Cryptographic Engineering

Elliptic-curve arithmetic

Radboud University, Nijmegen, The Netherlands

Spring 2021

Diffie-Hellman

- Let G be a cyclic, finite, abelian Group (written additively) and let P be a generator of G

Diffie-Hellman

- Let G be a cyclic, finite, abelian Group (written additively) and let P be a generator of G
- Alice chooses random $a \in\{0, \ldots,|G|-1\}$, computes $a P$, sends to Bob
- Bob chooses random $b \in\{0, \ldots,|G|-1\}$, computes $b P$, sends to Alice

Diffie-Hellman

- Let G be a cyclic, finite, abelian Group (written additively) and let P be a generator of G
- Alice chooses random $a \in\{0, \ldots,|G|-1\}$, computes $a P$, sends to Bob
- Bob chooses random $b \in\{0, \ldots,|G|-1\}$, computes $b P$, sends to Alice
- Alice computes joint key $a(b P)$
- Bob computes joint key $b(a P)$

Diffie-Hellman

- Let G be a cyclic, finite, abelian Group (written additively) and let P be a generator of G
- Alice chooses random $a \in\{0, \ldots,|G|-1\}$, computes $a P$, sends to Bob
- Bob chooses random $b \in\{0, \ldots,|G|-1\}$, computes $b P$, sends to Alice
- Alice computes joint key $a(b P)$
- Bob computes joint key $b(a P)$
- DLP in G : given $k P \in G$ and P, find k
- Solving the DLP breaks security of Diffie-Hellman

Diffie-Hellman

- Let G be a cyclic, finite, abelian Group (written additively) and let P be a generator of G
- Alice chooses random $a \in\{0, \ldots,|G|-1\}$, computes $a P$, sends to Bob
- Bob chooses random $b \in\{0, \ldots,|G|-1\}$, computes $b P$, sends to Alice
- Alice computes joint key $a(b P)$
- Bob computes joint key $b(a P)$
- DLP in G : given $k P \in G$ and P, find k
- Solving the DLP breaks security of Diffie-Hellman

Groups with hard DLP

- Traditional answer: \mathbb{Z}_{p}^{*} with large prime-order subgroup

Diffie-Hellman

- Let G be a cyclic, finite, abelian Group (written additively) and let P be a generator of G
- Alice chooses random $a \in\{0, \ldots,|G|-1\}$, computes $a P$, sends to Bob
- Bob chooses random $b \in\{0, \ldots,|G|-1\}$, computes $b P$, sends to Alice
- Alice computes joint key $a(b P)$
- Bob computes joint key $b(a P)$
- DLP in G : given $k P \in G$ and P, find k
- Solving the DLP breaks security of Diffie-Hellman

Groups with hard DLP

- Traditional answer: \mathbb{Z}_{p}^{*} with large prime-order subgroup
- Modern answer: Elliptic curve over \mathbb{F}_{q} with large prime-order subgroup

Diffie-Hellman

- Let G be a cyclic, finite, abelian Group (written additively) and let P be a generator of G
- Alice chooses random $a \in\{0, \ldots,|G|-1\}$, computes $a P$, sends to Bob
- Bob chooses random $b \in\{0, \ldots,|G|-1\}$, computes $b P$, sends to Alice
- Alice computes joint key $a(b P)$
- Bob computes joint key $b(a P)$
- DLP in G : given $k P \in G$ and P, find k
- Solving the DLP breaks security of Diffie-Hellman

Groups with hard DLP

- Traditional answer: \mathbb{Z}_{p}^{*} with large prime-order subgroup
- Modern answer: Elliptic curve over \mathbb{F}_{q} with large prime-order subgroup
- Sophisticated answer (not in this lecture): hyperelliptic curves of genus 2

Diffie-Hellman

- Let G be a cyclic, finite, abelian Group (written additively) and let P be a generator of G
- Alice chooses random $a \in\{0, \ldots,|G|-1\}$, computes $a P$, sends to Bob
- Bob chooses random $b \in\{0, \ldots,|G|-1\}$, computes $b P$, sends to Alice
- Alice computes joint key $a(b P)$
- Bob computes joint key $b(a P)$
- DLP in G : given $k P \in G$ and P, find k
- Solving the DLP breaks security of Diffie-Hellman

Groups with hard DLP

- Traditional answer: \mathbb{Z}_{p}^{*} with large prime-order subgroup
- Modern answer: Elliptic curve over \mathbb{F}_{q} with large prime-order subgroup
- Sophisticated answer (not in this lecture): hyperelliptic curves of genus 2

Typical view on elliptic curves

Definition

Let K be a field and let $a_{1}, a_{2}, a_{3}, a_{4}, a_{6} \in K$. Then the following equation defines an elliptic curve E :

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

if the discriminant Δ of E is not equal to zero. This equation is called the Weierstrass form of an elliptic curve.

Typical view on elliptic curves

Definition

Let K be a field and let $a_{1}, a_{2}, a_{3}, a_{4}, a_{6} \in K$. Then the following equation defines an elliptic curve E :

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

if the discriminant Δ of E is not equal to zero. This equation is called the Weierstrass form of an elliptic curve.

