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Where were we...?

» Last lecture: arithmetic on big integers

» Conclusion at the end:
» Can use a redundant representation for big integers
» Carries get accumulated in “unused” upper parts of registers
» Arithmetic becomes essentially polynomial arithmetic
» Need to carry en bloc whenever coefficients become too large



Example: product-scanning multiplication

/* 256-bit integers in radix 2716 */
typedef signed long long bigint[16];

void mul_prodscan(signed long long r[31],
const bigint x,
const bigint y)

{
r[0] = x[0] * y[0];
r[1] = x[1] * y[0];
r[1] += x[0] * y[1];
r[2] = x[2] * y[0];
r[2] += x[1] * y[1];
r[2] += x[0] * y[2];

r[29] = x[15] * y[14];
r[29] += x[14] * y[15];
r[30] = x[15] * y[15];
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Modular reduction
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We don't just need arithmetic on big integers
We need arithmetic in finite fields
In other words, we need reduction modulo a prime p

Let's fix some p, say p = 22%° — 19

We know that 225 = 19 (mod p)
This means that 22°6 = 38 (mod p)
Reduce 31-bit intermediate result r as follows:
for(i=0;i<15;i++)
r[i] += 38*r[i+16];

Result is in r[0],...,r[15]
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“You cannot just simply pull some nice prime out of your hat!"

In fact, very often we can.

For cryptography we construct curves over fields of “nice” order

Examples:

>
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2192 _ 964 _ 1 (“NIST-P192", FIPS186-2, 2000)

2224 _ 296 4 1 (“NIST-P224", FIPS186-2, 2000)

2256 _ 9224 4 9192 4 996 _ 1 (“NIST-P256", FIPS186-2, 2000)
2255 _ 19 (Bernstein, 2006)

2251 _ 9 (Bernstein, Hamburg, Krasnova, Lange, 2013)

Q448 _ 9224 _ q (Hamburg, 2015)
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Primes are not rabbits

“You cannot just simply pull some nice prime out of your hat!"
In fact, very often we can.
For cryptography we construct curves over fields of “nice” order
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Examples:
» 2192 964 _ 1 (“NIST-P192", FIPS186-2, 2000)
2224 _ 296 4 1 (“NIST-P224", FIPS186-2, 2000)
2256 _ 9224 4 9192 4 996 _ 1 (“NIST-P256", FIPS186-2, 2000)
2255 _ 19 (Bernstein, 2006)
2251 _ 9 (Bernstein, Hamburg, Krasnova, Lange, 2013)
Q448 _ 9224 _ q (Hamburg, 2015)

> All these primes come with (more or less) fast reduction algorithms

v
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» More about general primes later
» For the moment let’s stick to 22°° — 19



Carrying after multiplication

long long c;
for(i=0;i<15;i++)
{
c = r[i] >> 16;
rli+1] += c;
c <<= 16;
r[i] -= c;
}
c = r[15] >> 16;
r[0] += 38%c;
c <<= 16;
r[15] -= c;



Carrying after multiplication

long long c;
for(i=0;i<15;i++)
{
c = r[i] >> 16;
rli+1] += c;
c <<= 16;
r[i] -= c;
}
c = r[15] >> 16;
r[0] += 38%c;
c <<= 16;
r[15] -= c;

» Coefficient r [0] may still be too large: carry again to r[1]



How about squaring?

#define bigint_square(R,X) bigint_mul(R,X,X)
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/* 256-bit integers in radix 2716 */
typedef signed long long bigint[16];

void square_prodscan(signed long long r[31],
const bigint x)
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How about squaring?

/* 256-bit integers in radix 2716 */
typedef signed long long bigint[16];

void square_prodscan(signed long long r[31],
const bigint x)
{
signed long long _2x[16];
int 1i;
for(i=0;i<16;i++)
_2x[i] = 2*x[i];

r[0] = x[0] * x[0];
r[1] = _2x[1] * x[0];
r[2] = _2x[2] * x[0];
r[2] += x[1] * x[1];

r[29]
r[30]

_2x[15] = x[14];
x[15] * x[15];



Squaring vs. multiplication

Multiplication needs
» 256 multiplications
» 225 additions
Squaring needs
» 136 multiplications
» 105 additions
» 15 additions or shifts or multiplications by 2 for precomputation
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F, with
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How about other prime fields?

