
Cryptographic Engineering
Multiprecision arithmetic II and ECC

Radboud University, Nijmegen, The Netherlands

Spring 2019

Where were we...?

◮ Last lecture: arithmetic on big integers

◮ Conclusion at the end:
◮ Can use a redundant representation for big integers
◮ Carries get accumulated in “unused” upper parts of registers
◮ Arithmetic becomes essentially polynomial arithmetic
◮ Need to carry en bloc whenever coefficients become too large

2

Example: product-scanning multiplication

/* 256-bit integers in radix 2^16 */

typedef signed long long bigint[16];

void mul_prodscan(signed long long r[31],

const bigint x,

const bigint y)

{

r[0] = x[0] * y[0];

r[1] = x[1] * y[0];

r[1] += x[0] * y[1];

r[2] = x[2] * y[0];

r[2] += x[1] * y[1];

r[2] += x[0] * y[2];

...

r[29] = x[15] * y[14];

r[29] += x[14] * y[15];

r[30] = x[15] * y[15];

}

3

Modular reduction

◮ We don’t just need arithmetic on big integers

◮ We need arithmetic in finite fields

◮ In other words, we need reduction modulo a prime p

◮ Let’s fix some p, say p = 2255 − 19

◮ We know that 2255 ≡ 19 (mod p)

◮ This means that 2256 ≡ 38 (mod p)

◮ Reduce 31-bit intermediate result r as follows:

for(i=0;i<15;i++)

r[i] += 38*r[i+16];

◮ Result is in r[0],. . . ,r[15]

4

Primes are not rabbits

◮ “You cannot just simply pull some nice prime out of your hat!”

◮ In fact, very often we can.

◮ For cryptography we construct curves over fields of “nice” order

◮ Examples:
◮ 2192 − 264 − 1 (“NIST-P192”, FIPS186-2, 2000)
◮ 2224 − 296 + 1 (“NIST-P224”, FIPS186-2, 2000)
◮ 2256 − 2224 + 2192 + 296 − 1 (“NIST-P256”, FIPS186-2, 2000)
◮ 2255 − 19 (Bernstein, 2006)
◮ 2251 − 9 (Bernstein, Hamburg, Krasnova, Lange, 2013)
◮ 2448 − 2224 − 1 (Hamburg, 2015)

◮ All these primes come with (more or less) fast reduction algorithms

◮ More about general primes later

◮ For the moment let’s stick to 2255 − 19

5

Carrying after multiplication

long long c;

for(i=0;i<15;i++)

{

c = r[i] >> 16;

r[i+1] += c;

c <<= 16;

r[i] -= c;

}

c = r[15] >> 16;

r[0] += 38*c;

c <<= 16;

r[15] -= c;

◮ Coefficient r[0] may still be too large: carry again to r[1]

6

How about squaring?

#define bigint_square(R,X) bigint_mul(R,X,X)

7

How about squaring?

/* 256-bit integers in radix 2^16 */

typedef signed long long bigint[16];

void square_prodscan(signed long long r[31],

const bigint x)

{

r[0] = x[0] * x[0];

r[1] = x[1] * x[0];

r[1] += x[0] * x[1];

r[2] = x[2] * x[0];

r[2] += x[1] * x[1];

r[2] += x[0] * x[2];

...

r[29] = x[15] * x[14];

r[29] += x[14] * x[15];

r[30] = x[15] * x[15];

}

7

How about squaring?

/* 256-bit integers in radix 2^16 */

typedef signed long long bigint[16];

void square_prodscan(signed long long r[31],

const bigint x)

{

signed long long _2x[16];

int i;

for(i=0;i<16;i++)

_2x[i] = 2*x[i];

r[0] = x[0] * x[0];

r[1] = _2x[1] * x[0];

r[2] = _2x[2] * x[0];

r[2] += x[1] * x[1];

...

r[29] = _2x[15] * x[14];

r[30] = x[15] * x[15];

}
7

Squaring vs. multiplication

Multiplication needs

◮ 256 multiplications

◮ 225 additions

Squaring needs

◮ 136 multiplications

◮ 105 additions

◮ 15 additions or shifts or multiplications by 2 for precomputation

8

How about other prime fields?