Characteristic $\neq 2,3$
If $\operatorname{char}(K) \neq 2,3$ we can use a simplified equation:

$$
E: y^{2}=x^{3}+a x+b
$$

Typical view on elliptic curves

Definition

Let K be a field and let $a_{1}, a_{2}, a_{3}, a_{4}, a_{6} \in K$. Then the following equation defines an elliptic curve E :

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

if the discriminant Δ of E is not equal to zero. This equation is called the Weierstrass form of an elliptic curve.

Characteristic $\neq 2,3$
If $\operatorname{char}(K) \neq 2,3$ we can use a simplified equation:

$$
E: y^{2}=x^{3}+a x+b
$$

Characteristic 2

If $\operatorname{char}(K)=2$ we can (usually) use a simplified equation:

$$
E: y^{2}+x y=x^{3}+a x^{2}+b
$$

Rational points

Setup for cryptography

- Choose $K=\mathbb{F}_{q}$
- Consider the set of \mathbb{F}_{q}-rational points:

$$
E\left(\mathbb{F}_{q}\right)=\left\{(x, y) \in \mathbb{F}_{q} \times \mathbb{F}_{q}: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right\} \cup\{\mathcal{O}\}
$$

Rational points

Setup for cryptography

- Choose $K=\mathbb{F}_{q}$
- Consider the set of \mathbb{F}_{q}-rational points:

$$
E\left(\mathbb{F}_{q}\right)=\left\{(x, y) \in \mathbb{F}_{q} \times \mathbb{F}_{q}: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right\} \cup\{\mathcal{O}\}
$$

- The element \mathcal{O} is the "point at infinity"

Rational points

Setup for cryptography

- Choose $K=\mathbb{F}_{q}$
- Consider the set of \mathbb{F}_{q}-rational points:

$$
E\left(\mathbb{F}_{q}\right)=\left\{(x, y) \in \mathbb{F}_{q} \times \mathbb{F}_{q}: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right\} \cup\{\mathcal{O}\}
$$

- The element \mathcal{O} is the "point at infinity"
- This set forms a group (together with addition law)

Rational points

Setup for cryptography

- Choose $K=\mathbb{F}_{q}$
- Consider the set of \mathbb{F}_{q}-rational points:

$$
E\left(\mathbb{F}_{q}\right)=\left\{(x, y) \in \mathbb{F}_{q} \times \mathbb{F}_{q}: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right\} \cup\{\mathcal{O}\}
$$

- The element \mathcal{O} is the "point at infinity"
- This set forms a group (together with addition law)
- Order of this group: $\left|E\left(\mathbb{F}_{q}\right)\right| \approx\left|\mathbb{F}_{q}\right|$

The group law
Example curve: $y^{2}=x^{3}-x$ over \mathbb{R}

The group law
Example curve: $y^{2}=x^{3}-x$ over \mathbb{R}

Addition of points

- Add points

$$
\begin{aligned}
& P=(-0,9 ;-0,4135) \text { and } \\
& Q=(-0,1 ; 0,3146)
\end{aligned}
$$

Addition of points

- Add points

$$
\begin{aligned}
& P=(-0,9 ;-0,4135) \text { and } \\
& Q=(-0,1 ; 0,3146)
\end{aligned}
$$

- Compute line through the two points

Addition of points

- Add points

$$
\begin{aligned}
& P=(-0,9 ;-0,4135) \text { and } \\
& Q=(-0,1 ; 0,3146)
\end{aligned}
$$

- Compute line through the two points
- Determine third intersection $T=\left(x_{T}, y_{T}\right)$ with the elliptic curve

Addition of points

- Add points

$$
\begin{aligned}
& P=(-0,9 ;-0,4135) \text { and } \\
& Q=(-0,1 ; 0,3146)
\end{aligned}
$$

- Compute line through the two points
- Determine third intersection $T=\left(x_{T}, y_{T}\right)$ with the elliptic curve
- Result of the addition:

$$
P+Q=\left(x_{T},-y_{T}\right)
$$

The group law
Example curve: $y^{2}=x^{3}-x$ over \mathbb{R}

The group law
Example curve: $y^{2}=x^{3}-x$ over \mathbb{R}

Point doubling

- Double the point

$$
P=(-0.7,0.5975)
$$

Point doubling

- Double the point
$P=(-0.7,0.5975)$
- Compute the tangent on P

The group law
Example curve: $y^{2}=x^{3}-x$ over \mathbb{R}

Point doubling

- Double the point

$$
P=(-0.7,0.5975)
$$

- Compute the tangent on P
- Determine second intersection $T=\left(x_{T}, y_{T}\right)$ with the elliptic curve

Point doubling

- Double the point $P=(-0.7,0.5975)$
- Compute the tangent on P
- Determine second intersection $T=\left(x_{T}, y_{T}\right)$ with the elliptic curve
- Result of the addition:
$P+Q=\left(x_{T},-y_{T}\right)$