» So far: reductions only modulo “nice” primes

» What if somebody just throws an ugly prime at you?
» Example: German BSI is pushing the “Brainpool curves”, over fields
F, with
P24 =2272162293245435278755253799591092807334073\
2145944992304435472941311
=0xD7C134AA264366862A18302575D1D787B09F 07579\
TDAS9F57TEC8COFF

or

pase =7688495639704534422080974662900164909303795\
0200943055203735601445031516197751
=02A9F B57TDBA1EEA9BC3E660A909D838D726 E3BF623D\

52620282013481D1F6E5377

» Another example: Pairing-friendly curves are typically defined over
fields IF,, where p has some structure, but hard to exploit for fast

arithmetic
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Montgomery representation

» We have the following problem:

>

>

We multiply two n-limb big integers and obtain a 2n-limb result ¢
We need to find ¢ mod p

> Idea: Perform big-integer division with remainder (expensive!)
> Better idea (Montgomery, 1985):

>
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Let R be such that gcd(R,p) =1landt<p-R
Represent an element a of Fj, as aR mod p
Multiplication of aR and bR vyields t = abR* (2n limbs)
Now compute Montgomery reduction: tR™" mod p
For some choices of R this is more efficient than division
Typical choice for radix-b representation: R =b"

10



Montgomery reduction (pseudocode)

Require: p = (pn—1,...,P0)p With ged(p,b) =1, R =b",
p'=—p~! modbandt=(tan_1,...,t0)s
Ensure: tR~' mod p
At
for i from0ton —1do
u <+ a;p’ mod b
A—A+u-p-bv
end for
A+ AL
if A> p then
A—A-p
end if
return A

11



Some notes about Montgomery reduction

» Some cost for transforming to Montgomery representation and back

» Only efficient if many operations are performed in Montgomery
representation

12
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Some notes about Montgomery reduction

» Some cost for transforming to Montgomery representation and back

» Only efficient if many operations are performed in Montgomery

vV vV.v v Y

representation

The algorithms takes n? + n multiplication instructions

n of those are “shortened” multiplications (modulo b)

The cost is roughly the same as schoolbook multiplication
Careful about conditional subtraction (timing attacks!)

One can merge schoolbook multiplication with Montgomery
reduction: “Montgomery multiplication”

12



Still missing: inversion

> Inversion is typically much more expensive than multiplication
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Still missing: inversion

Inversion is typically much more expensive than multiplication
Efficient ECC arithmetic avoids frequent inversions

>

>

» ECC can typically not avoid all inversions

» We need inversion, but we do (usually) not need it often
>

Two approaches to inversion:

1. Extended Euclidean algorithm
2. Fermat's little theorem

13



Extended Euclidean algorithm

» Given two integers a, b, the Extended Euclidean algorithm finds

» The greatest common divisor of a and b
> Integers u and v, such that a-u +b-v = ged(a,b)
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Extended Euclidean algorithm

» Given two integers a, b, the Extended Euclidean algorithm finds

» The greatest common divisor of a and b
> Integers u and v, such that a-u +b-v = ged(a,b)

» It is based on the observation that
ged(a, b) = ged(b,a — gb) Vg eZ
» To compute a~! (mod p), use the algorithm to compute

a-u+p-v=ged(a,p) =1

v

Now it holds that u = a~! (mod p)

14



Extended Euclidean algorithm (pseudocode)

Require: Integers a and b.
Ensure: An integer tuple (u,v,d) satisfying a-u+b-v = d = ged(a, b)
u <1
v 0
d+a
vy < 0
v3 < b
while (vs # 0) do
d
q < LEJ
t3 < d mod U3
t1 < u — qup
U < V1
d <+ v3
v1 —
V3 < t3
end while
v i
return (u,v,d)

15



Some notes about the Extended Euclidean algorithm

» Core operation are divisions with remainder

» This lecture: no details about big-integer division

» Version without divisions: binary extended gcd:
Handbook of applied cryptography, Alg. 14.61

16
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v

Core operation are divisions with remainder

v

This lecture: no details about big-integer division

v

Version without divisions: binary extended gcd:
Handbook of applied cryptography, Alg. 14.61

v

The running time (number of loop iterations) depends on the inputs

v

We usually do not want this for cryptography (timing attacks!)
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Some notes about the Extended Euclidean algorithm

» Core operation are divisions with remainder
» This lecture: no details about big-integer division
» Version without divisions: binary extended gcd:
Handbook of applied cryptography, Alg. 14.61
» The running time (number of loop iterations) depends on the inputs
» We usually do not want this for cryptography (timing attacks!)
» Possible protection: blinding

> Multiply a by random integer r

> Invert, obtain r~ta7!

