
Cryptographic Engineering
Scalar multiplication

Radboud University, Nijmegen, The Netherlands

Spring 2020



The ECC pyramid

Scalar multiplication

ECC add/double

Finite-field arithmetic

Big-integer or polynomial arithmetic

2



The top of the pyramid

◮ Pyramid levels are not independent

◮ Interactions trough all levels, relevant for
◮ Correctness,
◮ Security, and
◮ Performance

3



The top of the pyramid

◮ Pyramid levels are not independent

◮ Interactions trough all levels, relevant for
◮ Correctness,
◮ Security, and
◮ Performance

◮ Setting for this lecture (peak of the pyramid):
◮ Consider (finite, abelian) group G, written additively
◮ Compute k · P for k ∈ Z and P ∈ G

3



The top of the pyramid

◮ Pyramid levels are not independent

◮ Interactions trough all levels, relevant for
◮ Correctness,
◮ Security, and
◮ Performance

◮ Setting for this lecture (peak of the pyramid):
◮ Consider (finite, abelian) group G, written additively
◮ Compute k · P for k ∈ Z and P ∈ G
◮ This is the same as xk for x in a multiplicative group G′

◮ Same algorithms for scalar multiplication and exponentiation

3



The ECDLP

Definition

Given two points P and Q on an elliptic curve, such that Q ∈ 〈P 〉, find
an integer k such that kP = Q.

4



The ECDLP

Definition

Given two points P and Q on an elliptic curve, such that Q ∈ 〈P 〉, find
an integer k such that kP = Q.

◮ Typical setting for cryptosystems:
◮ P is a fixed system parameter,
◮ k is the secret (private) key,
◮ Q is the public key.

◮ Key generation needs to compute Q = kP , given k and P

4



EC Diffie-Hellman key exchange

◮ Users Alice and Bob have key pairs (kA, QA) and (kB, QB)

5



EC Diffie-Hellman key exchange

◮ Users Alice and Bob have key pairs (kA, QA) and (kB, QB)

◮ Alice sends QA to Bob

◮ Bob sends QB to Alice

5



EC Diffie-Hellman key exchange

◮ Users Alice and Bob have key pairs (kA, QA) and (kB, QB)

◮ Alice sends QA to Bob

◮ Bob sends QB to Alice

◮ Alice computes joint key as K = kAQB

◮ Bob computes joint key as K = kBQA

5



Schnorr signatures

◮ Alice has key pair (kA, QA)

◮ Order of 〈P 〉 is ℓ

◮ Use cryptographic hash function H

6



Schnorr signatures

◮ Alice has key pair (kA, QA)

◮ Order of 〈P 〉 is ℓ

◮ Use cryptographic hash function H

◮ Sign: Generate secret random r ∈ {1, . . . , ℓ}, compute signature
(H(R,M), S) on M with

R = rP

S = (r −H(R,M)kA) mod ℓ

6



Schnorr signatures

◮ Alice has key pair (kA, QA)

◮ Order of 〈P 〉 is ℓ

◮ Use cryptographic hash function H

◮ Sign: Generate secret random r ∈ {1, . . . , ℓ}, compute signature
(H(R,M), S) on M with

R = rP

S = (r −H(R,M)kA) mod ℓ

◮ Verify: compute R = SP +H(R,M)QA and check that

H(R,M) = H(R,M)

6



Scalar multiplication

◮ Looks like all these schemes need computation of kP .

7



Scalar multiplication

◮ Looks like all these schemes need computation of kP .

◮ Let’s take a closer look:
◮ For key generation, the point P is fixed at compile time
◮ For Diffie-Hellman joint-key computation the point is received at

runtime

7



Scalar multiplication

◮ Looks like all these schemes need computation of kP .

◮ Let’s take a closer look:
◮ For key generation, the point P is fixed at compile time
◮ For Diffie-Hellman joint-key computation the point is received at

runtime
◮ Key generation and Diffie-Hellman need one scalar multiplication kP
◮ Schnorr signature verification needs double-scalar multiplication

k1P1 + k2P2

7



Scalar multiplication

◮ Looks like all these schemes need computation of kP .

◮ Let’s take a closer look:
◮ For key generation, the point P is fixed at compile time
◮ For Diffie-Hellman joint-key computation the point is received at

runtime
◮ Key generation and Diffie-Hellman need one scalar multiplication kP
◮ Schnorr signature verification needs double-scalar multiplication

k1P1 + k2P2

◮ In key generation and Diffie-Hellman joint-key computation, k is
secret

◮ The scalars in Schnorr signature verification are public

7



Scalar multiplication

◮ Looks like all these schemes need computation of kP .

◮ Let’s take a closer look:
◮ For key generation, the point P is fixed at compile time
◮ For Diffie-Hellman joint-key computation the point is received at

runtime
◮ Key generation and Diffie-Hellman need one scalar multiplication kP
◮ Schnorr signature verification needs double-scalar multiplication

k1P1 + k2P2

◮ In key generation and Diffie-Hellman joint-key computation, k is
secret

◮ The scalars in Schnorr signature verification are public

◮ In the following: Distinguish these cases

7



A first approach

◮ Let’s compute 105 · P .

8



A first approach

◮ Let’s compute 105 · P .

◮ Obvious: Can do that with 104 additions P + P + P + · · ·+ P

8



A first approach

◮ Let’s compute 105 · P .