Group law in formulas

Curve equation: $y^{2}=x^{3}+a x+b$

Group law in formulas

Curve equation: $y^{2}=x^{3}+a x+b$
Point addition

- $P=\left(x_{P}, y_{P}\right), Q=\left(x_{Q}, y_{Q}\right) \rightarrow P+Q=R=\left(x_{R}, y_{R}\right)$ with

Group law in formulas

Curve equation: $y^{2}=x^{3}+a x+b$
Point addition

- $P=\left(x_{P}, y_{P}\right), Q=\left(x_{Q}, y_{Q}\right) \rightarrow P+Q=R=\left(x_{R}, y_{R}\right)$ with
- $x_{R}=\left(\frac{y_{Q}-y_{P}}{x_{Q}-x_{P}}\right)^{2}-x_{P}-x_{Q}$
- $y_{R}=\left(\frac{y_{Q}-y_{P}}{x_{Q}-x_{P}}\right)\left(x_{P}-x_{R}\right)-y_{P}$

Group law in formulas

Curve equation: $y^{2}=x^{3}+a x+b$
Point addition

- $P=\left(x_{P}, y_{P}\right), Q=\left(x_{Q}, y_{Q}\right) \rightarrow P+Q=R=\left(x_{R}, y_{R}\right)$ with
- $x_{R}=\left(\frac{y_{Q}-y_{P}}{x_{Q}-x_{P}}\right)^{2}-x_{P}-x_{Q}$
- $y_{R}=\left(\frac{y_{Q}-y_{P}}{x_{Q}-x_{P}}\right)\left(x_{P}-x_{R}\right)-y_{P}$

Point doubling

- $P=\left(x_{P}, y_{P}\right), 2 P=\left(x_{R}, y_{R}\right)$ with

Group law in formulas

Curve equation: $y^{2}=x^{3}+a x+b$
Point addition

- $P=\left(x_{P}, y_{P}\right), Q=\left(x_{Q}, y_{Q}\right) \rightarrow P+Q=R=\left(x_{R}, y_{R}\right)$ with
- $x_{R}=\left(\frac{y_{Q}-y_{P}}{x_{Q}-x_{P}}\right)^{2}-x_{P}-x_{Q}$
- $y_{R}=\left(\frac{y_{Q}-y_{P}}{x_{Q}-x_{P}}\right)\left(x_{P}-x_{R}\right)-y_{P}$

Point doubling

- $P=\left(x_{P}, y_{P}\right), 2 P=\left(x_{R}, y_{R}\right)$ with
- $x_{R}=\left(\frac{3 x_{P}^{2}+a}{2 y_{P}}\right)^{2}-2 x_{P}$
- $y_{R}=\left(\frac{3 x_{P}^{2}+a}{2 y_{P}}\right)\left(x_{P}-x_{R}\right)-y_{P}$

More Weierstrass curve group law

- Neutral element is \mathcal{O}
- Inverse of a point (x, y) is $(x,-y)$

More Weierstrass curve group law

- Neutral element is \mathcal{O}
- Inverse of a point (x, y) is $(x,-y)$
- Note: Formulas don't work for $P+(-P)$, also don't work for \mathcal{O}
- Need to distinguish these cases!

More Weierstrass curve group law

- Neutral element is \mathcal{O}
- Inverse of a point (x, y) is $(x,-y)$
- Note: Formulas don't work for $P+(-P)$, also don't work for \mathcal{O}
- Need to distinguish these cases!
- "Uniform" addition law in Hıșl|'s Ph.D. thesis, Section 5.5.2 (http://eprints.qut.edu.au/33233/):
- Move special cases to other points
- Not safe to use on arbitrary input points!

More Weierstrass curve group law

- Neutral element is \mathcal{O}
- Inverse of a point (x, y) is $(x,-y)$
- Note: Formulas don't work for $P+(-P)$, also don't work for \mathcal{O}
- Need to distinguish these cases!
- "Uniform" addition law in Hıșl|'s Ph.D. thesis, Section 5.5.2 (http://eprints.qut.edu.au/33233/):
- Move special cases to other points
- Not safe to use on arbitrary input points!
- Formulas for curves over $\mathbb{F}_{2^{k}}$ look slightly different, but same special cases

Finding a suitable curve

Security requirements for ECC

- $\ell=\left|E\left(\mathbb{F}_{q}\right)\right|$ must have large prime-order subgroup
- For n bits of security we need $2 n$-bit prime-order subgroup

Finding a suitable curve

Security requirements for ECC

- $\ell=\left|E\left(\mathbb{F}_{q}\right)\right|$ must have large prime-order subgroup
- For n bits of security we need $2 n$-bit prime-order subgroup
- Impossible to transfer DLP to less secure groups:
- ℓ must not be equal to q
- We need $\ell \nmid p^{k}-1$ for small k

Finding a suitable curve

Security requirements for ECC

- $\ell=\left|E\left(\mathbb{F}_{q}\right)\right|$ must have large prime-order subgroup
- For n bits of security we need $2 n$-bit prime-order subgroup
- Impossible to transfer DLP to less secure groups:
- ℓ must not be equal to q
- We need $\ell \nmid p^{k}-1$ for small k

Finding a curve

- Fix finite field \mathbb{F}_{q} of suitable size
- Fix curve parameter a (quite common: $a=-3$)
- Pick curve parameter b until E fulfills desired properties
- This requires efficient "point counting"
- This requires efficient factorization or primality proving

Standardized curves

"The nice thing about standards is that you have so many to choose from.

