Cryptographic Engineering

Multiprecision arithmetic II and ECC

Radboud University, Nijmegen, The Netherlands

Spring 2019

Where were we...?

- Last lecture: arithmetic on big integers
- Conclusion at the end:
- Can use a redundant representation for big integers
- Carries get accumulated in "unused" upper parts of registers
- Arithmetic becomes essentially polynomial arithmetic
- Need to carry en bloc whenever coefficients become too large

Example: product-scanning multiplication

```
/* 256-bit integers in radix 2^16 */
typedef signed long long bigint[16];
void mul_prodscan(signed long long r[31],
                                    const bigint x,
                                    const bigint y)
{
    r[0] = x[0] * y[0];
    r[1] = x[1] * y[0];
    r[1] += x[0] * y[1];
    r[2] = x[2] * y[0];
    r[2] += x[1] * y[1];
    r[2] += x[0] * y[2];
    r[29] = x[15] * y[14];
    r[29] += x[14] * y[15];
    r[30] = x[15] * y[15];
}
```


Modular reduction

- We don't just need arithmetic on big integers
- We need arithmetic in finite fields
- In other words, we need reduction modulo a prime p
- Let's fix some p, say $p=2^{255}-19$
- We know that $2^{255} \equiv 19(\bmod p)$
- This means that $2^{256} \equiv 38(\bmod p)$
- Reduce 31-bit intermediate result r as follows:

$$
\begin{aligned}
& \text { for }(i=0 ; i<15 ; i++) \\
& r[i]+=38 * r[i+16] ;
\end{aligned}
$$

- Result is in r [0],..., r [15]

Primes are not rabbits

- "You cannot just simply pull some nice prime out of your hat!"
- In fact, very often we can.
- For cryptography we construct curves over fields of "nice" order
- Examples:
- $2^{192}-2^{64}-1$ ("NIST-P192", FIPS186-2, 2000)
- $2^{224}-2^{96}+1$ ("NIST-P224", FIPS186-2, 2000)
- $2^{256}-2^{224}+2^{192}+2^{96}-1$ ("NIST-P256", FIPS186-2, 2000)
- $2^{255}-19$ (Bernstein, 2006)
- $2^{251}-9$ (Bernstein, Hamburg, Krasnova, Lange, 2013)
- $2^{448}-2^{224}-1$ (Hamburg, 2015)
- All these primes come with (more or less) fast reduction algorithms
- More about general primes later
- For the moment let's stick to $2^{255}-19$

Carrying after multiplication

```
long long c;
for(i=0;i<15;i++)
{
    c = r[i] >> 16;
    r[i+1] += c;
    c <<= 16;
    r[i] -= c;
}
c = r[15] >> 16;
r[0] += 38*c;
c <<= 16;
r[15] -= c;
```

- Coefficient r[0] may still be too large: carry again to r[1]

How about squaring?

\#define bigint_square(R,X) bigint_mul(R,X,X)

How about squaring?

```
/* 256-bit integers in radix 2^16 */
typedef signed long long bigint[16];
void square_prodscan(signed long long r[31],
                const bigint x)
{
    r[0] = x[0] * x[0];
    r[1] = x[1] * x[0];
    r[1] += x[0] * x[1];
    r[2] = x[2] * x[0];
    r[2] += x[1] * x[1];
    r[2] += x[0] * x[2];
    r[29] = x[15] * x[14];
    r[29] += x[14] * x[15];
    r[30] = x[15] * x[15];
}
```


How about squaring?

```
/* 256-bit integers in radix 2^16 */
typedef signed long long bigint[16];
void square_prodscan(signed long long r[31],
                const bigint x)
{
    signed long long _2x[16];
    int i;
    for(i=0;i<16;i++)
        _2x[i] = 2*x[i];
    r[0] = x[0] * x[0];
    r[1] = _2x[1] * x[0];
    r[2] = _2x[2] * x[0];
    r[2] += x[1] * x[1];
    r[29] = _2x[15] * x[14];
    r[30] = x[15] * x[15];
}
```


Squaring vs. multiplication

Multiplication needs

- 256 multiplications
- 225 additions

Squaring needs

- 136 multiplications
- 105 additions
- 15 additions or shifts or multiplications by 2 for precomputation

How about other prime fields?