> Multiply again by r to obtain a~*

» Note that this requires a source of randomness

16
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Fermat's little theorem

Theorem
Let p be prime. Then for any integer a it holds that a?~! =1 (mod p)
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Fermat's little theorem

Theorem
Let p be prime. Then for any integer a it holds that a?~! =1 (mod p)

» This implies that a?~2 = a~! (mod p)
» Obvious algorithm for inversion: Exponentiation with p — 2

» The exponent is quite large (e.g., 255 bits), is that efficient?
> Yes, fairly:
» Exponent is fixed and known at compile time
» Can spend quite some time on finding an efficient addition chain
(next lecture)

> Inversion modulo 2255 — 19 needs 254 squarings and 11
multiplications in Fa2s5 1

17



Inversion in 255 19

void gfe_invert(gfe r, const gfe x)

{

gfe z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t;
int i;

/* 2 %/ gfe_square(z2,x) ;

/* 4 */ gfe_square(t,z2);

/* 8 x/ gfe_square(t,t);

/*x 9 */ gfe_mul(z9,t,x);

/* 11 */ gfe_mul(z11,29,22);

/* 22 x/ gfe_square(t,z11);

/* 275 - 270 = 31 */ gfe_mul(z2_5_0,t,29);

/* 276 - 271 x/ gfe_square(t,z2_5_0);

/* 2710 - 275 %/ for (i = 1;i < 5;i++) { gfe_square(t,t); }
/* 2710 - 270 */ gfe_mul(z2_10_0,t,2z2_5_0);

/* 2711 - 271 %/ gfe_square(t,z2_10_0);

/* 2720 - 2~10 */ for (i = 1;i < 10;i++) { gfe_square(t,t); }
/* 2720 - 270 *x/ gfe_mul(z2_20_0,t,2z2_10_0);

/* 2721 - 271 %/ gfe_square(t,z2_20_0);

/* 2740 - 2720 */ for (i = 1;i < 20;i++) { gfe_square(t,t); }
/* 2740 - 2°0 *x/ gfe_mul(t,t,z2_20_0);

18



Inversion in 255 19

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
}

2741 - 271 %/ gfe_square(t,t);

2750 - 2710 */ for (i = 1;i < 10;i++) { gfe_square(t,t); }
2°50 - 270 %/ gfe_mul(z2_50_0,t,22_10_0);

2751 - 271 %/ gfe_square(t,z2_50_0);

2100 - 2°50 */ for (i = 1;i < 50;i++) { gfe_square(t,t); }
2°100 - 2°0 x/ gfe_mul(z2_100_0,t,z2_50_0);

27101 - 271 %/ gfe_square(t,z2_100_0);

27200 - 27100 */ for (i = 1;i < 100;i++) { gfe_square(t,t); }
2200 - 2~0 */ gfe_mul(t,t,z2_100_0);

27201 - 271 */ gfe_square(t,t);

2-250 - 2°50 */ for (i = 1;i < 50;i++) { gfe_square(t,t); }
2250 - 2~0 */ gfe_mul(t,t,z2_50_0);

27251 - 271 */ gfe_square(t,t);

27252 - 272 %/ gfe_square(t,t);

2°253 - 273 */ gfe_square(t,t);

27254 - 274 x/ gfe_square(t,t);

2-255 - 275 %/ gfe_square(t,t);

2°255 - 21 x/ gfe_mul(r,t,z11);

18



Multiprecision libraries

» Why would you write low-level arithmetic yourself?
> Aren't there some good libraries for this?
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Multiprecision libraries

» Why would you write low-level arithmetic yourself?
> Aren't there some good libraries for this?

