Cryptographic Engineering Multiprecision arithmetic

Radboud University, Nijmegen, The Netherlands

Spring 2019

Multiprecision arithmetic in crypto

- Asymmetric cryptography heavily relies on arithmetic on "big integers"
- Example 1: RSA-2048 needs (modular) multiplication and squaring of 2048-bit numbers
- Example 2:
 - Elliptic curves defined over finite fields
 - Typically use EC over large-characteristic prime fields
 - ▶ Typical field sizes: (160 bits, 192 bits), 256 bits, 448 bits ...
- ▶ Example 3: Poly1305 needs arithmetic on 130-bit integers
- An integer is "big" if it's not natively supported by the machine architecture
- Example: AMD64 supports up to 64-bit integers, multiplication produces 128-bit result, but not bigger than that.
- ▶ We call arithmetic on such "big integers" multiprecision arithmetic
- \blacktriangleright For now mainly interested in $160\mbox{-bit}$ and $256\mbox{-bit}$ arithmetic
- ► Example architecture for today (most of the time): AVR ATmega

The first year of primary school

Available numbers (digits): (0), 1, 2, 3, 4, 5, 6, 7, 8, 9

Addition	Subtraction
3 + 5 = ?	7 - 5 = ?
2 + 7 = ?	5 - 1 = ?
4 + 3 = ?	9 - 3 = ?

- All results are in the set of available numbers
- No confusion for first-year school kids

Programming today

Available numbers: $0, 1, \ldots, 255$

Addition	Subtraction
uint8_t a = $42;$	uint8_t a = 157;
uint8_t b = 89;	uint8_t b = $23;$
$uint8_t r = a + b;$	uint8_t $r = a - b;$

- All results are in the set of available numbers
- Larger set of available numbers: uint16_t, uint32_t, uint64_t
- Basic principle is the same; for the moment stick with uint8_t

Still in the first year of primary school

Crossing the ten barrier

6+5 = ?9+7 = ?4+8 = ?

- Inputs to addition are still from the set of available numbers
- Results are allowed to be larger than 9
- Addition is allowed to produce a carry

What happens with the carry?

- Introduce the decimal positional system
- Write an integer A in two digits a_1a_0 with

$$A = 10 \cdot a_1 + a_0$$

• Note that at the moment
$$a_1 \in \{0, 1\}$$

... back to programming

```
uint8_t a = 184;
uint8_t b = 203;
uint8_t r = a + b;
```

- ▶ The result r now has the value of 131
- The carry is lost, what do we do?
- Could cast to uint16_t, uint32_t etc., but that solves the problem only for this uint8_t example
- We really want to obtain the carry, and put it into another uint8_t

The AVR ATmega

- 8-bit RISC architecture
- ▶ 32 registers R0...R31, some of those are "special":
 - (R26,R27) aliased as X
 - (R28,R29) aliased as Y
 - (R30,R31) aliased as Z
 - X, Y, Z are used for addressing
 - 2-byte output of a multiplication always in R0, R1
- Most arithmetic instructions cost 1 cycle
- Multiplication and memory access takes 2 cycles

184 + 203

LDI R5, 184 LDI R6, 203 ADD R5, R6 ; result in R5, sets carry flag CLR R6 ; set R6 to zero ADC R6,R6 ; add with carry, R6 now holds the carry

Later in primary school

Addition

42 + 78 = ?789 + 543 = ?7862 + 5275 = ? Once school kids can add beyond 1000, they can add arbitrary numbers

Multiprecision addition is old

"Oh Līlāvatī, intelligent girl, if you understand addition and subtraction, tell me the sum of the amounts 2, 5, 32, 193, 18, 10, and 100, as well as [the remainder of] those when subtracted from 10000."

—"Līlāvatī" by Bhāskara (1150)

AVR multiprecision addition...

- ▶ Add two *n*-byte numbers, returning an n + 1 byte result:
- Input pointers X,Y, output pointer Z

LD R5,X+ LD R6,Y+ ADD R5,R6 ST Z+,R5	LD R5,X+ LD R6,Y+ ADC R5,R6 ST Z+,R5	CLR R5 ADC R5,R5 ST Z+,R5
LD R5,X+ LD R6,Y+ ADC R5,R6 ST Z+,R5	LD R5,X+ LD R6,Y+ ADC R5,R6 ST Z+,R5	

. . .