◮ So far: reductions only modulo “nice” primes

◮ What if somebody just throws an ugly prime at you?
◮ Example: German BSI is pushing the “Brainpool curves”, over fields

Fp with

p224 =2272162293245435278755253799591092807334073\

2145944992304435472941311

=0xD7C134AA264366862A18302575D1D787B09F07579\

7DA89F57EC8C0FF

or

p256 =7688495639704534422080974662900164909303795\

0200943055203735601445031516197751

=0xA9FB57DBA1EEA9BC3E660A909D838D726E3BF623D\

52620282013481D1F6E5377

◮ Another example: Pairing-friendly curves are typically defined over
fields Fp where p has some structure, but hard to exploit for fast
arithmetic

9

Montgomery representation

◮ We have the following problem:
◮ We multiply two n-limb big integers and obtain a 2n-limb result t
◮ We need to find t mod p

◮ Idea: Perform big-integer division with remainder (expensive!)

◮ Better idea (Montgomery, 1985):
◮ Let R be such that gcd(R,p) = 1 and t < p ·R
◮ Represent an element a of Fp as aR mod p
◮ Multiplication of aR and bR yields t = abR2 (2n limbs)
◮ Now compute Montgomery reduction: tR−1 mod p
◮ For some choices of R this is more efficient than division
◮ Typical choice for radix-b representation: R = bn

10

Montgomery reduction (pseudocode)

Require: p = (pn−1, . . . , p0)b with gcd(p, b) = 1, R = bn,
p′ = −p−1 mod b and t = (t2n−1, . . . , t0)b

Ensure: tR−1 mod p
A← t
for i from 0 to n− 1 do

u← aip
′ mod b

A← A+ u · p · bi

end for

A← A/bn

if A ≥ p then

A← A− p
end if

return A

11

Some notes about Montgomery reduction

◮ Some cost for transforming to Montgomery representation and back

◮ Only efficient if many operations are performed in Montgomery
representation

◮ The algorithms takes n2 + n multiplication instructions

◮ n of those are “shortened” multiplications (modulo b)

◮ The cost is roughly the same as schoolbook multiplication

◮ Careful about conditional subtraction (timing attacks!)

◮ One can merge schoolbook multiplication with Montgomery
reduction: “Montgomery multiplication”

12

Still missing: inversion

◮ Inversion is typically much more expensive than multiplication

◮ Efficient ECC arithmetic avoids frequent inversions

◮ ECC can typically not avoid all inversions

◮ We need inversion, but we do (usually) not need it often

◮ Two approaches to inversion:

1. Extended Euclidean algorithm
2. Fermat’s little theorem

13

Extended Euclidean algorithm

◮ Given two integers a, b, the Extended Euclidean algorithm finds
◮ The greatest common divisor of a and b
◮ Integers u and v, such that a · u+ b · v = gcd(a, b)

◮ It is based on the observation that

gcd(a, b) = gcd(b, a− qb) ∀q ∈ Z

◮ To compute a−1 (mod p), use the algorithm to compute

a · u+ p · v = gcd(a, p) = 1

◮ Now it holds that u ≡ a−1 (mod p)

14

Extended Euclidean algorithm (pseudocode)

Require: Integers a and b.
Ensure: An integer tuple (u, v, d) satisfying a · u+ b · v = d = gcd(a, b)
u← 1
v ← 0
d← a
v1 ← 0
v3 ← b
while (v3 6= 0) do

q ← ⌊ d
v3
⌋

t3 ← d mod v3
t1 ← u− qv1
u← v1
d← v3
v1 ← t1
v3 ← t3

end while

v ← d−au
b

return (u, v, d)

15

Some notes about the Extended Euclidean algorithm

◮ Core operation are divisions with remainder

◮ This lecture: no details about big-integer division

◮ Version without divisions: binary extended gcd:

Handbook of applied cryptography, Alg. 14.61

◮ The running time (number of loop iterations) depends on the inputs

◮ We usually do not want this for cryptography (timing attacks!)