» There are:

> GMP (http://gmplib.org), high-performance arithmetic on
multiprecision numbers

» NTL (http://shoup.net/ntl/), number-theory library, higher level
than GMP, uses GMP

> OpenSSL Bignum (http://openssl.org), low-level routines in
OpenSSL

> mplF, (http://mpfq.gforge.inria.fr/), a finite-field library
(generator)

19


http://gmplib.org
http://shoup.net/ntl/
http://openssl.org
http://mpfq.gforge.inria.fr/

Limitations of libraries
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Limitations of libraries

» Libraries don't know the modulus (except for mpF,), cannot
optimize for a fixed modulus

» Libraries don’t know the sequence of field operations you're
computing (e.g., point addition), cannot use lazy reduction

» Libraries are not always timing-attack protected

» Consequence: ECC speed records are achieved with hand-optimized
assembly implementations

20



Part ||
Elliptic-curve cryptography

from a crypto-engineering perspective
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Diffie-Hellman

> Let G be a cyclic, finite, abelian Group (written additively) and let
P be a generator of G
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Typical view on elliptic curves
Definition
Let K be a field and let a1, as,as3,a4,a6 € K. Then the following
equation defines an elliptic curve E:

E:y2+a1xy+a3y:x3+a2x2+a4x+a6

if the discriminant A of E is not equal to zero. This equation is called
the Weierstrass form of an elliptic curve.
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Typical view on elliptic curves
Definition
Let K be a field and let a1, as,as3,a4,a6 € K. Then the following
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Typical view on elliptic curves
Definition
Let K be a field and let a1, as,as3,a4,a6 € K. Then the following
equation defines an elliptic curve E:

E:y2+a1xy+a3y:x3+a2x2+a4x+a6

if the discriminant A of E is not equal to zero. This equation is called
the Weierstrass form of an elliptic curve.

Characteristic # 2,3
If char(K') # 2,3 we can use a simplified equation:

E:y*=a+ax+0
Characteristic 2
If char(K) = 2 we can (usually) use a simplified equation:
E:y’4+azy=a34az®+b

23



Rational points

Setup for cryptography

> Choose K =F,
> Consider the set of F,-rational points:

E[F,) ={(z,y) € F,xF,: v arrytasy = 23 4asx’ +asztag}U{O}
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Rational points

Setup for cryptography

>

>

v

v

v

Choose K =F,
Consider the set of F,-rational points:

E(Fy) = {(z,y) € FgxF, : y*+arzy+asy = 2°+asa®+asz+as JU{O}

The element O is the “point at infinity”
This set forms a group (together with addition law)
Order of this group: |E(F,)| =~ |F,]|

24



The group law

Example curve: y? = 23 — x over R

Graph of E over R

—_
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The group |aw

Example curve: y? = 23 — x over R
Addition of points Graph of E over R
» Add points 2 1

P =(-0,9;-0,4135) and
Q = (-0,1;0,3146)

» Compute line through the two 1+
points

> Determine third intersection

T = (xp,yr) with the elliptic
curve

» Result of the addition: 14
P+ Q = (IET, _yT)




The group law

Example curve: y? = 23 — x over R

Graph of E over R

—_

26



The group law

Example curve: y? = 23 — x over R

Point doubling

» Double the point
P =(-0.7,0.5975)

Graph of E over R

—_

26



The group law

Example curve: y? = 23 — x over R

Point doubling Graph of E over R

» Double the point 9
P =(-0.7,0.5975)

» Compute the tangent on P




The group law

Example curve: y? = 23 — x over R

Point doubling

» Double the point
P =(-0.7,0.5975)

» Compute the tangent on P

» Determine second intersection
T = (xp,yr) with the elliptic
curve

Graph of E over R

2,

26



The group |aw

Example curve: y? = 23

— x over R

Point doubling

» Double the point
P =(-0.7,0.5975)

» Compute the tangent on P

» Determine second intersection
T = (xp,yr) with the elliptic
curve

» Result of the addition:
P + Q = (IET, _yT)

Graph of E over R

2 +
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Group law in formulas

Curve equation: y?> = 2% +ax + b
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Group law in formulas

Curve equation: y?> = 2% +ax + b
Point addition
» P= (vayP)7Q = (xQ7yQ) - P+Q =R= (xR7yR) with

2
_ [ YQ—ypr _ _
> TR = (—inwP) Tp —XQ

> Yr = (jﬁg%ﬁ’;) (xp —zR) —yp

Point doubling
» P=(vp,yp),2P = (zRr,yr) with
2
| 4 TR = (—322:1;:(1) — 2$P

3w%+a

> yR:( Sup )(ZIIP—Z‘R)—Z/P

27



More Weierstrass curve group law

» Neutral element is O

> Inverse of a point (z,y) is (z, —y)
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More Weierstrass curve group law

Neutral element is O

Inverse of a point (z,y) is (z, —y)

Note: Formulas don't work for P + (—P), also don't work for O
Need to distinguish these cases!

vV v v v
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More Weierstrass curve group law

Neutral element is O

Inverse of a point (z,y) is (z, —y)

Note: Formulas don't work for P + (—P), also don't work for O
Need to distinguish these cases!