◮ Obvious: Can do that with 104 additions P + P + P + · · ·+ P

◮ Problem: 105 has 7 bits, we need roughly 27 additions,
cryptographic scalars have ≈ 256 bits, we would need roughly 2256

additions (more expensive than solving the ECDLP!)

8



A first approach

◮ Let’s compute 105 · P .

◮ Obvious: Can do that with 104 additions P + P + P + · · ·+ P

◮ Problem: 105 has 7 bits, we need roughly 27 additions,
cryptographic scalars have ≈ 256 bits, we would need roughly 2256

additions (more expensive than solving the ECDLP!)

◮ Conclusion: we need algorithms that run in polynomial time (in the
size of the scalar)

8



Rewriting the scalar

◮ 105 = 64 + 32 + 8 + 1 = 26 + 25 + 23 + 20

9



Rewriting the scalar

◮ 105 = 64 + 32 + 8 + 1 = 26 + 25 + 23 + 20

◮ 105 = 1 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20

9



Rewriting the scalar

◮ 105 = 64 + 32 + 8 + 1 = 26 + 25 + 23 + 20

◮ 105 = 1 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20

◮ 105 = ((((((((((1 · 2 + 1) · 2) + 0) · 2) + 1) · 2) + 0) · 2) + 0) · 2) + 1
(Horner’s rule)

9



Rewriting the scalar

◮ 105 = 64 + 32 + 8 + 1 = 26 + 25 + 23 + 20

◮ 105 = 1 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20

◮ 105 = ((((((((((1 · 2 + 1) · 2) + 0) · 2) + 1) · 2) + 0) · 2) + 0) · 2) + 1
(Horner’s rule)

◮ 105 ·P = ((((((((((P ·2+P ) ·2)+0) ·2)+P ) ·2)+0) ·2)+0) ·2)+P

9



Rewriting the scalar

◮ 105 = 64 + 32 + 8 + 1 = 26 + 25 + 23 + 20

◮ 105 = 1 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20

◮ 105 = ((((((((((1 · 2 + 1) · 2) + 0) · 2) + 1) · 2) + 0) · 2) + 0) · 2) + 1
(Horner’s rule)

◮ 105 ·P = ((((((((((P ·2+P ) ·2)+0) ·2)+P ) ·2)+0) ·2)+0) ·2)+P

◮ Cost: 6 doublings, 3 additions

9



Rewriting the scalar

◮ 105 = 64 + 32 + 8 + 1 = 26 + 25 + 23 + 20

◮ 105 = 1 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20

◮ 105 = ((((((((((1 · 2 + 1) · 2) + 0) · 2) + 1) · 2) + 0) · 2) + 0) · 2) + 1
(Horner’s rule)

◮ 105 ·P = ((((((((((P ·2+P ) ·2)+0) ·2)+P ) ·2)+0) ·2)+0) ·2)+P

◮ Cost: 6 doublings, 3 additions

◮ General algorithm: “Double and add”

R← P
for i← n− 2 downto 0 do

R← 2R
if (k)2[i] = 1 then

R← R+ P
end if

end for

return R

9



Analysis of double-and-add

◮ Let n be the number of bits in the exponent

◮ Double-and-add takes n− 1 doublings

10



Analysis of double-and-add

◮ Let n be the number of bits in the exponent

◮ Double-and-add takes n− 1 doublings

◮ Let m be the number of 1 bits in the exponent

◮ Double-and-add takes m− 1 additions

◮ On average: ≈ n/2 additions

10



Analysis of double-and-add

◮ Let n be the number of bits in the exponent

◮ Double-and-add takes n− 1 doublings

◮ Let m be the number of 1 bits in the exponent

◮ Double-and-add takes m− 1 additions

◮ On average: ≈ n/2 additions

◮ P does not need to be known in advance, no precomputation
depending on P

10



Analysis of double-and-add

◮ Let n be the number of bits in the exponent

◮ Double-and-add takes n− 1 doublings

◮ Let m be the number of 1 bits in the exponent

◮ Double-and-add takes m− 1 additions

◮ On average: ≈ n/2 additions

◮ P does not need to be known in advance, no precomputation
depending on P

◮ Handles single-scalar multiplication

10



Analysis of double-and-add

◮ Let n be the number of bits in the exponent

◮ Double-and-add takes n− 1 doublings

◮ Let m be the number of 1 bits in the exponent

◮ Double-and-add takes m− 1 additions

◮ On average: ≈ n/2 additions

◮ P does not need to be known in advance, no precomputation
depending on P

◮ Handles single-scalar multiplication

◮ Running time clearly depends on the scalar: insecure for secret
scalars!

10



Double-scalar double-and-add
◮ Let’s modify the algorithm to compute k1P1 + k2P2

11



Double-scalar double-and-add
◮ Let’s modify the algorithm to compute k1P1 + k2P2

◮ Obvious solution:
◮ Compute k1P1 (n1 − 1 doublings, m1 − 1 additions)
◮ Compute k2P2 (n2 − 1 doublings, m2 − 1 additions)
◮ Add the results (1 addition)

11



Double-scalar double-and-add
◮ Let’s modify the algorithm to compute k1P1 + k2P2

◮ Obvious solution:
◮ Compute k1P1 (n1 − 1 doublings, m1 − 1 additions)
◮ Compute k2P2 (n2 − 1 doublings, m2 − 1 additions)
◮ Add the results (1 addition)

◮ We can do better (O denotes the neutral element):