◮ Possible protection: blinding
◮ Multiply a by random integer r
◮ Invert, obtain r−1a−1

◮ Multiply again by r to obtain a−1

◮ Note that this requires a source of randomness

16

http://cacr.uwaterloo.ca/hac/

Fermat’s little theorem

Theorem
Let p be prime. Then for any integer a it holds that ap−1 ≡ 1 (mod p)

◮ This implies that ap−2 ≡ a−1 (mod p)

◮ Obvious algorithm for inversion: Exponentiation with p− 2

◮ The exponent is quite large (e.g., 255 bits), is that efficient?

◮ Yes, fairly:
◮ Exponent is fixed and known at compile time
◮ Can spend quite some time on finding an efficient addition chain

(next lecture)
◮ Inversion modulo 2255 − 19 needs 254 squarings and 11

multiplications in F2255−19

17

Inversion in F2255−19

void gfe_invert(gfe r, const gfe x)

{

gfe z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t;

int i;

/* 2 */ gfe_square(z2,x);

/* 4 */ gfe_square(t,z2);

/* 8 */ gfe_square(t,t);

/* 9 */ gfe_mul(z9,t,x);

/* 11 */ gfe_mul(z11,z9,z2);

/* 22 */ gfe_square(t,z11);

/* 2^5 - 2^0 = 31 */ gfe_mul(z2_5_0,t,z9);

/* 2^6 - 2^1 */ gfe_square(t,z2_5_0);

/* 2^10 - 2^5 */ for (i = 1;i < 5;i++) { gfe_square(t,t); }

/* 2^10 - 2^0 */ gfe_mul(z2_10_0,t,z2_5_0);

/* 2^11 - 2^1 */ gfe_square(t,z2_10_0);

/* 2^20 - 2^10 */ for (i = 1;i < 10;i++) { gfe_square(t,t); }

/* 2^20 - 2^0 */ gfe_mul(z2_20_0,t,z2_10_0);

/* 2^21 - 2^1 */ gfe_square(t,z2_20_0);

/* 2^40 - 2^20 */ for (i = 1;i < 20;i++) { gfe_square(t,t); }

/* 2^40 - 2^0 */ gfe_mul(t,t,z2_20_0);

18

Inversion in F2255−19

/* 2^41 - 2^1 */ gfe_square(t,t);

/* 2^50 - 2^10 */ for (i = 1;i < 10;i++) { gfe_square(t,t); }

/* 2^50 - 2^0 */ gfe_mul(z2_50_0,t,z2_10_0);

/* 2^51 - 2^1 */ gfe_square(t,z2_50_0);

/* 2^100 - 2^50 */ for (i = 1;i < 50;i++) { gfe_square(t,t); }

/* 2^100 - 2^0 */ gfe_mul(z2_100_0,t,z2_50_0);

/* 2^101 - 2^1 */ gfe_square(t,z2_100_0);

/* 2^200 - 2^100 */ for (i = 1;i < 100;i++) { gfe_square(t,t); }

/* 2^200 - 2^0 */ gfe_mul(t,t,z2_100_0);

/* 2^201 - 2^1 */ gfe_square(t,t);

/* 2^250 - 2^50 */ for (i = 1;i < 50;i++) { gfe_square(t,t); }

/* 2^250 - 2^0 */ gfe_mul(t,t,z2_50_0);

/* 2^251 - 2^1 */ gfe_square(t,t);

/* 2^252 - 2^2 */ gfe_square(t,t);

/* 2^253 - 2^3 */ gfe_square(t,t);

/* 2^254 - 2^4 */ gfe_square(t,t);

/* 2^255 - 2^5 */ gfe_square(t,t);

/* 2^255 - 21 */ gfe_mul(r,t,z11);

}

18

Multiprecision libraries

◮ Why would you write low-level arithmetic yourself?

◮ Aren’t there some good libraries for this?