Standardized curves

"The nice thing about standards is that you have so many to choose from." - Andrew S. Tanenbaum

- Various standardized curves, most well-known: NIST curves:
- Big-prime field curves with $192,224,256,384$, and 521 bits
- Binary curves with $163,233,283,409$, and 571 bits
- Binary Koblitz curves with $163,233,283,409$, and 571 bits

Standardized curves

"The nice thing about standards is that you have so many to choose from." - Andrew S. Tanenbaum

- Various standardized curves, most well-known: NIST curves:
- Big-prime field curves with 192, 224, 256, 384, and 521 bits
- Binary curves with $163,233,283,409$, and 571 bits
- Binary Koblitz curves with 163, 233, 283, 409, and 571 bits
- SECG curves (Certicom), prime-field and binary curves

Standardized curves

"The nice thing about standards is that you have so many to choose from." - Andrew S. Tanenbaum

- Various standardized curves, most well-known: NIST curves:
- Big-prime field curves with 192, 224, 256, 384, and 521 bits
- Binary curves with $163,233,283,409$, and 571 bits
- Binary Koblitz curves with $163,233,283$, 409, and 571 bits
- SECG curves (Certicom), prime-field and binary curves
- Brainpool curves (BSI), only prime-field curves

Standardized curves

"The nice thing about standards is that you have so many to choose from." - Andrew S. Tanenbaum

- Various standardized curves, most well-known: NIST curves:
- Big-prime field curves with 192, 224, 256, 384, and 521 bits
- Binary curves with $163,233,283,409$, and 571 bits
- Binary Koblitz curves with $163,233,283$, 409, and 571 bits
- SECG curves (Certicom), prime-field and binary curves
- Brainpool curves (BSI), only prime-field curves
- FRP256v1 (ANSSI), one prime-field curve (256 bits)

Binary vs. big prime

Curves over big-prime fields

- Many fields of a given size \Rightarrow many curves
- Efficient in software (can use hardware multipliers)
- Less efficient in hardware

Binary vs. big prime

Curves over big-prime fields

- Many fields of a given size \Rightarrow many curves
- Efficient in software (can use hardware multipliers)
- Less efficient in hardware

Curves over binary fields

- Important for security: exponent k in $\mathbb{F}_{p^{k}}$ has to be prime
- Not many fields (not that many curves)
- More efficient in hardware
- Efficient in software only on some microarchitectures
- A hell to implement securely in software on some other microarchitectures

Putting it together

- Choose security level (e.g., 128 bits)

Putting it together

- Choose security level (e.g., 128 bits)
- Decide whether you want binary or big-prime field arithmetic, let's say big prime

Putting it together

- Choose security level (e.g., 128 bits)
- Decide whether you want binary or big-prime field arithmetic, let's say big prime
- Pick corresponding standard curve, e.g., NIST-P256

Putting it together

- Choose security level (e.g., 128 bits)
- Decide whether you want binary or big-prime field arithmetic, let's say big prime
- Pick corresponding standard curve, e.g., NIST-P256
- Implement field arithmetic

Putting it together

- Choose security level (e.g., 128 bits)
- Decide whether you want binary or big-prime field arithmetic, let's say big prime
- Pick corresponding standard curve, e.g., NIST-P256
- Implement field arithmetic
- Implement ECC addition and doubling

Putting it together

- Choose security level (e.g., 128 bits)
- Decide whether you want binary or big-prime field arithmetic, let's say big prime
- Pick corresponding standard curve, e.g., NIST-P256
- Implement field arithmetic
- Implement ECC addition and doubling
- Implement scalar multiplication (next lecture)

Putting it together

- Choose security level (e.g., 128 bits)
- Decide whether you want binary or big-prime field arithmetic, let's say big prime
- Pick corresponding standard curve, e.g., NIST-P256
- Implement field arithmetic
- Implement ECC addition and doubling
- Implement scalar multiplication (next lecture)
- You're done with ECDH software

Putting it together

- Choose security level (e.g., 128 bits)
- Decide whether you want binary or big-prime field arithmetic, let's say big prime
- Pick corresponding standard curve, e.g., NIST-P256
- Implement field arithmetic
- Implement ECC addition and doubling
- Implement scalar multiplication (next lecture)
- You're done with BAD (!) ECDH software

Problem I: inversions

Inversions

- Adding $P=\left(x_{P}, y_{P}\right)$ and $Q=\left(x_{Q}, y_{Q}\right)$ needs an inversion in \mathbb{F}_{q}
- Inversions are expensive
- Constant-time inversions are even more expensive