... and subtraction

- Subtract two *n*-byte numbers, returning an n + 1 byte result:
- Input pointers X,Y, output pointer Z
- Use highest byte = -1 to indicate negative result

LD R5,X+	LD R5,X+	CLR R5
LD R6,Y+ SUB R5,R6	LD R6,Y+ SBC R5,R6	SBC R5,R5 ST Z+,R5
ST Z+,R5	ST Z+,R5	
LD R5,X+	LD R5,X+	
LD R6,Y+	LD R6,Y+	
SBC R5,R6	SBC R5,R6	
ST Z+,R5	ST Z+,R5	

. . .

How about multiplication?

• Consider multiplication of 1234 by 789

$1234 \cdot 789$	$1234 \cdot 789$	$1234 \cdot 789$
6	06	106
$1234 \cdot 789$	$1234 \cdot 789$	$1234 \cdot 789$
11106	11106	11106
	9872	9872
		8638
$1234\cdot 789$		
11106		
+ 9872		
+ 8638		
973626		
$1234\cdot789$	$1234 \cdot 789$	$1234\cdot789$
11106	11106	20978
	+ 9872	

Let's do that on the AVR

LD R2, X+	LD R7, Y+	LD R7, Y+	ST Z+,R10
LD R3, X+			ST Z+,R11
LD R4, X+	MUL R2,R7	MUL R2,R7	ST Z+,R12
	MOVW R12,RO	MOVW R12,RO	
LD R7, Y+			
	MUL R3,R7	MUL R3,R7	
MUL R2,R7	ADD R13,RO	ADD R13,R0	
ST Z+,RO	CLR R14	CLR R14	
MOV R8,R1	ADC R14,R1	ADC R14,R1	
MUL R3,R7	MUL R4,R7	MUL R4,R7	
ADD R8,R0	ADD R14,RO	ADD R14,R0	
CLR R9	CLR R15	CLR R15	
ADC R9,R1	ADC R15,R1	ADC R15,R1	
MUL R4,R7	ADD R8,R12	ADC R9,R12	
ADD R9,R0	ST Z+,R8	ST Z+,R9	
CLR R10	ADC R9,R13	ADC R10,R13	
ADC R10,R1	ADC R10,R14	ADC R11,R14	
	CLR R11	CLR R12	
	ADC R11,R15	ADC R12,R15	

▶ Problem: Need 3n + c registers for $n \times n$ -byte multiplication

• Can add on the fly, get down to 2n + c, but more carry handling

Can we do better?

"Again as the information is understood, the multiplication of 2345 by 6789 is proposed; therefore the numbers are written down; the 5 is multiplied by the 9, there will be 45; the 5 is put, the 4 is kept; and the 5 is multiplied by the 8, and the 9 by the 4 and the products are added to the kept 4; there will be 80; the 0 is put and the 8 is kept; and the 5 is multiplied by the 7 and the 9 by the 2 and the 4 by the 8, and the products are added to the kept 102; the 2 is put and the 10 is kept in hand..."

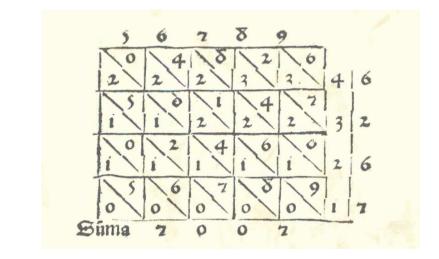
From "Fibonacci's Liber Abaci" (1202) Chapter 2 (English translation by Sigler)