◮ There are:
◮ GMP (http://gmplib.org), high-performance arithmetic on

multiprecision numbers
◮ NTL (http://shoup.net/ntl/), number-theory library, higher level

than GMP, uses GMP
◮ OpenSSL Bignum (http://openssl.org), low-level routines in

OpenSSL
◮ mpFq (http://mpfq.gforge.inria.fr/), a finite-field library

(generator)

19

http://gmplib.org
http://shoup.net/ntl/
http://openssl.org
http://mpfq.gforge.inria.fr/

Limitations of libraries

◮ Libraries don’t know the modulus (except for mpFq), cannot
optimize for a fixed modulus

◮ Libraries don’t know the sequence of field operations you’re
computing (e.g., point addition), cannot use lazy reduction

◮ Libraries are not always timing-attack protected

◮ Consequence: ECC speed records are achieved with hand-optimized
assembly implementations

20

Part II

Elliptic-curve cryptography
from a crypto-engineering perspective

21

Diffie-Hellman
◮ Let G be a cyclic, finite, abelian Group (written additively) and let

P be a generator of G
◮ Alice chooses random a ∈ {0, . . . , |G| − 1}, computes aP , sends to

Bob
◮ Bob chooses random b ∈ {0, . . . , |G| − 1}, computes bP , sends to

Alice
◮ Alice computes joint key a(bP)
◮ Bob computes joint key b(aP)
◮ DLP in G: given kP ∈ G and P , find k
◮ Solving the DLP breaks security of Diffie-Hellman

Groups with hard DLP

◮ Traditional answer: Z∗

p with large prime-order subgroup

◮ Modern answer: Elliptic curve over Fq with large prime-order
subgroup

◮ Sophisticated answer (not in this lecture): hyperelliptic curves of
genus 2

22

Typical view on elliptic curves

Definition
Let K be a field and let a1, a2, a3, a4, a6 ∈ K. Then the following
equation defines an elliptic curve E:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

if the discriminant ∆ of E is not equal to zero. This equation is called
the Weierstrass form of an elliptic curve.

Characteristic 6= 2, 3

If char(K) 6= 2, 3 we can use a simplified equation:

E : y2 = x3 + ax+ b

Characteristic 2

If char(K) = 2 we can (usually) use a simplified equation:

E : y2 + xy = x3 + ax2 + b

23

Rational points

Setup for cryptography

◮ Choose K = Fq

◮ Consider the set of Fq-rational points:

E(Fq) = {(x, y) ∈ Fq×Fq : y
2+a1xy+a3y = x3+a2x

2+a4x+a6}∪{O}

◮ The element O is the “point at infinity”

◮ This set forms a group (together with addition law)

◮ Order of this group: |E(Fq)| ≈ |Fq|

24

The group law
Example curve: y2 = x3 − x over R

Addition of points

◮ Add points
P = (−0, 9;−0, 4135) and
Q = (−0, 1; 0, 3146)

◮ Compute line through the two
points

◮ Determine third intersection
T = (xT , yT) with the elliptic
curve

◮ Result of the addition:
P +Q = (xT ,−yT)

Graph of E over R

−1

−2

1

2

1−1−2

•

•

•

•

25

The group law
Example curve: y2 = x3 − x over R

Point doubling

◮ Double the point
P = (−0.7, 0.5975)

◮ Compute the tangent on P

◮ Determine second intersection
T = (xT , yT) with the elliptic
curve

◮ Result of the addition:
P +Q = (xT ,−yT)

Graph of E over R

−1

−2

1

2

1−1−2

•

•

•

26

Group law in formulas

Curve equation: y2 = x3 + ax+ b

Point addition

◮ P = (xP , yP), Q = (xQ, yQ)→ P +Q = R = (xR, yR) with

◮ xR =
(

yQ−yP

xQ−xP

)2

− xP − xQ

◮ yR =
(

yQ−yP

xQ−xP

)

(xP − xR)− yP

Point doubling

◮ P = (xP , yP), 2P = (xR, yR) with

◮ xR =
(

3x2

P+a

2yP

)2

− 2xP

◮ yR =
(

3x2

P+a

2yP

)

(xP − xR)− yP

27

More Weierstrass curve group law

◮ Neutral element is O

◮ Inverse of a point (x, y) is (x,−y)

◮ Note: Formulas don’t work for P + (−P), also don’t work for O

◮ Need to distinguish these cases!