Problem I: inversions

Inversions

- Adding $P=\left(x_{P}, y_{P}\right)$ and $Q=\left(x_{Q}, y_{Q}\right)$ needs an inversion in \mathbb{F}_{q}
- Inversions are expensive
- Constant-time inversions are even more expensive

Solution: projective coordinates

- Store fractions of elements of \mathbb{F}_{q}, invert only once at the end

Problem I: inversions

Inversions

- Adding $P=\left(x_{P}, y_{P}\right)$ and $Q=\left(x_{Q}, y_{Q}\right)$ needs an inversion in \mathbb{F}_{q}
- Inversions are expensive
- Constant-time inversions are even more expensive

Solution: projective coordinates

- Store fractions of elements of \mathbb{F}_{q}, invert only once at the end
- Represent points in projective coordinates: $P=\left(X_{P}: Y_{P}: Z_{P}\right)$ with $x_{P}=X_{P} / Z_{P}$ and $y_{P}=Y_{P} / Z_{P}$
- The point $(1: 1: 0)$ is the point at infinity

Problem I: inversions

Inversions

- Adding $P=\left(x_{P}, y_{P}\right)$ and $Q=\left(x_{Q}, y_{Q}\right)$ needs an inversion in \mathbb{F}_{q}
- Inversions are expensive
- Constant-time inversions are even more expensive

Solution: projective coordinates

- Store fractions of elements of \mathbb{F}_{q}, invert only once at the end
- Represent points in projective coordinates: $P=\left(X_{P}: Y_{P}: Z_{P}\right)$ with $x_{P}=X_{P} / Z_{P}$ and $y_{P}=Y_{P} / Z_{P}$
- The point $(1: 1: 0)$ is the point at infinity
- Also possible: weighted projective coordinates:
- Jacobian coordinates: $P=\left(X_{P}: Y_{P}: Z_{P}\right)$ with $x_{P}=X_{P} / Z_{P}^{2}$ and $y_{P}=Y_{P} / Z_{P}^{3}$
- López-Dahab coordinates (for binary curves): $P=\left(X_{P}: Y_{P}: Z_{P}\right)$ with $x_{P}=X_{P} / Z_{P}$ and $y_{P}=Y_{P} / Z_{P}^{2}$

Problem I: inversions

Inversions

- Adding $P=\left(x_{P}, y_{P}\right)$ and $Q=\left(x_{Q}, y_{Q}\right)$ needs an inversion in \mathbb{F}_{q}
- Inversions are expensive
- Constant-time inversions are even more expensive

Solution: projective coordinates

- Store fractions of elements of \mathbb{F}_{q}, invert only once at the end
- Represent points in projective coordinates: $P=\left(X_{P}: Y_{P}: Z_{P}\right)$ with $x_{P}=X_{P} / Z_{P}$ and $y_{P}=Y_{P} / Z_{P}$
- The point $(1: 1: 0)$ is the point at infinity
- Also possible: weighted projective coordinates:
- Jacobian coordinates: $P=\left(X_{P}: Y_{P}: Z_{P}\right)$ with $x_{P}=X_{P} / Z_{P}^{2}$ and $y_{P}=Y_{P} / Z_{P}^{3}$
- López-Dahab coordinates (for binary curves): $P=\left(X_{P}: Y_{P}: Z_{P}\right)$ with $x_{P}=X_{P} / Z_{P}$ and $y_{P}=Y_{P} / Z_{P}^{2}$
- Important: Never send projective representation, always convert to affine!

Problem II: group-law special cases

- Addition of $P+Q$ needs to distinguish different cases:
- If $P=\mathcal{O}$ return Q
- Else if $Q=\mathcal{O}$ return P
- Else if $P=Q$ call doubling routine
- Else if $P=-Q$ return \mathcal{O}
- Else use addition formulas

Problem II: group-law special cases

- Addition of $P+Q$ needs to distinguish different cases:
- If $P=\mathcal{O}$ return Q
- Else if $Q=\mathcal{O}$ return P
- Else if $P=Q$ call doubling routine
- Else if $P=-Q$ return \mathcal{O}
- Else use addition formulas
- Similar for doubling P :
- If $P=\mathcal{O}$ return P
- Else if $y_{P}=0$ return \mathcal{O}
- Else use doubling formulas

Problem II: group-law special cases

- Addition of $P+Q$ needs to distinguish different cases:
- If $P=\mathcal{O}$ return Q
- Else if $Q=\mathcal{O}$ return P
- Else if $P=Q$ call doubling routine
- Else if $P=-Q$ return \mathcal{O}
- Else use addition formulas
- Similar for doubling P :
- If $P=\mathcal{O}$ return P
- Else if $y_{P}=0$ return \mathcal{O}
- Else use doubling formulas
- Constant-time implementations of this are horrible

Problem II: group-law special cases

- Addition of $P+Q$ needs to distinguish different cases:
- If $P=\mathcal{O}$ return Q
- Else if $Q=\mathcal{O}$ return P
- Else if $P=Q$ call doubling routine
- Else if $P=-Q$ return \mathcal{O}
- Else use addition formulas
- Similar for doubling P :
- If $P=\mathcal{O}$ return P
- Else if $y_{P}=0$ return \mathcal{O}
- Else use doubling formulas
- Constant-time implementations of this are horrible
- Good news: Can avoid the checks when computing $k \cdot P$ and $k<\left|E\left(\mathbb{F}_{q}\right)\right|$