“Uniform” addition law in Hisil's Ph.D. thesis, Section 5.5.2
(http://eprints.qut.edu.au/33233/):

» Move special cases to other points

» Not safe to use on arbitrary input points!

vV v v v Y
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More Weierstrass curve group law

vV v v v Y

Neutral element is O
Inverse of a point (z,y) is (z, —y)
Note: Formulas don't work for P + (—P), also don't work for O
Need to distinguish these cases!
“Uniform” addition law in Hisil's Ph.D. thesis, Section 5.5.2
(http://eprints.qut.edu.au/33233/):

» Move special cases to other points

» Not safe to use on arbitrary input points!
Formulas for curves over Fyr look slightly different, but same special
cases

28
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Finding a suitable curve

Security requirements for ECC

» ( = |E(F,)| must have large prime-order subgroup
» For n bits of security we need 2n-bit prime-order subgroup
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Finding a suitable curve

Security requirements for ECC

» ( = |E(F,)| must have large prime-order subgroup
» For n bits of security we need 2n-bit prime-order subgroup
» Impossible to transfer DLP to less secure groups:

» ¢ must not be equal to ¢
> We need £ {p* — 1 for small k

Finding a curve

Fix finite field IF; of suitable size
Fix curve parameter a (quite common: a = —3)
Pick curve parameter b until E fulfills desired properties

This requires efficient “point counting”

vV vVv.v v Y

This requires efficient factorization or primality proving
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Standardized curves

“The nice thing about standards is that you have so many to
choose from. " — Andrew S. Tanenbaum
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Standardized curves

“The nice thing about standards is that you have so many to
choose from. " — Andrew S. Tanenbaum

» Various standardized curves, most well-known: NIST curves:

» Big-prime field curves with 192, 224, 256, 384, and 521 bits
» Binary curves with 163, 233, 283, 409, and 571 bits
» Binary Koblitz curves with 163, 233, 283, 409, and 571 bits

» SECG curves (Certicom), prime-field and binary curves

» Brainpool curves (BSI), only prime-field curves
» FRP256v1 (ANSSI), one prime-field curve (256 bits)

30



Binary vs. big prime

Curves over big-prime fields

» Many fields of a given size = many curves
» Efficient in software (can use hardware multipliers)
> Less efficient in hardware

31



Binary vs. big prime

Curves over big-prime fields

» Many fields of a given size = many curves
» Efficient in software (can use hardware multipliers)

> Less efficient in hardware

Curves over binary fields

Important for security: exponent k in IF,,» has to be prime

Not many fields (not that many curves)

>

>

» More efficient in hardware

» Efficient in software only on some microarchitectures
>

A hell to implement securely in software on some other
microarchitectures
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Putting it together

» Choose security level (e.g., 128 bits)
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Decide whether you want binary or big-prime field arithmetic, let's
say big prime

Pick corresponding standard curve, e.g., NIST-P256

Implement field arithmetic

Implement ECC addition and doubling

Implement scalar multiplication (next lecture)
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Decide whether you want binary or big-prime field arithmetic, let's
say big prime

Pick corresponding standard curve, e.g., NIST-P256
Implement field arithmetic

Implement ECC addition and doubling

Implement scalar multiplication (next lecture)
You're done with ECDH software
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Putting it together

» Choose security level (e.g., 128 bits)

» Decide whether you want binary or big-prime field arithmetic, let's

vV vV.v v Y

say big prime

Pick corresponding standard curve, e.g., NIST-P256
Implement field arithmetic

Implement ECC addition and doubling

Implement scalar multiplication (next lecture)
You're done with BAD (!) ECDH software
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Problem I: inversions
Inversions

> Adding P = (zp,yp) and Q = (xq,yg) needs an inversion in I,
» Inversions are expensive

» Constant-time inversions are even more expensive
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Problem [: inversions
Inversions
> Adding P = (zp,yp) and Q = (xq,yg) needs an inversion in I,
» Inversions are expensive

» Constant-time inversions are even more expensive

Solution: projective coordinates

> Store fractions of elements of F,, invert only once at the end

v

Represent points in projective coordinates: P = (Xp :Yp: Zp)
with xp = XP/ZP and yp = YP/ZP
The point (1:1:0) is the point at infinity
Also possible: weighted projective coordinates:
> Jacobian coordinates: P = (Xp : Yp : Zp) with xp = Xp/Z% and
yp =Yp/Z}
> Loépez-Dahab coordinates (for binary curves): P = (Xp :Yp : Zp)
with zp = XP/ZP and yp = Yp/Z%