- So far: reductions only modulo "nice" primes
- What if somebody just throws an ugly prime at you?
- Example: German BSI is pushing the "Brainpool curves", over fields \mathbb{F}_{p} with

$$
\begin{aligned}
p_{224}= & 2272162293245435278755253799591092807334073 \backslash \\
& 2145944992304435472941311 \\
= & 0 x D 7 C 134 A A 264366862 A 18302575 D 1 D 787 B 09 F 07579 \backslash \\
& 7 D A 89 F 57 E C 8 C 0 F F
\end{aligned}
$$

or

$$
\begin{aligned}
p_{256}= & 7688495639704534422080974662900164909303795 \backslash \\
& 0200943055203735601445031516197751 \\
= & 0 x A 9 F B 57 D B A 1 E E A 9 B C 3 E 660 A 909 D 838 D 726 E 3 B F 623 D \backslash \\
& 52620282013481 D 1 F 6 E 5377
\end{aligned}
$$

- Another example: Pairing-friendly curves are typically defined over fields \mathbb{F}_{p} where p has some structure, but hard to exploit for fast arithmetic

Montgomery representation

- We have the following problem:
- We multiply two n-limb big integers and obtain a $2 n$-limb result t
- We need to find $t \bmod p$
- Idea: Perform big-integer division with remainder (expensive!)
- Better idea (Montgomery, 1985):
- Let R be such that $\operatorname{gcd}(R, p)=1$ and $t<p \cdot R$
- Represent an element a of \mathbb{F}_{p} as $a R \bmod p$
- Multiplication of $a R$ and $b R$ yields $t=a b R^{2}$ (2n limbs)
- Now compute Montgomery reduction: $t R^{-1} \bmod p$
- For some choices of R this is more efficient than division
- Typical choice for radix-b representation: $R=b^{n}$

Montgomery reduction (pseudocode)

Require: $p=\left(p_{n-1}, \ldots, p_{0}\right)_{b}$ with $\operatorname{gcd}(p, b)=1, R=b^{n}$,
$p^{\prime}=-p^{-1} \bmod b$ and $t=\left(t_{2 n-1}, \ldots, t_{0}\right)_{b}$
Ensure: $t R^{-1} \bmod p$
$A \leftarrow t$
for i from 0 to $n-1$ do

$$
\begin{aligned}
& u \leftarrow a_{i} p^{\prime} \bmod b \\
& A \leftarrow A+u \cdot p \cdot b^{i}
\end{aligned}
$$

end for
$A \leftarrow A / b^{n}$
if $A \geq p$ then
$A \leftarrow A-p$
end if
return A

Some notes about Montgomery reduction

- Some cost for transforming to Montgomery representation and back
- Only efficient if many operations are performed in Montgomery representation
- The algorithms takes $n^{2}+n$ multiplication instructions
- n of those are "shortened" multiplications (modulo b)
- The cost is roughly the same as schoolbook multiplication
- Careful about conditional subtraction (timing attacks!)
- One can merge schoolbook multiplication with Montgomery reduction: "Montgomery multiplication"

Still missing: inversion

- Inversion is typically much more expensive than multiplication
- Efficient ECC arithmetic avoids frequent inversions
- ECC can typically not avoid all inversions
- We need inversion, but we do (usually) not need it often
- Two approaches to inversion:

1. Extended Euclidean algorithm
2. Fermat's little theorem

Extended Euclidean algorithm

- Given two integers a, b, the Extended Euclidean algorithm finds
- The greatest common divisor of a and b
- Integers u and v, such that $a \cdot u+b \cdot v=\operatorname{gcd}(a, b)$
- It is based on the observation that