Problem II: group-law special cases

- Addition of $P+Q$ needs to distinguish different cases:
- If $P=\mathcal{O}$ return Q
- Else if $Q=\mathcal{O}$ return P
- Else if $P=Q$ call doubling routine
- Else if $P=-Q$ return \mathcal{O}
- Else use addition formulas
- Similar for doubling P :
- If $P=\mathcal{O}$ return P
- Else if $y_{P}=0$ return \mathcal{O}
- Else use doubling formulas
- Constant-time implementations of this are horrible
- Good news: Can avoid the checks when computing $k \cdot P$ and $k<\left|E\left(\mathbb{F}_{q}\right)\right|$
- Bad news: Side-channel countermeasures use $k>\left|E\left(\mathbb{F}_{q}\right)\right|$

Problem II: group-law special cases

- Addition of $P+Q$ needs to distinguish different cases:
- If $P=\mathcal{O}$ return Q
- Else if $Q=\mathcal{O}$ return P
- Else if $P=Q$ call doubling routine
- Else if $P=-Q$ return \mathcal{O}
- Else use addition formulas
- Similar for doubling P :
- If $P=\mathcal{O}$ return P
- Else if $y_{P}=0$ return \mathcal{O}
- Else use doubling formulas
- Constant-time implementations of this are horrible
- Good news: Can avoid the checks when computing $k \cdot P$ and $k<\left|E\left(\mathbb{F}_{q}\right)\right|$
- Bad news: Side-channel countermeasures use $k>\left|E\left(\mathbb{F}_{q}\right)\right|$
- More bad news: Doesn't work for multi-scalar multiplication (next lecture)

Problem II: group-law special cases

- Addition of $P+Q$ needs to distinguish different cases:
- If $P=\mathcal{O}$ return Q
- Else if $Q=\mathcal{O}$ return P
- Else if $P=Q$ call doubling routine
- Else if $P=-Q$ return \mathcal{O}
- Else use addition formulas
- Similar for doubling P :
- If $P=\mathcal{O}$ return P
- Else if $y_{P}=0$ return \mathcal{O}
- Else use doubling formulas
- Constant-time implementations of this are horrible
- Good news: Can avoid the checks when computing $k \cdot P$ and $k<\left|E\left(\mathbb{F}_{q}\right)\right|$
- Bad news: Side-channel countermeasures use $k>\left|E\left(\mathbb{F}_{q}\right)\right|$
- More bad news: Doesn't work for multi-scalar multiplication (next lecture)
- Baseline: simple implementations are likely to be wrong or insecure

Solution I: Montgomery ladder

- Use Montgomery curve: $E_{M}: B y^{2}=x^{3}+A x^{2}+x$.
- Use x-coordinate-only differential addition chain ("Montgomery ladder'", next lecture)

Solution I: Montgomery ladder

- Use Montgomery curve: $E_{M}: B y^{2}=x^{3}+A x^{2}+x$.
- Use x-coordinate-only differential addition chain ("Montgomery ladder", next lecture)
- Advantages:
- Works on all inputs, no special cases
- Very regular structure, easy to protect against timing attacks
- Point compression/decompression for free

Solution I: Montgomery ladder

- Use Montgomery curve: $E_{M}: B y^{2}=x^{3}+A x^{2}+x$.
- Use x-coordinate-only differential addition chain ("Montgomery ladder'", next lecture)
- Advantages:
- Works on all inputs, no special cases
- Very regular structure, easy to protect against timing attacks
- Point compression/decompression for free
- Easy to implement, harder to screw up in hard-to-detect ways
- Simple implementations are likely to be correct and secure

Solution I: Montgomery ladder

- Use Montgomery curve: $E_{M}: B y^{2}=x^{3}+A x^{2}+x$.
- Use x-coordinate-only differential addition chain ("Montgomery ladder", next lecture)
- Advantages:
- Works on all inputs, no special cases
- Very regular structure, easy to protect against timing attacks
- Point compression/decompression for free
- Easy to implement, harder to screw up in hard-to-detect ways
- Simple implementations are likely to be correct and secure
- Disadvantages:
- Not all curves can be converted to Montgomery shape
- Always have a cofactor of at least 4
- Ladders on general Weierstrass curves are much less efficient

Solution I: Montgomery ladder

- Use Montgomery curve: $E_{M}: B y^{2}=x^{3}+A x^{2}+x$.
- Use x-coordinate-only differential addition chain ("Montgomery ladder", next lecture)
- Advantages:
- Works on all inputs, no special cases
- Very regular structure, easy to protect against timing attacks
- Point compression/decompression for free
- Easy to implement, harder to screw up in hard-to-detect ways
- Simple implementations are likely to be correct and secure
- Disadvantages:
- Not all curves can be converted to Montgomery shape
- Always have a cofactor of at least 4
- Ladders on general Weierstrass curves are much less efficient
- We only get the x coordinate of the result, tricky for signatures
- Can reconstruct y, but that involves some additional cost