\ A 4
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Problem [: inversions
Inversions
> Adding P = (zp,yp) and Q = (xq,yg) needs an inversion in I,
» Inversions are expensive

» Constant-time inversions are even more expensive

Solution: projective coordinates

> Store fractions of elements of F,, invert only once at the end
> Represent points in projective coordinates: P = (Xp : Yp : Zp)
with xp = XP/ZP and yp = YP/ZP
» The point (1:1:0) is the point at infinity
» Also possible: weighted projective coordinates:
> Jacobian coordinates: P = (Xp : Yp : Zp) with xp = Xp/Z% and
yp =Yp/Z}
> Loépez-Dahab coordinates (for binary curves): P = (Xp :Yp : Zp)
with zp = XP/ZP and yp = Yp/Z%
» Important: Never send projective representation, always convert to
affine!
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Problem Il: group-law special cases

» Addition of P + @ needs to distinguish different cases:

v

If P= 0O return Q

Else if Q = O return P

Else if P = @ call doubling routine
Else if P = —Q return O

Else use addition formulas

vVYyVvVYyYy
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Addition of P + @) needs to distinguish different cases:
> If P =0 return Q
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Addition of P + @) needs to distinguish different cases:
> If P =0 return Q
» Else if Q = O return P
» Else if P = Q call doubling routine
» Else if P = —Q return O
> Else use addition formulas
Similar for doubling P:

» If P =0 return P
» Else if yp = 0 return O
» Else use doubling formulas

Constant-time implementations of this are horrible

Good news: Can avoid the checks when computing &k - P and
k <|E(F,)|

Bad news: Side-channel countermeasures use k > |E(F,)|

More bad news: Doesn’t work for multi-scalar multiplication (next
lecture)
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Problem Il: group-law special cases

» Addition of P + @ needs to distinguish different cases:
If P= 0O return Q
Else if Q = O return P
Else if P = @ call doubling routine
Else if P = —Q return O
Else use addition formulas
» Similar for doubling P:
> If P=0O return P
» Else if yp = 0 return O
» Else use doubling formulas

v

vVYyVvYYyYy

» Constant-time implementations of this are horrible

» Good news: Can avoid the checks when computing k- P and
k< |E(F,)|
» Bad news: Side-channel countermeasures use k > |E(F,)|

» More bad news: Doesn't work for multi-scalar multiplication (next
lecture)

» Baseline: simple implementations are likely to be wrong or insecure

34



Solution |: Montgomery ladder

» Use Montgomery curve: Ey; : By? = 23 + Ax? + z.

» Use z-coordinate-only differential addition chain (“Montgomery
ladder”, next lecture)
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Use Montgomery curve: Ey; : By? = 23 + Ax? + z.

Use z-coordinate-only differential addition chain (“Montgomery
ladder”, next lecture)

Advantages:
» Works on all inputs, no special cases
» Very regular structure, easy to protect against timing attacks
» Point compression/decompression for free
» Easy to implement, harder to screw up in hard-to-detect ways
» Simple implementations are likely to be correct and secure
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» Not all curves can be converted to Montgomery shape
> Always have a cofactor of at least 4
» Ladders on general Weierstrass curves are much less efficient
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Solution |: Montgomery ladder

v

v

v

Use Montgomery curve: Ey; : By? = 23 + Ax? + z.

Use z-coordinate-only differential addition chain (“Montgomery
ladder”, next lecture)

Advantages:

>

vV vyVvVYy

Works on all inputs, no special cases

Very regular structure, easy to protect against timing attacks
Point compression /decompression for free

Easy to implement, harder to screw up in hard-to-detect ways
Simple implementations are likely to be correct and secure

Disadvantages:

v

vy vy VY

Not all curves can be converted to Montgomery shape

Always have a cofactor of at least 4

Ladders on general Weierstrass curves are much less efficient
We only get the x coordinate of the result, tricky for signatures
Can reconstruct y, but that involves some additional cost
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Solution Il: (twisted) Edwards curves

» Edwards, 2007: New form for elliptic curves (“Edwards curves”)

» Bernstein, Lange, 2007: very fast addition and doubling on these
curves

» Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to
“twisted Edwards curves”
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Edwards, 2007: New form for elliptic curves (“Edwards curves”)
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Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to
“twisted Edwards curves”

Core advantage of (twisted) Edwards curves: complete group law
No need to handle special cases

No “point at infinity” to work with

Can speed up doubling, but addition formulas work for P + P

Efficient (for cryptography) transformation from Weierstrass to
(twisted) Edwards only for some curves

Always efficient: transformation between Montgomery curves and
twisted Edwards curves

Again: simple implementations are likely to be correct and secure

Disadvantage: always have a cofactor of at least 4
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So, what's the deal with the cofactor?