R← O
for i← max(n1, n2)− 1 downto 0 do

R← 2R
if (k1)2[i] = 1 then

R← R+ P1

end if

if (k2)2[i] = 1 then

R← R+ P2

end if

end for

return R

11



Double-scalar double-and-add
◮ Let’s modify the algorithm to compute k1P1 + k2P2

◮ Obvious solution:
◮ Compute k1P1 (n1 − 1 doublings, m1 − 1 additions)
◮ Compute k2P2 (n2 − 1 doublings, m2 − 1 additions)
◮ Add the results (1 addition)

◮ We can do better (O denotes the neutral element):

R← O
for i← max(n1, n2)− 1 downto 0 do

R← 2R
if (k1)2[i] = 1 then

R← R+ P1

end if

if (k2)2[i] = 1 then

R← R+ P2

end if

end for

return R

◮ max(n1, n2) doublings, m1 +m2 additions

11



Some precomputation helps
◮ Whenever k1 and k2 have a 1 bit at the same position, we first add

P1 and then P2 (on average for 1/4 of the bits)

12



Some precomputation helps
◮ Whenever k1 and k2 have a 1 bit at the same position, we first add

P1 and then P2 (on average for 1/4 of the bits)
◮ Let’s just precompute T = P1 + P2

12



Some precomputation helps
◮ Whenever k1 and k2 have a 1 bit at the same position, we first add

P1 and then P2 (on average for 1/4 of the bits)
◮ Let’s just precompute T = P1 + P2

◮ Modified algorithm (special case of Strauss’ algorithm):

R← O
for i← max(n1, n2)− 1 downto 0 do

R← 2R
if (k1)2[i] = 1 AND (k2)2[i] = 1 then

R← R+ T
else

if (k1)2[i] = 1 then

R← R+ P1

end if

if (k2)2[i] = 1 then

R← R+ P2

end if

end if

end for

return R
12



Even more (offline) precomputation
◮ What if precomputation is free (fixed basepoint, offline

precomputation)?

13



Even more (offline) precomputation
◮ What if precomputation is free (fixed basepoint, offline

precomputation)?
◮ First idea: Let’s precompute a table containing 0P, P, 2P, 3P, . . . ,

when we receive k, simply look up kP .

13



Even more (offline) precomputation
◮ What if precomputation is free (fixed basepoint, offline

precomputation)?
◮ First idea: Let’s precompute a table containing 0P, P, 2P, 3P, . . . ,

when we receive k, simply look up kP .
◮ Problem: k is large. For a 256-bit k we would need a table of size

3369993333393829974333376885877453834204643052817571560137951281152TB

13



Even more (offline) precomputation
◮ What if precomputation is free (fixed basepoint, offline

precomputation)?
◮ First idea: Let’s precompute a table containing 0P, P, 2P, 3P, . . . ,

when we receive k, simply look up kP .
◮ Problem: k is large. For a 256-bit k we would need a table of size

3369993333393829974333376885877453834204643052817571560137951281152TB

◮ How about, for example, precompute P, 2P, 4P, 8P, . . . , 2n−1P
◮ This needs only about 16KB of storage for n = 256 and 64-byte

group elements

13



Even more (offline) precomputation
◮ What if precomputation is free (fixed basepoint, offline

precomputation)?
◮ First idea: Let’s precompute a table containing 0P, P, 2P, 3P, . . . ,

when we receive k, simply look up kP .
◮ Problem: k is large. For a 256-bit k we would need a table of size

3369993333393829974333376885877453834204643052817571560137951281152TB

◮ How about, for example, precompute P, 2P, 4P, 8P, . . . , 2n−1P
◮ This needs only about 16KB of storage for n = 256 and 64-byte

group elements
◮ Modified scalar-multiplication algorithm:

R← O
for i← 0 to n− 1 do

if (k)2[i] = 1 then

R← R+ 2iP
end if

end for

return R

13



Even more (offline) precomputation
◮ What if precomputation is free (fixed basepoint, offline

precomputation)?
◮ First idea: Let’s precompute a table containing 0P, P, 2P, 3P, . . . ,

when we receive k, simply look up kP .
◮ Problem: k is large. For a 256-bit k we would need a table of size

3369993333393829974333376885877453834204643052817571560137951281152TB

◮ How about, for example, precompute P, 2P, 4P, 8P, . . . , 2n−1P
◮ This needs only about 16KB of storage for n = 256 and 64-byte

group elements
◮ Modified scalar-multiplication algorithm:

R← O
for i← 0 to n− 1 do

if (k)2[i] = 1 then

R← R+ 2iP
end if

end for

return R
◮ Eliminated all doublings in fixed-basepoint scalar multiplication!

13



Double-and-add always

◮ All algorithms so far perform conditional addition where the
condition is secret

◮ For secret scalars (most common case!) we need something else

14



Double-and-add always

◮ All algorithms so far perform conditional addition where the
condition is secret

◮ For secret scalars (most common case!) we need something else

◮ Idea: Always perform addition, discard result:

R← P
for i← n− 2 downto 0 do

R← 2R
Rt ← R+ P
if (k)2[i] = 1 then

R← Rt

end if

end for

14



Double-and-add always

◮ All algorithms so far perform conditional addition where the
condition is secret

◮ For secret scalars (most common case!) we need something else

◮ Idea: Always perform addition, discard result:

◮ Or simply add the neutral element O

R← P
for i← n− 2 downto 0 do

R← 2R
if (k)2[i] = 1 then

R← R+ P
else

R← R+O
end if

end for

return R

14



Double-and-add always

◮ All algorithms so far perform conditional addition where the
condition is secret

◮ For secret scalars (most common case!) we need something else

◮ Idea: Always perform addition, discard result:

◮ Or simply add the neutral element O

R← P
for i← n− 2 downto 0 do

R← 2R
if (k)2[i] = 1 then

R← R+ P
else

R← R+O
end if

end for

return R

◮ Still not constant time, more later. . .