Solution II: (twisted) Edwards curves

- Edwards, 2007: New form for elliptic curves ("Edwards curves")
- Bernstein, Lange, 2007: very fast addition and doubling on these curves
- Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to "twisted Edwards curves"

Solution II: (twisted) Edwards curves

- Edwards, 2007: New form for elliptic curves ("Edwards curves")
- Bernstein, Lange, 2007: very fast addition and doubling on these curves
- Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to "twisted Edwards curves"
- Core advantage of (twisted) Edwards curves: complete group law
- No need to handle special cases
- No "point at infinity" to work with

Solution II: (twisted) Edwards curves

- Edwards, 2007: New form for elliptic curves ("Edwards curves")
- Bernstein, Lange, 2007: very fast addition and doubling on these curves
- Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to "twisted Edwards curves"
- Core advantage of (twisted) Edwards curves: complete group law
- No need to handle special cases
- No "point at infinity" to work with
- Can speed up doubling, but addition formulas work for $P+P$

Solution II: (twisted) Edwards curves

- Edwards, 2007: New form for elliptic curves ("Edwards curves")
- Bernstein, Lange, 2007: very fast addition and doubling on these curves
- Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to "twisted Edwards curves"
- Core advantage of (twisted) Edwards curves: complete group law
- No need to handle special cases
- No "point at infinity" to work with
- Can speed up doubling, but addition formulas work for $P+P$
- Efficient (for cryptography) transformation from Weierstrass to (twisted) Edwards only for some curves

Solution II: (twisted) Edwards curves

- Edwards, 2007: New form for elliptic curves ("Edwards curves")
- Bernstein, Lange, 2007: very fast addition and doubling on these curves
- Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to "twisted Edwards curves"
- Core advantage of (twisted) Edwards curves: complete group law
- No need to handle special cases
- No "point at infinity" to work with
- Can speed up doubling, but addition formulas work for $P+P$
- Efficient (for cryptography) transformation from Weierstrass to (twisted) Edwards only for some curves
- Always efficient: transformation between Montgomery curves and twisted Edwards curves

Solution II: (twisted) Edwards curves

- Edwards, 2007: New form for elliptic curves ("Edwards curves")
- Bernstein, Lange, 2007: very fast addition and doubling on these curves
- Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to "twisted Edwards curves"
- Core advantage of (twisted) Edwards curves: complete group law
- No need to handle special cases
- No "point at infinity" to work with
- Can speed up doubling, but addition formulas work for $P+P$
- Efficient (for cryptography) transformation from Weierstrass to (twisted) Edwards only for some curves
- Always efficient: transformation between Montgomery curves and twisted Edwards curves
- Again: simple implementations are likely to be correct and secure

Solution II: (twisted) Edwards curves

- Edwards, 2007: New form for elliptic curves ("Edwards curves")
- Bernstein, Lange, 2007: very fast addition and doubling on these curves
- Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to "twisted Edwards curves"
- Core advantage of (twisted) Edwards curves: complete group law
- No need to handle special cases
- No "point at infinity" to work with
- Can speed up doubling, but addition formulas work for $P+P$
- Efficient (for cryptography) transformation from Weierstrass to (twisted) Edwards only for some curves
- Always efficient: transformation between Montgomery curves and twisted Edwards curves
- Again: simple implementations are likely to be correct and secure
- Disadvantage: always have a cofactor of at least 4

So, what's the deal with the cofactor?

M MONERO

Forum Funding System Vulnerability Response The Monero Project English -

Get Started Downloads Recent News. Community - Resources.

Disclosure of a Major Bug in CryptoNote Based Currencies

Posted by: luigi1111 and Riccardo "fluffypony" Spagni
May 17, 2017

Overview

In Monero we've discovered and patched a critical bug that affects all CryptoNote based cryptocurrencies, and allows for the creation of an unlimited number of coins in a way that is undetectable to an observer unless they know about the fatal flaw and can search for it.

Recent Posts

Logs for the Community Meeting Held on 2019-02-16

Logs for the Community Meeting Held on 2019-02-02

Monero Adds Blockchain Pruning and Improves Transaction Efficiency

Logs for the Community Meeting
Held on 2019-01-19

So, what's the deal with the cofactor?

