
Cryptographic Engineering
Cryptography in software – the basics (ctd.)

Radboud University, Nijmegen, The Netherlands

Spring 2019



“The multicore revolution”

◮ Until early years 2000 each new processor generation had higher
clock speeds

◮ Nowadays: increase performance by number of cores:
◮ My laptop has 2 physical (and 4 virtual) cores
◮ Smartphones typically have 2 or 4 cores
◮ Servers have 4, 8, 16,. . . cores
◮ Special-purpose hardware (e.g., GPUs) often comes with many more

cores

◮ Consequence: “The free lunch is over” (Herb Sutter, 2005)

“As a result, system designers and software engineers can no longer rely
on increasing clock speed to hide software bloat. Instead, they must
somehow learn to make effective use of increasing parallelism.”

—Maurice Herlihy: The Multicore Revolution, 2007
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Why multicore doesn’t matter. . .
. . . for algorithm design in crypto

Crypto is fast (single core of Intel Core i3-2310M)

◮ > 50 RSA-4096 signatures per second

◮ > 8000 RSA-4096 signature verifications per second

◮ > 28000 Ed25519 signatures per second

◮ > 9000 Ed25519 signature verifications per second

◮ If you perform only one crypto operation, you don’t care

◮ Many crypto operations are trivially parallel on multiple cores
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Vector computations

Scalar computation

◮ Load 32-bit integer a

◮ Load 32-bit integer b

◮ Perform addition
c← a+ b

◮ Store 32-bit integer c

Vectorized computation

◮ Load 4 consecutive 32-bit integers
(a0, a1, a2, a3)

◮ Load 4 consecutive 32-bit integers
(b0, b1, b2, b3)

◮ Perform addition (c0, c1, c2, c3)←
(a0 + b0, a1 + b1, a2 + b2, a3 + b3)

◮ Store 128-bit vector (c0, c1, c2, c3)

◮ Perform the same operations on independent data streams (SIMD)

◮ Vector instructions available on most “large” processors

◮ Instructions for vectors of bytes, integers, floats. . .

◮ Need to interleave data items (e.g., 32-bit integers) in memory

◮ Compilers will not really help with vectorization
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Back to adding up 1000 integers

◮ Imagine that
◮ vector addition is as fast as scalar addition
◮ vector loads are as fast as scalar loads

◮ Need only 250 vector additions, 250 vector loads (+ adding up 4
partial sums)

◮ Lower bound of 250 cycles

◮ Very straight-forward modification of the program

◮ Fully unrolled loop needs only 1/4 of the space
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Is it really that efficient?

◮ Consider the Intel Skylake processor with AVX2
◮ 32-bit load throughput: 2 per cycle
◮ 32-bit add throughput: 4 per cycle
◮ 32-bit store throughput: 1 per cycle
◮ 256-bit load throughput: 2 per cycle
◮ 8× 32-bit add throughput: 3 per cycle
◮ 256-bit store throughput: 1 per cycle

◮ AVX2 vector instructions are almost as fast as scalar

instructions but do 8× the work

◮ Situation on other architectures/microarchitectures is similar

◮ Reason: cheap way to increase arithmetic throughput (less decoding,
address computation, etc.)
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More reasons for using vector arithmetic

◮ Data-dependent branches are expensive in SIMD

◮ Variably indexed loads (lookups) into vectors are expensive

◮ Need to rewrite algorithms to eliminate branches and lookups

◮ Secret-data-dependent branches and secret branch conditions are the
major sources of timing-attack vulnerabilities

◮ Strong synergies between speeding up code with vector instructions
and protecting code!
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Vectorization problems I

Carry handling

◮ When adding two 32-bit integers, the result may have 33 bits (32-bit
result + carry)

◮ Scalar additions keep the carry in a special flag register

◮ Subsequent instructions can use this flag, e.g., “add with carry”

◮ How about carries of vector additions?
◮ Answer 1: Special “carry generate” instruction (e.g., CBE-SPU)
◮ Answer 2: They’re lost, recomputation is expensive

◮ Need to avoid carries instead of handling them

◮ No problem for today’s lecture, but requires care for big-integer
arithmetic
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Vectorization problems II

Removing instruction-level parallelism

◮ If we don’t vectorize we perform multiple independent instructions

◮ We turn data-level parallelism (DLP) into instruction-level
parallelism (ILP)

◮ Pipelined and multiscalar execution need ILP

◮ Vectorization removes ILP

◮ Problematic for algorithms with, e.g., 4-way DLP

◮ Good example to see this: ChaCha vs. Blake

◮ Vectorization of ChaCha can resort to higher-level parallelism
(multiple blocks)

