮ No-backdoor claim: We know the preimages

◮ Possible attack if you know a class of vulnerable curves: Generate
random seeds until you have found a vulnerable (and seemingly
secure) curve

◮ Fact: There are no known insecurities of NIST curves

20

Problem IV: Backdoors in standards?

“"I no longer trust the [NIST Elliptic Curves] constants. I believe
the NSA has manipulated them through their relationships with
industry.” – Bruce Schneier, 2013.

◮ It is pretty clear that NSA put a backdoor in Dual_EC_DRBG

◮ Constants of NIST curves have been obtained by hashing random
values

◮ No-backdoor claim: We know the preimages

◮ Possible attack if you know a class of vulnerable curves: Generate
random seeds until you have found a vulnerable (and seemingly
secure) curve

◮ Fact: There are no known insecurities of NIST curves

◮ Fact: There is no proof that there are no intentional vulnerabilities
in NIST curves

20

Problem IV: Backdoors in standards?

“"I no longer trust the [NIST Elliptic Curves] constants. I believe
the NSA has manipulated them through their relationships with
industry.” – Bruce Schneier, 2013.

◮ It is pretty clear that NSA put a backdoor in Dual_EC_DRBG

◮ Constants of NIST curves have been obtained by hashing random
values

◮ No-backdoor claim: We know the preimages

◮ Possible attack if you know a class of vulnerable curves: Generate
random seeds until you have found a vulnerable (and seemingly
secure) curve

◮ Fact: There are no known insecurities of NIST curves

◮ Fact: There is no proof that there are no intentional vulnerabilities
in NIST curves

◮ For more details, see BADA55 elliptic curves

20

http://safecurves.cr.yp.to/bada55.html

Choosing a safe curve

Overview of various elliptic curves and thorough security analysis by
Bernstein and Lange:

https://safecurves.cr.yp.to

(doesn’t list cofactor-1 curves, so best to combine with Ristretto)

21

https://safecurves.cr.yp.to

Point representation and arithmetic

Collection of elliptic-curve shapes, point representations and
group-operation formulas by Bernstein and Lange:

https://www.hyperelliptic.org/EFD/

22

https://www.hyperelliptic.org/EFD/