$\label{eq:product scanning on the AVR} Product \ \text{scanning on the AVR}$

LD R2, X+	MUL R2, R9	MUL R3, R9
LD R3, X+	ADD R14, RO	ADD R15, RO
LD R4, X+	ADC R15, R1	ADC R16, R1
LD R7, Y+	ADC R16, R5	ADC R17, R5
LD R8, Y+	MUL R3, R8	MUL R4, R8
LD R9, Y+	ADD R14, RO	ADD R15, RO
	ADC R15, R1	ADC R16, R1
	ADC R16, R5	ADC R17, R5
MUL R2, R7	MUL R4, R7	STD Z+3, R15
MOV R13, R1	ADD R14, RO	
STD Z+0, RO	ADC R15, R1	MUL R4, R9
CLR R14	ADC R16, R5	ADD R16, RO
CLR R15	STD Z+2, R14	ADC R17, R1
	CLR R17	STD Z+4, R16
MUL R2, R8		
ADD R13, RO		STD Z+5, R17
ADC R14, R1		
MUL R3, R7		
ADD R13, RO		
ADC R14, R1		
ADC R15, R5		
STD Z+1, R13		

CLR R16

Even better...?



From the Treviso Arithmetic, 1478 (http://www.republicaveneta. com/doc/abaco.pdf)

Hybrid multiplication

- Idea: Chop whole multiplication into smaller blocks
- Compute each of the smaller multiplications by schoolbook
- Later add up to the full result
- See it as two nested loops:
 - Inner loop performs operand scanning
 - Outer loop performs product scanning
- Originally proposed by Gura, Patel, Wander, Eberle, Chang Shantz, 2004
- ▶ Various improvements, consider 160-bit multiplication:
 - ▶ Originally: 3106 cycles
 - Uhsadel, Poschmann, Paar (2007): 2881 cycles
 - ▶ Scott, Szczechowiak (2007): 2651 cycles
 - ▶ Kargl, Pyka, Seuschek (2008): 2593 cycles

Operand-caching multiplication

- Hutter, Wenger, 2011: More efficient way to decompose multiplication
- Inside separate chunks use product-scanning
- Main idea: re-use values in registers for longer
- Performance:
 - ▶ 2393 cycles for 160-bit multiplication
 - ▶ 6121 cycles for 256-bit multiplication
- ▶ Followup-paper by Seo and Kim: "Consecutive operand caching":
 - ▶ 2341 cycles for 160-bit multiplication
 - ▶ 6115 cycles for 256-bit multiplication

Multiplication complexity

- ▶ So far, multiplication of 2 n-byte numbers needs n^2 MULs
- Kolmogorov conjectured 1952: You can't do better, multiplication has quadratic complexity
- ▶ Proven wrong by 23-year old student Karatsuba in 1960
- ▶ Idea: write $A \cdot B$ as $(A_0 + 2^m A_1)(B_0 + 2^m B_1)$ for half-size A_0, B_0, A_1, B_1
- Compute

 $A_0B_0 + 2^m(A_0B_1 + B_0A_1) + 2^{2m}A_1B_1$ = $A_0B_0 + 2^m((A_0 + A_1)(B_0 + B_1) - A_0B_0 - A_1B_1) + 2^{2m}A_1B_1$

• Recursive application yields $\Theta(n^{\log_2 3})$ runtime

Does that help on the AVR?

The straight-forward approach

Consider multiplication of *n*-byte numbers

$$A \stackrel{\circ}{=} (a_0, \dots, a_{n-1})$$
 and
 $B \stackrel{\circ}{=} (b_0, \dots, b_{n-1})$

• Compute
$$L = A_{\ell} \cdot B_{\ell} \stackrel{\circ}{=} (\ell_0, \dots, \ell_{n-1})$$

• Compute
$$H = A_h \cdot B_h \stackrel{\circ}{=} (h_0, \dots, h_{n-1})$$

- ▶ Compute $M = (A_{\ell} + A_h) \cdot (B_{\ell} + B_h) \stackrel{\circ}{=} (m_0, \dots, m_n)$
- ▶ Obtain result as $A \cdot B = L + 2^{8k}(M L H) + 2^{8n}H$

Multiplication by the carry in M

- Can expand carry to 0xff or 0x00
- Use AND instruction for multiplication
- Does not help for recursive Karatsuba