◮ Harder for Blake: each block depends on the previous one
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Vectorization problems III

Data shuffeling

◮ Consider multiplication of 4-coefficient polynomials
f = f0 + f1x+ f2x

2 + f3x
3 and g = g0 + g1x+ g2x

2 + g3x
3:

r0 = f0g0

r1 = f0g1 + f1g0

r2 = f0g2 + f1g1 + f2g0

r3 = f0g3 + f1g2 + f2g1 + f3g0

r4 = f1g3 + f2g2 + f3g1

r5 = f2g3 + f3g2

r6 = f3g3

◮ Ignore carries, overflows etc. for a moment

◮ 16 multiplications, 9 additions

◮ How to vectorize multiplications?
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Vectorization problems III

Data shuffeling

r0 = f0g0

r1 = f0g1 + f1g0

r2 = f0g2 + f1g1 + f2g0

r3 = f0g3 + f1g2 + f2g1 + f3g0

r4 = f1g3 + f2g2 + f3g1

r5 = f2g3 + f3g2

r6 = f3g3

◮ Can easily load (f0, f1, f2, f3) and (g0, g1, g2, g3)

◮ Multiply, obtain (f0g0, f1g1, f2g2, f3g3)

◮ And now what?

◮ Answer: Need to shuffle data in input and output registers

◮ Significant overhead, not clear that vectorization speeds up
computation!
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Efficient vectorization

◮ Most important question: Where does the parallelism come from?

◮ Easiest answer: Consider multiple batched encryptions, decryptions,
signature computations, verifications, etc. (but that increases
latency)

◮ Often: Can exploit lower-level parallelism

◮ Rule of thumb: parallelize on an as high as possible level

◮ Vectorization is hard to do as “add-on” optimization

◮ Reconsider algorithms and data structures, synergy with
constant-time algorithms
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Bitslicing

◮ Imagine registers that have only one bit

◮ Perform arithmetic on those registers using XOR, AND, OR

◮ Essentially the same as hardware implementations

◮ But wait, registers are longer!

◮ Think of them as vectors of bits

◮ This needs transposition of the “binary data matrix”

◮ Perform the simulated hardware implementations on many
independent data streams

◮ Bitslicing works for every algorithm

◮ Bitslicing is inherently protected against timing attacks

◮ Efficient bitslicing needs a huge amount of data-level parallelism
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Bitslicing binary polynomials

4-coefficient binary polynomials
(a3x

3 + a2x
2 + a1x+ a0), with ai ∈ {0, 1}

4-coefficient bitsliced binary polynomials

typedef unsigned char poly4; /* 4 coefficients in the low 4 bits */

typedef unsigned long long poly4x64[4];

void poly4_bitslice(poly4x64 r, const poly4 x[64])

{

int i,j;

for(i=0;i<4;i++)

{

r[i] = 0;

for(j=0;j<64;j++)

r[i] |= (unsigned long long)(1 & (x[j] >> i))<<j;

}

}
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Bitsliced binary-polynomial multiplication

typedef unsigned long long poly4x64[4];

typedef unsigned long long poly7x64[7];

void poly4x64_mul(poly7x64 r, const poly4x64 a, const poly4x64 b)

{

r[0] = a[0] & b[0];

r[1] = (a[0] & b[1]) ^ (a[1] & b[0]);

r[2] = (a[0] & b[2]) ^ (a[1] & b[1]) ^ (a[2] & b[0]);

r[3] = (a[0] & b[3]) ^ (a[1] & b[2]) ^ (a[2] & b[1]) ^ (a[3] & b[0]);

r[4] = (a[1] & b[3]) ^ (a[2] & b[2]) ^ (a[3] & b[1]);

r[5] = (a[2] & b[3]) ^ (a[3] & b[2]);

r[6] = (a[3] & b[3]);

}
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Bitslicing issues

◮ XOR, AND, OR, etc are usually fast (e.g., 3 128-bit operations per
cycle on Intel Core 2)

◮ Can be very fast for operations that are not natively supported (like
arithmetic in binary fields)

◮ Active data set increases massively (e.g., 128×)

◮ For “normal” vector operations, register space is increased
accordingly (e.g, 16 256-bit vector registers vs. 16 64-bit integer
registers)

◮ For bitslicing: Need to fit more data into the same registers

◮ Typical consequence: more loads and stores (that easily become the
performance bottleneck)
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