14



Let’s rewrite that a bit . . .

◮ We have a table T = (O, P )

◮ Notation T [0] = O, T [1] = P

◮ Scalar multiplication is

R← P
for i← n− 2 downto 0 do

R← 2R
R← R+ T [(k)2[i]]

end for

15



Changing the scalar radix

◮ So far we considered a scalar written in radix 2

◮ How about radix 3?

16



Changing the scalar radix

◮ So far we considered a scalar written in radix 2

◮ How about radix 3?

◮ We precompute a Table T = (O, P, 2P )

◮ Write scalar k as (kn−1, . . . , k0)3

16



Changing the scalar radix

◮ So far we considered a scalar written in radix 2

◮ How about radix 3?

◮ We precompute a Table T = (O, P, 2P )

◮ Write scalar k as (kn−1, . . . , k0)3
◮ Compute scalar multiplication as

R← T [(k)3[n− 1]]
for i← n− 2 downto 0 do

R← 3R
R← R+ T [(k)3[i]]

end for

16



Changing the scalar radix

◮ So far we considered a scalar written in radix 2

◮ How about radix 3?

◮ We precompute a Table T = (O, P, 2P )

◮ Write scalar k as (kn−1, . . . , k0)3
◮ Compute scalar multiplication as

R← T [(k)3[n− 1]]
for i← n− 2 downto 0 do

R← 3R
R← R+ T [(k)3[i]]

end for

◮ Advantage: The scalar is shorter, fewer additions

◮ Disadvantage: 3 is just not nice (needs triplings)

16



Changing the scalar radix

◮ So far we considered a scalar written in radix 2

◮ How about radix 3?

◮ We precompute a Table T = (O, P, 2P )

◮ Write scalar k as (kn−1, . . . , k0)3
◮ Compute scalar multiplication as

R← T [(k)3[n− 1]]
for i← n− 2 downto 0 do

R← 3R
R← R+ T [(k)3[i]]

end for

◮ Advantage: The scalar is shorter, fewer additions

◮ Disadvantage: 3 is just not nice (needs triplings)

◮ How about some nice numbers, like 4, 8, 16?

16



Fixed-window scalar multiplication

◮ Fix a window width w

◮ Precompute T = (O, P, 2P, . . . , (2w − 1)P )

17



Fixed-window scalar multiplication

◮ Fix a window width w

◮ Precompute T = (O, P, 2P, . . . , (2w − 1)P )

◮ Write scalar k as (km−1, . . . , k0)2w

◮ This is the same as chopping the binary scalar into “windows” of
fixed length w

17



Fixed-window scalar multiplication

◮ Fix a window width w

◮ Precompute T = (O, P, 2P, . . . , (2w − 1)P )

◮ Write scalar k as (km−1, . . . , k0)2w

◮ This is the same as chopping the binary scalar into “windows” of
fixed length w

◮ Compute scalar multiplication as

R← T [(k)2w [m− 1]]
for i← m− 2 downto 0 do

for j ← 1 to w do

R← 2R
end for

R← R+ T [(k)2w [i]]
end for

17



Analysis of fixed window

◮ For an n-bit scalar we still have n− 1 doublings

18



Analysis of fixed window

◮ For an n-bit scalar we still have n− 1 doublings

◮ Precomputation costs us 2w/2− 1 additions and 2w/2− 1 doublings

18



Analysis of fixed window

◮ For an n-bit scalar we still have n− 1 doublings

◮ Precomputation costs us 2w/2− 1 additions and 2w/2− 1 doublings

◮ Number of additions in the loop is ⌈n/w⌉

18



Analysis of fixed window

◮ For an n-bit scalar we still have n− 1 doublings

◮ Precomputation costs us 2w/2− 1 additions and 2w/2− 1 doublings

◮ Number of additions in the loop is ⌈n/w⌉

◮ Larger w: More precomputation

◮ Smaller w: More additions inside the loop

18



Analysis of fixed window

◮ For an n-bit scalar we still have n− 1 doublings

◮ Precomputation costs us 2w/2− 1 additions and 2w/2− 1 doublings

◮ Number of additions in the loop is ⌈n/w⌉

◮ Larger w: More precomputation

◮ Smaller w: More additions inside the loop

◮ For ≈ 256-bit scalars choose w = 4 or w = 5

18



Is fixed-window constant time?

◮ For each window of the scalar perform w doublings and one
addition, sounds good.

19



Is fixed-window constant time?

◮ For each window of the scalar perform w doublings and one
addition, sounds good.

◮ The devil is in the detail:
◮ Is addition running in constant time? Also for O?
◮ We can make that work, but how easy and efficient it is depends on

the curve shape (remember tricky cases for fast addition on
Weierstrass curves)

19



Is fixed-window constant time?

◮ For each window of the scalar perform w doublings and one
addition, sounds good.

◮ The devil is in the detail:
◮ Is addition running in constant time? Also for O?
◮ We can make that work, but how easy and efficient it is depends on

the curve shape (remember tricky cases for fast addition on
Weierstrass curves)

◮ Remember that table lookups are generally not constant time!