Subtractive Karatsuba

- Compute $L = A_{\ell} \cdot B_{\ell} \stackrel{\circ}{=} (\ell_0, \dots, \ell_{n-1})$
- Compute $H = A_h \cdot B_h \stackrel{\circ}{=} (h_0, \dots, h_{n-1})$
- Compute $M = |A_{\ell} A_h| \cdot |B_{\ell} B_h| = (m_0, \dots, m_{n-1})$
- ▶ Set t = 0, if $M = (A_{\ell} A_h) \cdot (B_{\ell} B_h)$; t = 1 otherwise
- Compute $\hat{M} = (-1)^t M = (A_\ell A_h)(B_\ell B_h)$ = $(\hat{m}_0, \dots, \hat{m}_{n-1})$
- Obtain result as $A \cdot B = L + 2^{8k}(L + H \hat{M}) + 2^{8n}H$

Conditional negation

The easy solution

if(b) a = -a

- NEG instruction does not help for multiprecision
- Can subtract from zero, but subtraction would overwrite zero
- Even worse, the if would create a timing side-channel!

The constant-time solution

- Produce condition bit as byte 0xff or 0x00
- XOR all limbs with this condition byte
- Negate the condition byte and obtain 0x01 or 0x00
- Add this value to the lowest byte
- Ripple through the carry (ADC with zero)

Conditional negation

The easy solution

if(b) a = -a

- NEG instruction does not help for multiprecision
- Can subtract from zero, but subtraction would overwrite zero
- Even worse, the if would create a timing side-channel!

The constant-time solution

- Produce condition bit as byte 0xff or 0x00
- XOR all limbs with this condition byte
- Don't negate the condition byte
- Subtract the condition byte (0xff or 0x00 from all bytes)
- Saves two NEG instructions and the zero register

Refined Karatsuba

► Consider example of 4×4-byte Karatsuba multiplication:



- Karatsuba performs some additions twice
- Refined Karatsuba: do them only once
- Merge additions into computation of H
- Compute $\mathbf{H} \stackrel{.}{=} (\mathbf{h_0}, \mathbf{h_1}, \mathbf{h_2}, \mathbf{h_3}) = H + (l_2, l_3)$
- Note that H cannot "overflow"

Putting it together

Arithmetic cost of n-byte Karatsuba on AVR

- Cost of computing L, M, and \mathbf{H}
- ▶ 4k + 2 SUB/SBC, 2k EOR for absolute differences
- ▶ n+1 ADD/ADC to add $(l_0, \ldots, l_{k-1}, \mathbf{h_k}, \ldots, \mathbf{h_{n-1}})$
- One EOR to compute t
- ▶ A BRNE instruction to branch, then either
 - ▶ n + 2 SUB/SBC instructions and one RJMP, or
 - ▶ n+1 ADD/ADC, one CLR, and one NOP
- k ADD/ADC instructions to ripple carry to the end

$48\text{-bit}\ \mathrm{Karatsuba}\ \mathrm{on}\ \mathrm{AVR}$

CLR R22	MUL R3, R7	LD R14, X+	EOR R2, R26	MUL R14, R1
CLR R23	MOVW R14, RO	LD R15, X+	EOR R3, R26	MOVW R24, R
MOVW R12, R22	MUL R3, R5	LD R16, X+	EOR R4, R26	MUL R14, R1
MOVW R20, R22	ADD R9, RO	LDD R17, Y+3	EOR R5, R27	ADD R11, RO
	ADC R10, R1	LDD R18, Y+4	EOR R6, R27	ADC R12, R1
LD R2, X+	ADC R11, R14	LDD R19, Y+5	EOR R7, R27	ADC R13, R2
LD R3, X+	ADC R15, R23			ADC R25, R2
LD R4, X+	MUL R3, R6	SUB R2, R14	SUB R2, R26	MUL R14, R1
LDD R5, Y+O	ADD R10, RO	SBC R3, R15	SBC R3, R26	ADD R12, RO
LDD R6, Y+1	ADC R11, R1	SBC R4, R16	SBC R4, R26	ADC R13, R1
LDD R7, Y+2	ADC R12, R15	SBC R26, R26	SUB R5, R27	ADC R20, R2
			SBC R6, R27	
MUL R2, R7	MUL R4, R7	SUB R5, R17	SBC R7, R27	MUL R15, R1
MOVW R10, RO	MOVW R14, RO	SBC R6, R18		MOVW R24, R
MUL R2, R5	MUL R4, R5	SBC R7, R19		MUL R15, R1
MOVW R8, RO	ADD R10, RO	SBC R27, R27		ADD R12, RO
MUL R2, R6	ADC R11, R1			ADC R13, R1
ADD R9, RO	ADC R12, R14			ADC R20, R2
ADC R10, R1	ADC R15, R23			ADC R25, R2
ADC R11, R23	MUL R4, R6			MUL R15, R1
	ADD R11, RO			ADD R13, RO
	ADC R12, R1			ADC R20, R1
	ADC R13, R15			ADC R21, R2
	STD Z+O, R8			
	STD Z+1, R9			
	STD Z+2, R10			