MI ¢) MONERO RS UIEiET | ToEORES B

Get Started- Downloads Recent News - Community - Resources-
Disclosure of a Major Bug in CryptoNote Based Recent Posts
Currencies Logs for the Community Meeting
Posted by: luigi1111 and Riccardo "fluffypony” Spagn Held on 2019.02-16
May 17,2017

Logs for the Communi
Held on 2019-02-02

Overview

Monero Adds Blockchain Pruning and

In Monero we've discovered and patched a critical bug that affects all Cryp

based cryptocurrencies, and allows for the creation of an unlimited number of coins in Improve:
away that is undetectable to an observer unless they know about the fatal flaw and Logs for the Community Meeting
can search for it. Her o 20150145
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So, what's the deal with the cofactor?

» Protocols need to be careful to avoid subgroup attacks
» Monero screwed this up, which allowed double-spending

> Elegant solution: “Ristretto” encoding by Hamburg, see: https://
github.com/otrv4/libgoldilocks
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Solution I1l: Complete group law on Weierstrass curves

» Bosma, Lenstra, 1995: complete group law for Weierstrass curves
» Problem: Extremely inefficient
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Solution IlI: Complete group law on Weierstrass curves

v

Bosma, Lenstra, 1995: complete group law for Weierstrass curves

v

Problem: Extremely inefficient

v

Renes, Costello, Batina, 2016: Much faster complete group law for
Weierstrass curves

v

Somewhat less efficient than (twisted) Edwards

v

Covers all curves
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Problem IlI: Wrong-curve attacks

ECDH attack scenario
Alice sends point on different (insecure) curve with small subgroup
Bob computes “shared key" in that small subgroup

Alice learns “shared key” through brute force

vV v v v

Alice learns Bob's secret scalar modulo the order of the small
subgroup
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Problem IlI: Wrong-curve attacks

ECDH attack scenario
Alice sends point on different (insecure) curve with small subgroup
Bob computes “shared key" in that small subgroup

Alice learns “shared key” through brute force

vV v v v

Alice learns Bob's secret scalar modulo the order of the small
subgroup

Countermeasures
» Check that input point is on the curve (functional tests will miss
this!)
» Send compressed points (z, parity(y)); decompression returns (z,y)
on the curve or fails

» Send only = (Montgomery ladder); but: x could still be on the
“twist” of E

> Make sure that the twist is also secure (“twist security”)
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Problem 1V: Backdoors in standards?

“"I no longer trust the [NIST Elliptic Curves] constants. |
believe the NSA has manipulated them through their
relationships with industry.” — Bruce Schneier, 2013.
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Problem 1V: Backdoors in standards?

“"I no longer trust the [NIST Elliptic Curves] constants. |
believe the NSA has manipulated them through their
relationships with industry.” — Bruce Schneier, 2013.

> |t is pretty clear that NSA put a backdoor in Dual EC_ DRBG

» Constants of NIST curves have been obtained by hashing random
values

» No-backdoor claim: We know the preimages

» Possible attack if you know a class of vulnerable curves: Generate
random seeds until you have found a vulnerable (and seemingly
secure) curve

» Fact: There are no known insecurities of NIST curves

» Fact: There is no proof that there are no intentional vulnerabilities
in NIST curves

» For more details, see BADA55 elliptic curves
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http://safecurves.cr.yp.to/bada55.html

Choosing a safe curve

Overview of various elliptic curves and thorough security analysis by
Bernstein and Lange:

https://safecurves.cr.yp.to

(doesn't list cofactor-1 curves, so best to combine with Ristretto)

41


https://safecurves.cr.yp.to

Point representation and arithmetic

Collection of elliptic-curve shapes, point representations and
group-operation formulas by Bernstein and Lange:

https://www.hyperelliptic.org/EFD/
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