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a-q b) \quad \forall q \in \mathbb{Z}
$$

- To compute $a^{-1}(\bmod p)$, use the algorithm to compute

$$
a \cdot u+p \cdot v=\operatorname{gcd}(a, p)=1
$$

- Now it holds that $u \equiv a^{-1}(\bmod p)$

Extended Euclidean algorithm (pseudocode)

Require: Integers a and b.
Ensure: An integer tuple (u, v, d) satisfying $a \cdot u+b \cdot v=d=\operatorname{gcd}(a, b)$

$$
\begin{aligned}
& u \leftarrow 1 \\
& v \leftarrow 0 \\
& d \leftarrow a \\
& v_{1} \leftarrow 0 \\
& v_{3} \leftarrow b
\end{aligned}
$$

while $\left(v_{3} \neq 0\right)$ do

$$
\begin{aligned}
& q \leftarrow\left\lfloor\frac{d}{v_{3}}\right\rfloor \\
& t_{3} \leftarrow d \bmod v_{3} \\
& t_{1} \leftarrow u-q v_{1} \\
& u \leftarrow v_{1} \\
& d \leftarrow v_{3} \\
& v_{1} \leftarrow t_{1} \\
& v_{3} \leftarrow t_{3}
\end{aligned}
$$

end while
$v \leftarrow \frac{d-a u}{b}$
return (u, v, d)

Some notes about the Extended Euclidean algorithm

- Core operation are divisions with remainder
- This lecture: no details about big-integer division
- Version without divisions: binary extended gcd:

$$
\text { Handbook of applied cryptography, Alg. } 14.61
$$

- The running time (number of loop iterations) depends on the inputs
- We usually do not want this for cryptography (timing attacks!)
- Possible protection: blinding
- Multiply a by random integer r
- Invert, obtain $r^{-1} a^{-1}$
- Multiply again by r to obtain a^{-1}
- Note that this requires a source of randomness

Fermat's little theorem

Theorem

Let p be prime. Then for any integer a it holds that $a^{p-1} \equiv 1(\bmod p)$

- This implies that $a^{p-2} \equiv a^{-1}(\bmod p)$
- Obvious algorithm for inversion: Exponentiation with $p-2$
- The exponent is quite large (e.g., 255 bits), is that efficient?
- Yes, fairly:
- Exponent is fixed and known at compile time
- Can spend quite some time on finding an efficient addition chain (next lecture)
- Inversion modulo 2^{255} - 19 needs 254 squarings and 11 multiplications in $\mathbb{F}_{2^{255}-19}$

Inversion in $\mathbb{F}_{2^{255} \text {-19 }}$

void gfe_invert(gfe r, const gfe x)
\{
gfe z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t;
int i;
/* 2 */ gfe_square ($\mathrm{z} 2, \mathrm{x}$);
/* 4 */ gfe_square (t,z2);
/* 8 */ gfe_square(t,t);
/* 9 */ gfe_mul $(z 9, t, x)$;
/* 11 */ gfe_mul(z11,z9,z2);
/* 22 */ gfe_square(t,z11);
/* 2~5 - 2~0 = 31 */ gfe_mul(z2_5_0,t,z9);
/* 2~6 - 2~1 */ gfe_square(t,z2_5_0);
/* 2~10 - 2~5 */ for (i = 1;i < 5;i++) \{ gfe_square (t,t); \}
/* 2~10 - 2~0 */ gfe_mul(z2_10_0,t,z2_5_0);
/* 2^11 - 2^1 */ gfe_square(t,z2_10_0);
/* 2~20 - 2^10 */ for (i = 1;i < 10;i++) \{ gfe_square (t,t); \}
/* 2~20 - 2~0 */ gfe_mul(z2_20_0,t,z2_10_0);
/* 2~21-2~1 */ gfe_square(t,z2_20_0);
/* 2^40-2^20 */ for (i = 1;i < 20;i++) \{ gfe_square (t,t); \}
/* 2~40 - 2~0 */ gfe_mul(t,t,z2_20_0);