Larger Karatsuba multiplication

- ▶ 48-bit Karatsuba is friendly; everything fits into registers
- Remember that previous speed records were achieved by eliminating loads/stores
- Karatsuba structure needs additional temporary storage
- Good performance needs careful scheduling and register allocation
- ▶ Very important is to compute $\mathbf{H} = H + (l_{k+1}, \dots, l_{n-1})$ on the fly
- ▶ Use 1-level Karatsuba for 48-bit, 64-bit, 80-bit, 96-bit inputs
- ▶ Use 2-level Karatsuba for 128-bit, 160-bit, 192-bit inputs
- Use 3-level Karatsuba for 256-bit inputs

Results

Cycle counts for n-bit multiplication

	Input size n							
Approach	48	64	80	96	128	160	192	256
Product scanning:	235	395	595	836	_	_	_	_
Hutter, Wenger, 2011:	_	_			_	2393	3467	6121
Seo, Kim, 2012:	_	—		_	1532	2356	3464	6180
Seo, Kim, 2013:	_	—		_	1523	2341	3437	6115
Karatsuba:	217	360	522	780	1325	1976	2923	4797
— w/o branches:	222	368	533	800	1369	2030	2987	4961

▶ 160-bit multiplication now > 18% faster

▶ 256-bit multiplication now > 23% faster

From 8-bit to 64-bit processors

Main differences (for us)

- ▶ Arithmetic on larger (64-bit) integers
- Arithmetic on floating-point numbers
- Pipelined and superscalar execution
- (Arithmetic on vectors)

$\mathsf{Radix}-2^{64}$ representation

- \blacktriangleright Let's consider representing 255-bit integers
- Obvious choice: use 4 64-bit integers a_0, a_1, a_2, a_3 with

$$A = \sum_{i=0}^{3} a_i 2^{64i}$$

Arithmetic works just as before (except with larger registers)

$\mathsf{Radix}-2^{51}$ representation

- \blacktriangleright Radix-2⁶⁴ representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries
- ► Example 1: Intel Nehalem can do 3 additions every cycle, but only 1 addition with carry every two cycles (carries cost a factor of 6!)
- Example 2: When using vector arithmetic, carries are typically lost (very expensive to recompute)
- Let's get rid of the carries, represent A as $(a_0, a_1, a_2, a_3, a_4)$ with

$$A = \sum_{i=0}^{4} a_i 2^{51 \cdot i}$$

- This is called radix- 2^{51} representation
- Multiple ways to write the same integer A, for example $A = 2^{52}$:
 - $\blacktriangleright (2^{52}, 0, 0, 0, 0)$
 - (0, 2, 0, 0, 0)

▶ Let's call a representation $(a_0, a_1, a_2, a_3, a_4)$ reduced, if all $a_i \in [0, ..., 2^{52} - 1]$

Addition of two bigint255

```
typedef struct{
   unsigned long long a[5];
} bigint255;
void bigint255_add(bigint255 *r,
                             const bigint255 *x,
                             const bigint255 *y)
ł
   r - a[0] = x - a[0] + y - a[0];
   r \rightarrow a[1] = x \rightarrow a[1] + y \rightarrow a[1];
   r \rightarrow a[2] = x \rightarrow a[2] + y \rightarrow a[2];
   r \rightarrow a[3] = x \rightarrow a[3] + y \rightarrow a[3];
   r \rightarrow a[4] = x \rightarrow a[4] + y \rightarrow a[4];
}
```