- Protocols need to be careful to avoid subgroup attacks
- Monero screwed this up, which allowed double-spending
- Elegant solution: "Ristretto" encoding by Hamburg, see: https:// github.com/otrv4/libgoldilocks

Solution III: Complete group law on Weierstrass curves

- Bosma, Lenstra, 1995: complete group law for Weierstrass curves
- Problem: Extremely inefficient

Solution III: Complete group law on Weierstrass curves

- Bosma, Lenstra, 1995: complete group law for Weierstrass curves
- Problem: Extremely inefficient
- Renes, Costello, Batina, 2016: Much faster complete group law for Weierstrass curves
- Less efficient than (twisted) Edwards
- Overhead quite architecture-dependent (Schwabe, Sprenkels, 2019)
- Covers all curves

Problem III: Wrong-curve attacks

ECDH attack scenario

- Alice sends point on different (insecure) curve with small subgroup
- Bob computes "shared key" in that small subgroup
- Alice learns "shared key" through brute force
- Alice learns Bob's secret scalar modulo the order of the small subgroup

Problem III: Wrong-curve attacks

ECDH attack scenario

- Alice sends point on different (insecure) curve with small subgroup
- Bob computes "shared key" in that small subgroup
- Alice learns "shared key" through brute force
- Alice learns Bob's secret scalar modulo the order of the small subgroup

Countermeasures

- Check that input point is on the curve (functional tests will miss this!)

Problem III: Wrong-curve attacks

ECDH attack scenario

- Alice sends point on different (insecure) curve with small subgroup
- Bob computes "shared key" in that small subgroup
- Alice learns "shared key" through brute force
- Alice learns Bob's secret scalar modulo the order of the small subgroup

Countermeasures

- Check that input point is on the curve (functional tests will miss this!)
- Send compressed points (x, parity (y)); decompression returns (x, y) on the curve or fails

Problem III: Wrong-curve attacks

ECDH attack scenario

- Alice sends point on different (insecure) curve with small subgroup
- Bob computes "shared key" in that small subgroup
- Alice learns "shared key" through brute force
- Alice learns Bob's secret scalar modulo the order of the small subgroup

Countermeasures

- Check that input point is on the curve (functional tests will miss this!)
- Send compressed points (x, parity (y)); decompression returns (x, y) on the curve or fails
- Send only x (Montgomery ladder); but: x could still be on the "twist" of E
- Make sure that the twist is also secure ("twist security")

Problem IV: Backdoors in standards?

""I no longer trust the [NIST Elliptic Curves] constants. I believe the NSA has manipulated them through their relationships with industry." - Bruce Schneier, 2013.

Problem IV: Backdoors in standards?

"II no longer trust the [NIST Elliptic Curves] constants. I believe the NSA has manipulated them through their relationships with industry." - Bruce Schneier, 2013.

- It is pretty clear that NSA put a backdoor in Dual_EC_DRBG
- Constants of NIST curves have been obtained by hashing random values
- No-backdoor claim: We know the preimages

Problem IV: Backdoors in standards?

"II no longer trust the [NIST Elliptic Curves] constants. I believe the NSA has manipulated them through their relationships with industry." - Bruce Schneier, 2013.

- It is pretty clear that NSA put a backdoor in Dual_EC_DRBG
- Constants of NIST curves have been obtained by hashing random values
- No-backdoor claim: We know the preimages
- Possible attack if you know a class of vulnerable curves: Generate random seeds until you have found a vulnerable (and seemingly secure) curve

Problem IV: Backdoors in standards?

"II no longer trust the [NIST Elliptic Curves] constants. I believe the NSA has manipulated them through their relationships with industry." - Bruce Schneier, 2013.

- It is pretty clear that NSA put a backdoor in Dual_EC_DRBG
- Constants of NIST curves have been obtained by hashing random values
- No-backdoor claim: We know the preimages
- Possible attack if you know a class of vulnerable curves: Generate random seeds until you have found a vulnerable (and seemingly secure) curve
- Fact: There are no known insecurities of NIST curves

Problem IV: Backdoors in standards?

"II no longer trust the [NIST Elliptic Curves] constants. I believe the NSA has manipulated them through their relationships with industry." - Bruce Schneier, 2013.

- It is pretty clear that NSA put a backdoor in Dual_EC_DRBG
- Constants of NIST curves have been obtained by hashing random values
- No-backdoor claim: We know the preimages
- Possible attack if you know a class of vulnerable curves: Generate random seeds until you have found a vulnerable (and seemingly secure) curve
- Fact: There are no known insecurities of NIST curves
- Fact: There is no proof that there are no intentional vulnerabilities in NIST curves

Problem IV: Backdoors in standards?

"II no longer trust the [NIST Elliptic Curves] constants. I believe the NSA has manipulated them through their relationships with industry." - Bruce Schneier, 2013.

- It is pretty clear that NSA put a backdoor in Dual_EC_DRBG
- Constants of NIST curves have been obtained by hashing random values
- No-backdoor claim: We know the preimages
- Possible attack if you know a class of vulnerable curves: Generate random seeds until you have found a vulnerable (and seemingly secure) curve
- Fact: There are no known insecurities of NIST curves
- Fact: There is no proof that there are no intentional vulnerabilities in NIST curves
- For more details, see BADA55 elliptic curves

Choosing a safe curve

Overview of various elliptic curves and thorough security analysis by Bernstein and Lange:

> https://safecurves.cr.yp.to
(doesn't list cofactor-1 curves, so best to combine with Ristretto)

Point representation and arithmetic

Collection of elliptic-curve shapes, point representations and group-operation formulas by Bernstein and Lange:
https://www.hyperelliptic.org/EFD/