Inversion in $\mathbb{F}_{2^{255}-19}$

```
/* 2^41 - 2^1 */ gfe_square(t,t);
/* 2^50 - 2^10 */ for (i = 1;i < 10;i++) { gfe_square(t,t); }
/* 2^50 - 2^0 */ gfe_mul(z2_50_0,t,z2_10_0);
/* 2^51 - 2^1 */ gfe_square(t,z2_50_0);
/* 2^100 - 2^50 */ for (i = 1;i < 50;i++) { gfe_square(t,t); }
/* 2^100 - 2^0 */ gfe_mul(z2_100_0,t,z2_50_0);
/* 2^101 - 2^1 */ gfe_square(t,z2_100_0);
/* 2^200 - 2^100 */ for (i= 1;i < 100;i++) { gfe_square(t,t); }
/* 2^200 - 2^0 */ gfe_mul(t,t,z2_100_0);
/* 2^201 - 2^1 */ gfe_square(t,t);
/* 2^250 - 2^50 */ for (i = 1;i < 50;i++) { gfe_square(t,t); }
/* 2^250 - 2~0 */ gfe_mul(t,t,z2_50_0);
/* 2^251 - 2^1 */ gfe_square(t,t);
/* 2^252 - 2^2 */ gfe_square(t,t);
/* 2^253 - 2^3 */ gfe_square(t,t);
/* 2^254 - 2^4 */ gfe_square(t,t);
/* 2^255 - 2^5 */ gfe_square(t,t);
/* 2^255 - 21 */ gfe_mul(r,t,z11);
```


Multiprecision libraries

- Why would you write low-level arithmetic yourself?
- Aren't there some good libraries for this?
- There are:
- GMP (http://gmplib.org), high-performance arithmetic on multiprecision numbers
- NTL (http://shoup.net/ntl/), number-theory library, higher level than GMP, uses GMP
- OpenSSL Bignum (http://openssl.org), low-level routines in OpenSSL
- mpF_{q} (http://mpfq.gforge.inria.fr/), a finite-field library (generator)

Limitations of libraries

- Libraries don't know the modulus (except for mpF_{q}), cannot optimize for a fixed modulus
- Libraries don't know the sequence of field operations you're computing (e.g., point addition), cannot use lazy reduction
- Libraries are not always timing-attack protected
- Consequence: ECC speed records are achieved with hand-optimized assembly implementations

Part II
 Elliptic-curve cryptography from a crypto-engineering perspective

Diffie-Hellman

- Let G be a cyclic, finite, abelian Group (written additively) and let P be a generator of G
- Alice chooses random $a \in\{0, \ldots,|G|-1\}$, computes $a P$, sends to Bob
- Bob chooses random $b \in\{0, \ldots,|G|-1\}$, computes $b P$, sends to Alice
- Alice computes joint key $a(b P)$
- Bob computes joint key $b(a P)$
- DLP in G : given $k P \in G$ and P, find k
- Solving the DLP breaks security of Diffie-Hellman

Groups with hard DLP

- Traditional answer: \mathbb{Z}_{p}^{*} with large prime-order subgroup
- Modern answer: Elliptic curve over \mathbb{F}_{q} with large prime-order subgroup
- Sophisticated answer (not in this lecture): hyperelliptic curves of genus 2

Typical view on elliptic curves

Definition

Let K be a field and let $a_{1}, a_{2}, a_{3}, a_{4}, a_{6} \in K$. Then the following equation defines an elliptic curve E :

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

if the discriminant Δ of E is not equal to zero. This equation is called the Weierstrass form of an elliptic curve.