19



Making it constant time

/* Sets r to the neutral element on the elliptic curve */
extern ec_point_setneutral(ec_point *r);

/* Adds p and q and stores the result in r */
extern ec_point_add(ec_point *r, const ec_point *p, const ec_point *q);

/* Doubles p and stores the result in r */
extern ec_point_double(ec_point *r, const ec_point *p);

/* For point P contains pre-computed multiples P, 2*P, 3*P,...,255*P */
extern ec_point precomputed[255];

ec_scalarmult_P(unsigned char scalar[32])
{

int i,j;
ec_point r;
ec_setneutral(&r);

for(i=31;i>=0;i--)
{

for(j=0;j<8;j++)
ec_point_double(&r,&r);

if(scalar[i] != 0)
ec_point_add(&r,&r,precomputed+scalar[i]-1);

}
}

20



Making it constant time

/* Sets r to the neutral element on the elliptic curve */
extern ec_point_setneutral(ec_point *r);

/* Adds p and q and stores the result in r */
extern ec_point_add(ec_point *r, const ec_point *p, const ec_point *q);

/* Doubles p and stores the result in r */
extern ec_point_double(ec_point *r, const ec_point *p);

/* For point P contains pre-computed multiples 0, P, 2*P, 3*P,...,255*P */
extern ec_point precomputed[256];

ec_scalarmult_P(unsigned char scalar[32])
{

int i,j;
ec_point r;
ec_setneutral(&r);

for(i=31;i>=0;i--)
{

for(j=0;j<8;j++)
ec_point_double(&r,&r);

ec_point_add(&r,&r,precomputed+scalar[i]);
}

}

20



Making it constant time

/* Sets r to the neutral element on the elliptic curve */
extern ec_point_setneutral(ec_point *r);

/* Adds p and q and stores the result in r */
extern ec_point_add(ec_point *r, const ec_point *p, const ec_point *q);

/* Doubles p and stores the result in r */
extern ec_point_double(ec_point *r, const ec_point *p);

/* For point P contains pre-computed multiples 0, P, 2*P, 3*P,...,255*P */
extern ec_point precomputed[256];

ec_scalarmult_P(unsigned char scalar[32])
{

int i,j;
ec_point r,t;
ec_setneutral(&r);

for(i=31;i>=0;i--)
{

for(j=0;j<8;j++)
ec_point_double(&r,&r);

ec_point_lookup(&t,precomputed,scalar[i]);
ec_point_add(&r,&r,&t);

}
}

20



ec_point_lookup

static void ec_point_lookup(ec_point *t, const ec_point *table, int pos)
{

int i,j;
unsigned char b;
*t = table[0];
for(i=0;i<256;i++)
{

b = (i == pos); // Not constant time!
ec_point_cmov(t, table+i, b); // Copy table[i] to t if b is 1

}
}

21



ec_point_lookup

static void ec_point_lookup(ec_point *t, const ec_point *table, int pos)
{

int i,j;
unsigned char b;
*t = table[0];
for(i=0;i<256;i++)
{

b = int_eq(i, pos); // set b=1 if i==pos, else set b=0
ec_point_cmov(t, table+i, b); // Copy table[i] to t if b is 1

}
}

21



int_eq and ec_point_cmov

unsigned char int_eq(int a, int b)
{
unsigned long long t = a ^ b;
t = (-t) >> 63;
return 1-t;

}

void ec_point_cmov(ec_point *r, const ec_point *t, unsigned char b)
{
unsigned char *u = (unsigned char *)r;
unsigned char *v = (unsigned char *)t;
int i;
b = -b;
for(i=0;i<sizeof(ec_point);i++)

u[i] = (b & v[i]) ^ (~b & u[i]);
}

21



More offline precomputation

◮ Let’s get back to fixed-basepoint multiplication

◮ So far we precomputed P, 2P, 4P, 8P, . . .

22



More offline precomputation

◮ Let’s get back to fixed-basepoint multiplication

◮ So far we precomputed P, 2P, 4P, 8P, . . .

◮ We can combine that with fixed-window scalar multiplication

◮ Precompute Ti = (O, P, 2P, 3P, . . . , (2w − 1)P ) · 2i for
i = 0, w, 2w, 3w, ⌈n/w⌉ − 1

22



More offline precomputation

◮ Let’s get back to fixed-basepoint multiplication

◮ So far we precomputed P, 2P, 4P, 8P, . . .

◮ We can combine that with fixed-window scalar multiplication

◮ Precompute Ti = (O, P, 2P, 3P, . . . , (2w − 1)P ) · 2i for
i = 0, w, 2w, 3w, ⌈n/w⌉ − 1

◮ Perform scalar multiplication as

R← T0[(k)2w [0]]
for i← 1 to ⌈n/w⌉ − 1 do

R← R+ Tiw[(k)2w [i]]
end for

22



More offline precomputation

◮ Let’s get back to fixed-basepoint multiplication

◮ So far we precomputed P, 2P, 4P, 8P, . . .

◮ We can combine that with fixed-window scalar multiplication

◮ Precompute Ti = (O, P, 2P, 3P, . . . , (2w − 1)P ) · 2i for
i = 0, w, 2w, 3w, ⌈n/w⌉ − 1

◮ Perform scalar multiplication as

R← T0[(k)2w [0]]
for i← 1 to ⌈n/w⌉ − 1 do

R← R+ Tiw[(k)2w [i]]
end for

◮ No doublings, only ⌈n/w⌉ − 1 additions

22



More offline precomputation

◮ Let’s get back to fixed-basepoint multiplication

◮ So far we precomputed P, 2P, 4P, 8P, . . .