◮ “Uniform” addition law in Hışıl’s Ph.D. thesis, Section 5.5.2
(http://eprints.qut.edu.au/33233/):

◮ Move special cases to other points
◮ Not safe to use on arbitrary input points!

◮ Formulas for curves over F2k look slightly different, but same special
cases

28

http://eprints.qut.edu.au/33233/

Finding a suitable curve

Security requirements for ECC

◮ ℓ = |E(Fq)| must have large prime-order subgroup

◮ For n bits of security we need 2n-bit prime-order subgroup

◮ Impossible to transfer DLP to less secure groups:
◮ ℓ must not be equal to q
◮ We need ℓ ∤ pk − 1 for small k

Finding a curve

◮ Fix finite field Fq of suitable size

◮ Fix curve parameter a (quite common: a = −3)

◮ Pick curve parameter b until E fulfills desired properties

◮ This requires efficient “point counting”

◮ This requires efficient factorization or primality proving

29

Standardized curves

“The nice thing about standards is that you have so many to
choose from. ” – Andrew S. Tanenbaum

◮ Various standardized curves, most well-known: NIST curves:
◮ Big-prime field curves with 192, 224, 256, 384, and 521 bits
◮ Binary curves with 163, 233, 283, 409, and 571 bits
◮ Binary Koblitz curves with 163, 233, 283, 409, and 571 bits

◮ SECG curves (Certicom), prime-field and binary curves

◮ Brainpool curves (BSI), only prime-field curves

◮ FRP256v1 (ANSSI), one prime-field curve (256 bits)

30

Binary vs. big prime

Curves over big-prime fields

◮ Many fields of a given size ⇒ many curves

◮ Efficient in software (can use hardware multipliers)

◮ Less efficient in hardware

Curves over binary fields

◮ Important for security: exponent k in Fpk has to be prime

◮ Not many fields (not that many curves)

◮ More efficient in hardware

◮ Efficient in software only on some microarchitectures

◮ A hell to implement securely in software on some other
microarchitectures

31

Putting it together

◮ Choose security level (e.g., 128 bits)

◮ Decide whether you want binary or big-prime field arithmetic, let’s
say big prime

◮ Pick corresponding standard curve, e.g., NIST-P256

◮ Implement field arithmetic

◮ Implement ECC addition and doubling

◮ Implement scalar multiplication (next lecture)

◮ You’re done with BAD (!) ECDH software

32

Problem I: inversions
Inversions

◮ Adding P = (xP , yP) and Q = (xQ, yQ) needs an inversion in Fq

◮ Inversions are expensive

◮ Constant-time inversions are even more expensive

Solution: projective coordinates

◮ Store fractions of elements of Fq, invert only once at the end

◮ Represent points in projective coordinates: P = (XP : YP : ZP)
with xP = XP /ZP and yP = YP /ZP

◮ The point (1 : 1 : 0) is the point at infinity

◮ Also possible: weighted projective coordinates:
◮ Jacobian coordinates: P = (XP : YP : ZP) with xP = XP /Z

2

P and
yP = YP/Z

3

P

◮ López-Dahab coordinates (for binary curves): P = (XP : YP : ZP)
with xP = XP /ZP and yP = YP/Z

2

P

◮ Important: Never send projective representation, always convert to
affine!

33

Problem II: group-law special cases

◮ Addition of P +Q needs to distinguish different cases:
◮ If P = O return Q
◮ Else if Q = O return P
◮ Else if P = Q call doubling routine
◮ Else if P = −Q return O

◮ Else use addition formulas

◮ Similar for doubling P :
◮ If P = O return P
◮ Else if yP = 0 return O

◮ Else use doubling formulas

◮ Constant-time implementations of this are horrible

◮ Good news: Can avoid the checks when computing k · P and
k < |E(Fq)|

◮ Bad news: Side-channel countermeasures use k > |E(Fq)|

◮ More bad news: Doesn’t work for multi-scalar multiplication (next
lecture)

◮ Baseline: simple implementations are likely to be wrong or insecure

34

Solution I: Montgomery ladder

◮ Use Montgomery curve: EM : By2 = x3 +Ax2 + x.