Characteristic $\neq 2,3$
If $\operatorname{char}(K) \neq 2,3$ we can use a simplified equation:

$$
E: y^{2}=x^{3}+a x+b
$$

Characteristic 2

If $\operatorname{char}(K)=2$ we can (usually) use a simplified equation:

$$
E: y^{2}+x y=x^{3}+a x^{2}+b
$$

Rational points

Setup for cryptography

- Choose $K=\mathbb{F}_{q}$
- Consider the set of \mathbb{F}_{q}-rational points:

$$
E\left(\mathbb{F}_{q}\right)=\left\{(x, y) \in \mathbb{F}_{q} \times \mathbb{F}_{q}: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right\} \cup\{\mathcal{O}\}
$$

- The element \mathcal{O} is the "point at infinity"
- This set forms a group (together with addition law)
- Order of this group: $\left|E\left(\mathbb{F}_{q}\right)\right| \approx\left|\mathbb{F}_{q}\right|$

Addition of points

- Add points

$$
\begin{aligned}
& P=(-0,9 ;-0,4135) \text { and } \\
& Q=(-0,1 ; 0,3146)
\end{aligned}
$$

- Compute line through the two points
- Determine third intersection $T=\left(x_{T}, y_{T}\right)$ with the elliptic curve
- Result of the addition:
$P+Q=\left(x_{T},-y_{T}\right)$

Point doubling

- Double the point $P=(-0.7,0.5975)$
- Compute the tangent on P
- Determine second intersection $T=\left(x_{T}, y_{T}\right)$ with the elliptic curve
- Result of the addition:
$P+Q=\left(x_{T},-y_{T}\right)$

Group law in formulas

Curve equation: $y^{2}=x^{3}+a x+b$
Point addition

- $P=\left(x_{P}, y_{P}\right), Q=\left(x_{Q}, y_{Q}\right) \rightarrow P+Q=R=\left(x_{R}, y_{R}\right)$ with
- $x_{R}=\left(\frac{y_{Q}-y_{P}}{x_{Q}-x_{P}}\right)^{2}-x_{P}-x_{Q}$
- $y_{R}=\left(\frac{y_{Q}-y_{P}}{x_{Q}-x_{P}}\right)\left(x_{P}-x_{R}\right)-y_{P}$

Point doubling

- $P=\left(x_{P}, y_{P}\right), 2 P=\left(x_{R}, y_{R}\right)$ with
- $x_{R}=\left(\frac{3 x_{P}^{2}+a}{2 y_{P}}\right)^{2}-2 x_{P}$
- $y_{R}=\left(\frac{3 x_{P}^{2}+a}{2 y_{P}}\right)\left(x_{P}-x_{R}\right)-y_{P}$

More Weierstrass curve group law

- Neutral element is \mathcal{O}
- Inverse of a point (x, y) is $(x,-y)$
- Note: Formulas don't work for $P+(-P)$, also don't work for \mathcal{O}
- Need to distinguish these cases!
- "Uniform" addition law in Hıșıl's Ph.D. thesis, Section 5.5.2 (http://eprints.qut.edu.au/33233/):
- Move special cases to other points
- Not safe to use on arbitrary input points!
- Formulas for curves over $\mathbb{F}_{2^{k}}$ look slightly different, but same special cases

Finding a suitable curve

Security requirements for ECC

- $\ell=\left|E\left(\mathbb{F}_{q}\right)\right|$ must have large prime-order subgroup
- For n bits of security we need $2 n$-bit prime-order subgroup
- Impossible to transfer DLP to less secure groups:
- ℓ must not be equal to q
- We need $\ell \nmid p^{k}-1$ for small k

Finding a curve

- Fix finite field \mathbb{F}_{q} of suitable size
- Fix curve parameter a (quite common: $a=-3$)
- Pick curve parameter b until E fulfills desired properties
- This requires efficient "point counting"
- This requires efficient factorization or primality proving

Standardized curves

"The nice thing about standards is that you have so many to choose from.