◮ We can combine that with fixed-window scalar multiplication

◮ Precompute Ti = (O, P, 2P, 3P, . . . , (2w − 1)P ) · 2i for
i = 0, w, 2w, 3w, ⌈n/w⌉ − 1

◮ Perform scalar multiplication as

R← T0[(k)2w [0]]
for i← 1 to ⌈n/w⌉ − 1 do

R← R+ Tiw[(k)2w [i]]
end for

◮ No doublings, only ⌈n/w⌉ − 1 additions

◮ Can use huge w, but:
◮ at some point the precomputed tables don’t fit into cache anymore.
◮ constant-time loads get slow for large w

22



Fixed-window limitations

◮ Consider the scalar 22 = (1 01 10)2 and window size 2
◮ Initialize R with P
◮ Double, double, add P
◮ Double, double, add 2P

23



Fixed-window limitations

◮ Consider the scalar 22 = (1 01 10)2 and window size 2
◮ Initialize R with P
◮ Double, double, add P
◮ Double, double, add 2P

◮ More efficient:
◮ Initialize R with P
◮ Double, double, double, add 3P
◮ double

23



Fixed-window limitations

◮ Consider the scalar 22 = (1 01 10)2 and window size 2
◮ Initialize R with P
◮ Double, double, add P
◮ Double, double, add 2P

◮ More efficient:
◮ Initialize R with P
◮ Double, double, double, add 3P
◮ double

◮ Problem with fixed window: it’s fixed.

23



Fixed-window limitations

◮ Consider the scalar 22 = (1 01 10)2 and window size 2
◮ Initialize R with P
◮ Double, double, add P
◮ Double, double, add 2P

◮ More efficient:
◮ Initialize R with P
◮ Double, double, double, add 3P
◮ double

◮ Problem with fixed window: it’s fixed.

◮ Idea: “Slide” the window over the scalar

23



Sliding window scalar multiplication

◮ Choose window size w

◮ Rewrite scalar k as k = (k0, . . . , km) with ki in
{0, 1, 3, 5, . . . , 2w − 1} with at most one non-zero entry in each
window of length w

24



Sliding window scalar multiplication

◮ Choose window size w

◮ Rewrite scalar k as k = (k0, . . . , km) with ki in
{0, 1, 3, 5, . . . , 2w − 1} with at most one non-zero entry in each
window of length w

◮ Do this by scanning k from right to left, expand window from each
1-bit

24



Sliding window scalar multiplication

◮ Choose window size w

◮ Rewrite scalar k as k = (k0, . . . , km) with ki in
{0, 1, 3, 5, . . . , 2w − 1} with at most one non-zero entry in each
window of length w

◮ Do this by scanning k from right to left, expand window from each
1-bit

◮ Precompute P, 3P, 5P, . . . , (2w − 1)P

24



Sliding window scalar multiplication

◮ Choose window size w

◮ Rewrite scalar k as k = (k0, . . . , km) with ki in
{0, 1, 3, 5, . . . , 2w − 1} with at most one non-zero entry in each
window of length w

◮ Do this by scanning k from right to left, expand window from each
1-bit

◮ Precompute P, 3P, 5P, . . . , (2w − 1)P

◮ Perform scalar multiplication

R← O
for i← m to 0 do

R← 2R
if ki then

R← R+ kiP
end if

end for

24



Analysis of sliding window

◮ We still do n− 1 doublings for an n-bit scalar

◮ Precomputation needs 2w−1 − 1 additions

◮ Expected number of additions in the main loop: n/(w + 1)

25



Analysis of sliding window

◮ We still do n− 1 doublings for an n-bit scalar

◮ Precomputation needs 2w−1 − 1 additions

◮ Expected number of additions in the main loop: n/(w + 1)

◮ For the same w only half the precomputation compared to
fixed-window scalar multiplication

◮ For the same w fewer additions in the main loop

25



Analysis of sliding window

◮ We still do n− 1 doublings for an n-bit scalar

◮ Precomputation needs 2w−1 − 1 additions

◮ Expected number of additions in the main loop: n/(w + 1)

◮ For the same w only half the precomputation compared to
fixed-window scalar multiplication

◮ For the same w fewer additions in the main loop

◮ But: It’s not running in constant time!

◮ Still nice (in double-scalar version) for signature verification

25



Differential addition

◮ Consider elliptic curves of the form By2 = x3 +Ax2 + x.

◮ Montgomery in 1987 showed how to perform x-coordinate-based
arithmetic:
◮ Given the x-coordinate xP of P , and
◮ given the x-coordinate xQ of Q, and
◮ given the x-coordinate xP−Q of P −Q

26



Differential addition

◮ Consider elliptic curves of the form By2 = x3 +Ax2 + x.

◮ Montgomery in 1987 showed how to perform x-coordinate-based
arithmetic:
◮ Given the x-coordinate xP of P , and
◮ given the x-coordinate xQ of Q, and
◮ given the x-coordinate xP−Q of P −Q
◮ compute the x-coordinate xR of R = P +Q

26



Differential addition

◮ Consider elliptic curves of the form By2 = x3 +Ax2 + x.

◮ Montgomery in 1987 showed how to perform x-coordinate-based
arithmetic:
◮ Given the x-coordinate xP of P , and
◮ given the x-coordinate xQ of Q, and
◮ given the x-coordinate xP−Q of P −Q
◮ compute the x-coordinate xR of R = P +Q

◮ This is called differential addition

26



Differential addition

◮ Consider elliptic curves of the form By2 = x3 +Ax2 + x.