- This definitely works for reduced inputs
- ▶ This actually works as long as all coefficients are in $[0, \ldots, 2^{63} 1]$
- ▶ We can do quite a few additions before we have to carry (reduce)

Subtraction of two bigint255

```
typedef struct{
   signed long long a[5];
} bigint255;
void bigint255_sub(bigint255 *r,
                               const bigint255 *x,
                               const bigint255 *v)
ł
   r \rightarrow a[0] = x \rightarrow a[0] - y \rightarrow a[0];
   r \rightarrow a[1] = x \rightarrow a[1] - y \rightarrow a[1];
   r \rightarrow a[2] = x \rightarrow a[2] - y \rightarrow a[2];
   r \rightarrow a[3] = x \rightarrow a[3] - y \rightarrow a[3];
   r \rightarrow a[4] = x \rightarrow a[4] - y \rightarrow a[4];
}
```

 Slightly update our bigint255 definition to work with signed 64-bit integers

• Reduced if coefficients are in $[-2^{52}+1, 2^{52}-1]$

Carrying in radix- 2^{51}

- \blacktriangleright With many additions, coefficients may grow larger than 63 bits
- They grow even faster with multiplication
- Eventually we have to carry en bloc:

```
signed long long carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= 51;
r.a[0] -= carry;
```

Big integers and polynomials

- ► Note: Addition code would look *exactly* the same for 5-coefficient polynomial addition
- This is no coincidence: We actually perform arithmetic in $\mathbb{Z}[x]$
- Inputs to addition are 5-coefficient polynomials
- ▶ Nice thing about arithmetic in Z[x]: no carries!
- ► To go from Z[x] to Z, evaluate at the radix (this is a ring homomorphism)
- Carrying means evaluating at the radix
- Thinking of multiprecision integers as polynomials is very powerful for efficient arithmetic

Using floating-point limbs

- On some microarchitectures floating-point arithmetic is much faster than integer arithmetic
- An IEEE-754 floating-point number has value

 $(-1)^{s} \cdot (1.b_{m-1}b_{m-2}\dots b_0) \cdot 2^{e-t}$ with $b_i \in \{0,1\}$

- For double-precision floats:
 - ▶ $s \in \{0, 1\}$ "sign bit"
 - m = 52 "mantissa bits"
 - $e \in \{1, ..., 2046\}$ "exponent"
 - ▶ t = 1023
- For single-precision floats:
 - ▶ $s \in \{0, 1\}$ "sign bit"
 - ▶ m = 23 "mantissa bits"
 - ▶ $e \in \{1, \dots, 254\}$ "exponent"
 - ▶ t = 127
- Exponent = 0 used to represent 0
- Any number that can be represented like this, will be precise
- > Other numbers will be *rounded*, according to a rounding mode

Addition and subtraction

```
typedef struct{
  double a[12];
} bigint255;
void bigint255_add(bigint255 *r,
                     const bigint255 *x,
                     const bigint255 *y)
{
  int i;
  for(i=0;i<12;i++)</pre>
    r - a[i] = x - a[i] + y - a[i];
}
void bigint255_sub(bigint255 *r,
                     const bigint255 *x,
                     const bigint255 *y)
Ł
  int i;
  for(i=0;i<12;i++)</pre>
    r - a[i] = x - a[i] - y - a[i];
}
```

Carrying

- ► For carrying integers we used a right shift (discard lowest bits)
- For floating-point numbers we can use multiplication by the inverse of the radix
- Example: Radix 2^{22} , multiply by 2^{-22}
- This does not cut off lowest bits, need to round
- Some processors have efficient rounding instructions, e.g., vroundpd
- Otherwise (for double-precision):
 - add constant $2^{52} + 2^{51}$
 - subtract constant $2^{52} + 2^{51}$
 - This will round the number to an integer according to the rounding mode (to nearest, towards zero, away from zero, or truncate)