- Andrew S. Tanenbaum
- Various standardized curves, most well-known: NIST curves:
- Big-prime field curves with $192,224,256,384$, and 521 bits
- Binary curves with $163,233,283,409$, and 571 bits
- Binary Koblitz curves with 163, 233, 283, 409, and 571 bits
- SECG curves (Certicom), prime-field and binary curves
- Brainpool curves (BSI), only prime-field curves
- FRP256v1 (ANSSI), one prime-field curve (256 bits)

Binary vs. big prime

Curves over big-prime fields

- Many fields of a given size \Rightarrow many curves
- Efficient in software (can use hardware multipliers)
- Less efficient in hardware

Curves over binary fields

- Important for security: exponent k in $\mathbb{F}_{p^{k}}$ has to be prime
- Not many fields (not that many curves)
- More efficient in hardware
- Efficient in software only on some microarchitectures
- A hell to implement securely in software on some other microarchitectures

Putting it together

- Choose security level (e.g., 128 bits)
- Decide whether you want binary or big-prime field arithmetic, let's say big prime
- Pick corresponding standard curve, e.g., NIST-P256
- Implement field arithmetic
- Implement ECC addition and doubling
- Implement scalar multiplication (next lecture)
- You're done with BAD (!) ECDH software

Problem I: inversions

Inversions

- Adding $P=\left(x_{P}, y_{P}\right)$ and $Q=\left(x_{Q}, y_{Q}\right)$ needs an inversion in \mathbb{F}_{q}
- Inversions are expensive
- Constant-time inversions are even more expensive

Solution: projective coordinates

- Store fractions of elements of \mathbb{F}_{q}, invert only once at the end
- Represent points in projective coordinates: $P=\left(X_{P}: Y_{P}: Z_{P}\right)$ with $x_{P}=X_{P} / Z_{P}$ and $y_{P}=Y_{P} / Z_{P}$
- The point $(1: 1: 0)$ is the point at infinity
- Also possible: weighted projective coordinates:
- Jacobian coordinates: $P=\left(X_{P}: Y_{P}: Z_{P}\right)$ with $x_{P}=X_{P} / Z_{P}^{2}$ and $y_{P}=Y_{P} / Z_{P}^{3}$
- López-Dahab coordinates (for binary curves): $P=\left(X_{P}: Y_{P}: Z_{P}\right)$ with $x_{P}=X_{P} / Z_{P}$ and $y_{P}=Y_{P} / Z_{P}^{2}$
- Important: Never send projective representation, always convert to affine!

Problem II: group-law special cases

- Addition of $P+Q$ needs to distinguish different cases:
- If $P=\mathcal{O}$ return Q
- Else if $Q=\mathcal{O}$ return P
- Else if $P=Q$ call doubling routine
- Else if $P=-Q$ return \mathcal{O}
- Else use addition formulas
- Similar for doubling P :
- If $P=\mathcal{O}$ return P
- Else if $y_{P}=0$ return \mathcal{O}
- Else use doubling formulas
- Constant-time implementations of this are horrible
- Good news: Can avoid the checks when computing $k \cdot P$ and $k<\left|E\left(\mathbb{F}_{q}\right)\right|$
- Bad news: Side-channel countermeasures use $k>\left|E\left(\mathbb{F}_{q}\right)\right|$
- More bad news: Doesn't work for multi-scalar multiplication (next lecture)
- Baseline: simple implementations are likely to be wrong or insecure

Solution I: Montgomery ladder

- Use Montgomery curve: $E_{M}: B y^{2}=x^{3}+A x^{2}+x$.
- Use x-coordinate-only differential addition chain ("Montgomery ladder", next lecture)
- Advantages:
- Works on all inputs, no special cases
- Very regular structure, easy to protect against timing attacks
- Point compression/decompression for free
- Easy to implement, harder to screw up in hard-to-detect ways
- Simple implementations are likely to be correct and secure
- Disadvantages:
- Not all curves can be converted to Montgomery shape
- Always have a cofactor of at least 4
- Ladders on general Weierstrass curves are much less efficient
- We only get the x coordinate of the result, tricky for signatures
- Can reconstruct y, but that involves some additional cost