◮ Montgomery in 1987 showed how to perform x-coordinate-based
arithmetic:
◮ Given the x-coordinate xP of P , and
◮ given the x-coordinate xQ of Q, and
◮ given the x-coordinate xP−Q of P −Q
◮ compute the x-coordinate xR of R = P +Q

◮ This is called differential addition

◮ Less efficient differential-addition formulas for other curve shapes

26



Differential addition

◮ Consider elliptic curves of the form By2 = x3 +Ax2 + x.

◮ Montgomery in 1987 showed how to perform x-coordinate-based
arithmetic:
◮ Given the x-coordinate xP of P , and
◮ given the x-coordinate xQ of Q, and
◮ given the x-coordinate xP−Q of P −Q
◮ compute the x-coordinate xR of R = P +Q

◮ This is called differential addition

◮ Less efficient differential-addition formulas for other curve shapes

◮ Can be used for efficient computation of the x-coordinate of kP
given only the x-coordinate of P

◮ For this, let’s use projective representation (X : Z) with x = (X/Z)

26



One Montgomery “ladder step”

const a24 = (A+ 2)/4 (A from the curve equation)
function ladderstep(XQ−P , XP , ZP , XQ, ZQ)

t1 ← XP + ZP

t6 ← t21
t2 ← XP − ZP

t7 ← t22
t5 ← t6 − t7
t3 ← XQ + ZQ

t4 ← XQ − ZQ

t8 ← t4 · t1
t9 ← t3 · t2
XP+Q ← (t8 + t9)

2

ZP+Q ← XQ−P · (t8 − t9)
2

X2P ← t6 · t7
Z2P ← t5 · (t7 + a24 · t5)
return (X2P , Z2P , XP+Q, ZP+Q)

end function

27



The Montgomery ladder

Require: A scalar 0 ≤ k ∈ Z and the x-coordinate xP of some point P
Ensure: (XkP , ZkP ) fulfilling xkP = XkP /ZkP

X1 = xP ; X2 = 1; Z2 = 0; X3 = xP ; Z3 = 1
for i← n− 1 downto 0 do

if bit i of k is 1 then

(X3, Z3, X2, Z2)← ladderstep(X1, X3, Z3, X2, Z2)
else

(X2, Z2, X3, Z3)← ladderstep(X1, X2, Z2, X3, Z3)
end if

end for

return X2/Z2

28



The Montgomery ladder (ctd.)

Require: A scalar 0 ≤ k ∈ Z and the x-coordinate xP of some point P
Ensure: (XkP , ZkP ) fulfilling xkP = XkP /ZkP

X1 = xP ; X2 = 1; Z2 = 0; X3 = xP ; Z3 = 1
p← 0
for i← n− 1 downto 0 do

b← bit i of s
c← b⊕ p
p← b
(X2, X3)← cswap(X2, X3, c)
(Z2, Z3)← cswap(Z2, Z3, c)
(X2, Z2, X3, Z3)← ladderstep(X1, X2, Z2, X3, Z3)

end for

return X2/Z2

29



Advantages of the Montgomery ladder

◮ Very regular structure, easy to protect against timing attacks
◮ Replace the if statement by conditional swap
◮ Be careful with constant-time swaps

30



Advantages of the Montgomery ladder

◮ Very regular structure, easy to protect against timing attacks
◮ Replace the if statement by conditional swap
◮ Be careful with constant-time swaps

◮ Very fast (at least if we don’t compare to curves with efficient
endomorphisms)

30



Advantages of the Montgomery ladder

◮ Very regular structure, easy to protect against timing attacks
◮ Replace the if statement by conditional swap
◮ Be careful with constant-time swaps

◮ Very fast (at least if we don’t compare to curves with efficient
endomorphisms)

◮ Point compression/decompression is free

30



Advantages of the Montgomery ladder

◮ Very regular structure, easy to protect against timing attacks
◮ Replace the if statement by conditional swap
◮ Be careful with constant-time swaps

◮ Very fast (at least if we don’t compare to curves with efficient
endomorphisms)

◮ Point compression/decompression is free

◮ Easy to implement

◮ No ugly special cases (see Bernstein’s “Curve25519” paper)

30



Multi-scalar multiplication

◮ Consider computation Q =
∑n

1
kiPi

◮ We looked at n = 2 before, how about n = 128?

31



Multi-scalar multiplication

◮ Consider computation Q =
∑n

1
kiPi

◮ We looked at n = 2 before, how about n = 128?

◮ Idea: Assume k1 > k2 > · · · > kn.

◮ Bos-Coster algorithm: recursively compute
Q = (k1 − k2)P1 + k2(P1 + P2) + k3P3 · · ·+ knPn

31



Multi-scalar multiplication

◮ Consider computation Q =
∑n

1
kiPi

◮ We looked at n = 2 before, how about n = 128?

◮ Idea: Assume k1 > k2 > · · · > kn.

◮ Bos-Coster algorithm: recursively compute
Q = (k1 − k2)P1 + k2(P1 + P2) + k3P3 · · ·+ knPn

◮ Each step requires one scalar subtraction and one point addition

◮ Can be very fast (but not constant-time)

31



Multi-scalar multiplication

◮ Consider computation Q =
∑n

1
kiPi

◮ We looked at n = 2 before, how about n = 128?

◮ Idea: Assume k1 > k2 > · · · > kn.