◮ Use x-coordinate-only differential addition chain (“Montgomery
ladder”, next lecture)

◮ Advantages:
◮ Works on all inputs, no special cases
◮ Very regular structure, easy to protect against timing attacks
◮ Point compression/decompression for free
◮ Easy to implement, harder to screw up in hard-to-detect ways
◮ Simple implementations are likely to be correct and secure

◮ Disadvantages:
◮ Not all curves can be converted to Montgomery shape
◮ Always have a cofactor of at least 4
◮ Ladders on general Weierstrass curves are much less efficient
◮ We only get the x coordinate of the result, tricky for signatures
◮ Can reconstruct y, but that involves some additional cost

35

Solution II: (twisted) Edwards curves

◮ Edwards, 2007: New form for elliptic curves (“Edwards curves”)

◮ Bernstein, Lange, 2007: very fast addition and doubling on these
curves

◮ Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to
“twisted Edwards curves”

◮ Core advantage of (twisted) Edwards curves: complete group law

◮ No need to handle special cases

◮ No “point at infinity” to work with

◮ Can speed up doubling, but addition formulas work for P + P

◮ Efficient (for cryptography) transformation from Weierstrass to
(twisted) Edwards only for some curves

◮ Always efficient: transformation between Montgomery curves and
twisted Edwards curves

◮ Again: simple implementations are likely to be correct and secure

◮ Disadvantage: always have a cofactor of at least 4

36

So, what’s the deal with the cofactor?

◮ Protocols need to be careful to avoid subgroup attacks

◮ Monero screwed this up, which allowed double-spending

◮ Elegant solution: “Ristretto” encoding by Hamburg, see: https://
github.com/otrv4/libgoldilocks

37

https://github.com/otrv4/libgoldilocks
https://github.com/otrv4/libgoldilocks

Solution III: Complete group law on Weierstrass curves

◮ Bosma, Lenstra, 1995: complete group law for Weierstrass curves

◮ Problem: Extremely inefficient

◮ Renes, Costello, Batina, 2016: Much faster complete group law for
Weierstrass curves

◮ Somewhat less efficient than (twisted) Edwards

◮ Covers all curves

38

Problem III: Wrong-curve attacks

ECDH attack scenario

◮ Alice sends point on different (insecure) curve with small subgroup

◮ Bob computes “shared key” in that small subgroup

◮ Alice learns “shared key” through brute force

◮ Alice learns Bob’s secret scalar modulo the order of the small
subgroup

Countermeasures

◮ Check that input point is on the curve (functional tests will miss
this!)

◮ Send compressed points (x, parity(y)); decompression returns (x, y)
on the curve or fails

◮ Send only x (Montgomery ladder); but: x could still be on the
“twist” of E

◮ Make sure that the twist is also secure (“twist security”)

39

Problem IV: Backdoors in standards?

“"I no longer trust the [NIST Elliptic Curves] constants. I
believe the NSA has manipulated them through their
relationships with industry.” – Bruce Schneier, 2013.

◮ It is pretty clear that NSA put a backdoor in Dual_EC_DRBG

◮ Constants of NIST curves have been obtained by hashing random
values

◮ No-backdoor claim: We know the preimages

◮ Possible attack if you know a class of vulnerable curves: Generate
random seeds until you have found a vulnerable (and seemingly
secure) curve

◮ Fact: There are no known insecurities of NIST curves

◮ Fact: There is no proof that there are no intentional vulnerabilities
in NIST curves

◮ For more details, see BADA55 elliptic curves

40

http://safecurves.cr.yp.to/bada55.html

Choosing a safe curve

Overview of various elliptic curves and thorough security analysis by
Bernstein and Lange:

https://safecurves.cr.yp.to

(doesn’t list cofactor-1 curves, so best to combine with Ristretto)

41

https://safecurves.cr.yp.to

Point representation and arithmetic

Collection of elliptic-curve shapes, point representations and
group-operation formulas by Bernstein and Lange:

https://www.hyperelliptic.org/EFD/

42

https://www.hyperelliptic.org/EFD/