Solution II: (twisted) Edwards curves

- Edwards, 2007: New form for elliptic curves ("Edwards curves")
- Bernstein, Lange, 2007: very fast addition and doubling on these curves
- Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to "twisted Edwards curves"
- Core advantage of (twisted) Edwards curves: complete group law
- No need to handle special cases
- No "point at infinity" to work with
- Can speed up doubling, but addition formulas work for $P+P$
- Efficient (for cryptography) transformation from Weierstrass to (twisted) Edwards only for some curves
- Always efficient: transformation between Montgomery curves and twisted Edwards curves
- Again: simple implementations are likely to be correct and secure
- Disadvantage: always have a cofactor of at least 4

So, what's the deal with the cofactor?

MONERO

Forum Funding System Vulnerability Response The Monero Project English -

Get Started \quad Downloads Recent News . Community . Resources

Disclosure of a Major Bug in CryptoNote Based Currencies

Posted by: Iuigi1111 and Riccardo "fluffypony" Spagni
May 17, 2017

Overview

In Monero we've discovered and patched a critical bug that affects all CryptoNotebased cryptocurrencies, and allows for the creation of an unlimited number of coins in a way that is undetectable to an observer unless they know about the fatal flaw and can search for it

Recent Posts

Logs for the Community Meeting Held on 2019-02-16

Logs for the Community Meeting Held on 2019-02-02

Monero Adds Blockchain Pruning and Improves Transaction Efficiency

Logs for the Community Meeting
Held on 2019-01-19

- Protocols need to be careful to avoid subgroup attacks
- Monero screwed this up, which allowed double-spending
- Elegant solution: "Ristretto" encoding by Hamburg, see: https:// github.com/otrv4/libgoldilocks

Solution III: Complete group law on Weierstrass curves

- Bosma, Lenstra, 1995: complete group law for Weierstrass curves
- Problem: Extremely inefficient
- Renes, Costello, Batina, 2016: Much faster complete group law for Weierstrass curves
- Somewhat less efficient than (twisted) Edwards
- Covers all curves

Problem III: Wrong-curve attacks

ECDH attack scenario

- Alice sends point on different (insecure) curve with small subgroup
- Bob computes "shared key" in that small subgroup
- Alice learns "shared key" through brute force
- Alice learns Bob's secret scalar modulo the order of the small subgroup

Countermeasures

- Check that input point is on the curve (functional tests will miss this!)
- Send compressed points (x, parity (y)); decompression returns (x, y) on the curve or fails
- Send only x (Montgomery ladder); but: x could still be on the "twist" of E
- Make sure that the twist is also secure ("twist security")

Problem IV: Backdoors in standards?

""II no longer trust the [NIST Elliptic Curves] constants. I believe the NSA has manipulated them through their relationships with industry." - Bruce Schneier, 2013.

- It is pretty clear that NSA put a backdoor in Dual_EC_DRBG
- Constants of NIST curves have been obtained by hashing random values
- No-backdoor claim: We know the preimages
- Possible attack if you know a class of vulnerable curves: Generate random seeds until you have found a vulnerable (and seemingly secure) curve
- Fact: There are no known insecurities of NIST curves
- Fact: There is no proof that there are no intentional vulnerabilities in NIST curves
- For more details, see BADA55 elliptic curves

Choosing a safe curve

Overview of various elliptic curves and thorough security analysis by Bernstein and Lange:

> https://safecurves.cr.yp.to
(doesn't list cofactor-1 curves, so best to combine with Ristretto)

Point representation and arithmetic

Collection of elliptic-curve shapes, point representations and group-operation formulas by Bernstein and Lange:
https://www.hyperelliptic.org/EFD/