◮ Bos-Coster algorithm: recursively compute
Q = (k1 − k2)P1 + k2(P1 + P2) + k3P3 · · ·+ knPn

◮ Each step requires one scalar subtraction and one point addition

◮ Can be very fast (but not constant-time)

◮ Requires fast access to the two largest scalars: put scalars into a
heap

◮ Crucial for good performance: fast heap implementation

31



A fast heap

◮ Heap is a binary tree, each parent node is larger than the two child
nodes

◮ Data structure is stored as a simple array, positions in the array
determine positions in the tree

◮ Root is at position 0, left child node at position 1, right child node
at position 2 etc.

◮ For node at position i, child nodes are at position 2 · i+ 1 and
2 · i+ 2, parent node is at position ⌊(i − 1)/2⌋

32



A fast heap

◮ Heap is a binary tree, each parent node is larger than the two child
nodes

◮ Data structure is stored as a simple array, positions in the array
determine positions in the tree

◮ Root is at position 0, left child node at position 1, right child node
at position 2 etc.

◮ For node at position i, child nodes are at position 2 · i+ 1 and
2 · i+ 2, parent node is at position ⌊(i − 1)/2⌋

◮ Typical heap root replacement (pop operation): start at the root,
swap down for a variable amount of times

32



A fast heap

◮ Heap is a binary tree, each parent node is larger than the two child
nodes

◮ Data structure is stored as a simple array, positions in the array
determine positions in the tree

◮ Root is at position 0, left child node at position 1, right child node
at position 2 etc.

◮ For node at position i, child nodes are at position 2 · i+ 1 and
2 · i+ 2, parent node is at position ⌊(i − 1)/2⌋

◮ Typical heap root replacement (pop operation): start at the root,
swap down for a variable amount of times

◮ Floyd’s heap: swap down to the bottom, swap up for a variable
amount of times, advantages:
◮ Each swap-down step needs only one comparison (instead of two)
◮ Swap-down loop is more friendly to branch predictors

32



How about fixed scalar

◮ So far we have considered:
◮ variable point, variable scalar
◮ fixed point, variable scalar

33



How about fixed scalar

◮ So far we have considered:
◮ variable point, variable scalar
◮ fixed point, variable scalar

◮ How about variable point, fixed scalar?

33



How about fixed scalar

◮ So far we have considered:
◮ variable point, variable scalar
◮ fixed point, variable scalar

◮ How about variable point, fixed scalar?

◮ Optimizing for the scalar means that the scalar has to be public

◮ Not the typical setting for ECC

33



How about fixed scalar

◮ So far we have considered:
◮ variable point, variable scalar
◮ fixed point, variable scalar

◮ How about variable point, fixed scalar?

◮ Optimizing for the scalar means that the scalar has to be public

◮ Not the typical setting for ECC

◮ Some applications:
◮ Inversion in finite fields (cmp. slides 17&18 of ecc.pdf)
◮ Elliptic-curve factorization method (not in this lecture)

33



Addition chains

Definition

Let k be a positive integer. A sequence s1, s2, . . . , sm is called an
addition chain of length m for k if

◮ s1 = 1

◮ sm = k

◮ for each si with i > 1 it holds that si = sj + sk for some j, k < i

34



Addition chains

Definition

Let k be a positive integer. A sequence s1, s2, . . . , sm is called an
addition chain of length m for k if

◮ s1 = 1

◮ sm = k

◮ for each si with i > 1 it holds that si = sj + sk for some j, k < i

◮ An addition chain for k immediately translates into a scalar
multiplication algorithm to compute kP :
◮ Start with s1P = P
◮ Compute siP = sjP + skP for i = 2, . . . ,m

34



Addition chains

Definition

Let k be a positive integer. A sequence s1, s2, . . . , sm is called an
addition chain of length m for k if

◮ s1 = 1

◮ sm = k

◮ for each si with i > 1 it holds that si = sj + sk for some j, k < i

◮ An addition chain for k immediately translates into a scalar
multiplication algorithm to compute kP :
◮ Start with s1P = P
◮ Compute siP = sjP + skP for i = 2, . . . ,m

◮ All algorithms so far just computed additions chains “on the fly”

◮ Signed-scalar representations are “addition-subtraction chains”

34



Addition chains

Definition

Let k be a positive integer. A sequence s1, s2, . . . , sm is called an
addition chain of length m for k if

◮ s1 = 1

◮ sm = k

◮ for each si with i > 1 it holds that si = sj + sk for some j, k < i

◮ An addition chain for k immediately translates into a scalar
multiplication algorithm to compute kP :
◮ Start with s1P = P
◮ Compute siP = sjP + skP for i = 2, . . . ,m

◮ All algorithms so far just computed additions chains “on the fly”

◮ Signed-scalar representations are “addition-subtraction chains”

◮ For fixed scalar we can spend a lot of time to find a good addition
chain at compile time

34



Addition chains

Definition

Let k be a positive integer. A sequence s1, s2, . . . , sm is called an
addition chain of length m for k if

◮ s1 = 1

◮ sm = k

◮ for each si with i > 1 it holds that si = sj + sk for some j, k < i

◮ An addition chain for k immediately translates into a scalar
multiplication algorithm to compute kP :
◮ Start with s1P = P
◮ Compute siP = sjP + skP for i = 2, . . . ,m

◮ All algorithms so far just computed additions chains “on the fly”

◮ Signed-scalar representations are “addition-subtraction chains”

◮ For fixed scalar we can spend a lot of time to find a good addition
chain at compile time

◮ This is what was used for inversion in F2255−19

34


