Cryptographic Engineering Multiprecision arithmetic II and ECC

Radboud University, Nijmegen, The Netherlands

Spring 2019

Where were we...?

- Last lecture: arithmetic on big integers
- Conclusion at the end:
 - Can use a redundant representation for big integers
 - Carries get accumulated in "unused" upper parts of registers
 - Arithmetic becomes essentially polynomial arithmetic
 - Need to carry en bloc whenever coefficients become too large

Example: product-scanning multiplication

```
/* 256-bit integers in radix 2^16 */
typedef signed long long bigint[16];
```

```
void mul_prodscan(signed long long r[31],
                  const bigint x,
                  const bigint y)
ſ
  r[0] = x[0] * y[0];
  r[1] = x[1] * y[0];
  r[1] += x[0] * y[1];
  r[2] = x[2] * y[0];
  r[2] += x[1] * y[1];
  r[2] += x[0] * v[2];
  . . .
  r[29] = x[15] * y[14];
  r[29] += x[14] * y[15];
  r[30] = x[15] * y[15];
```

```
}
```

- We don't just need arithmetic on big integers
- ▶ We need arithmetic in finite fields

- We don't just need arithmetic on big integers
- We need arithmetic in finite fields
- \blacktriangleright In other words, we need reduction modulo a prime p

- We don't just need arithmetic on big integers
- ▶ We need arithmetic in finite fields
- \blacktriangleright In other words, we need reduction modulo a prime p
- Let's fix some p, say $p = 2^{255} 19$

- We don't just need arithmetic on big integers
- We need arithmetic in finite fields
- \blacktriangleright In other words, we need reduction modulo a prime p
- Let's fix some p, say $p = 2^{255} 19$
- We know that $2^{255} \equiv 19 \pmod{p}$
- This means that $2^{256} \equiv 38 \pmod{p}$

- We don't just need arithmetic on big integers
- We need arithmetic in finite fields
- \blacktriangleright In other words, we need reduction modulo a prime p
- Let's fix some p, say $p = 2^{255} 19$
- We know that $2^{255} \equiv 19 \pmod{p}$
- This means that $2^{256} \equiv 38 \pmod{p}$
- Reduce 31-bit intermediate result r as follows:

```
for(i=0;i<15;i++)
r[i] += 38*r[i+16];</pre>
```

```
Result is in r[0],...,r[15]
```

"You cannot just simply pull some nice prime out of your hat!"

- "You cannot just simply pull some nice prime out of your hat!"
- ▶ In fact, very often we can.
- ▶ For cryptography we construct curves over fields of "nice" order

- "You cannot just simply pull some nice prime out of your hat!"
- In fact, very often we can.
- ▶ For cryptography we construct curves over fields of "nice" order
- Examples:
 - ▶ $2^{192} 2^{64} 1$ ("NIST-P192", FIPS186-2, 2000)
 - $2^{224} 2^{96} + 1$ ("NIST-P224", FIPS186-2, 2000)
 - ▶ $2^{256} 2^{224} + 2^{192} + 2^{96} 1$ ("NIST-P256", FIPS186-2, 2000)
 - ▶ $2^{255} 19$ (Bernstein, 2006)
 - $2^{251} 9$ (Bernstein, Hamburg, Krasnova, Lange, 2013)
 - $2^{448} 2^{224} 1$ (Hamburg, 2015)

- "You cannot just simply pull some nice prime out of your hat!"
- In fact, very often we can.
- ▶ For cryptography we construct curves over fields of "nice" order
- Examples:
 - ▶ $2^{192} 2^{64} 1$ ("NIST-P192", FIPS186-2, 2000)
 - ▶ $2^{224} 2^{96} + 1$ ("NIST-P224", FIPS186-2, 2000)
 - ▶ $2^{256} 2^{224} + 2^{192} + 2^{96} 1$ ("NIST-P256", FIPS186-2, 2000)
 - ▶ 2²⁵⁵ 19 (Bernstein, 2006)
 - ▶ 2²⁵¹ 9 (Bernstein, Hamburg, Krasnova, Lange, 2013)
 - $2^{448} 2^{224} 1$ (Hamburg, 2015)
- All these primes come with (more or less) fast reduction algorithms

- "You cannot just simply pull some nice prime out of your hat!"
- In fact, very often we can.
- For cryptography we construct curves over fields of "nice" order
- Examples:
 - ▶ $2^{192} 2^{64} 1$ ("NIST-P192", FIPS186-2, 2000)
 - ▶ 2²²⁴ 2⁹⁶ + 1 ("NIST-P224", FIPS186-2, 2000)
 - ▶ $2^{256} 2^{224} + 2^{192} + 2^{96} 1$ ("NIST-P256", FIPS186-2, 2000)
 - ▶ 2²⁵⁵ 19 (Bernstein, 2006)
 - ▶ $2^{251} 9$ (Bernstein, Hamburg, Krasnova, Lange, 2013)
 - $2^{448} 2^{224} 1$ (Hamburg, 2015)
- All these primes come with (more or less) fast reduction algorithms
- More about general primes later
- For the moment let's stick to $2^{255} 19$

Carrying after multiplication

```
long long c;
for(i=0;i<15;i++)</pre>
{
  c = r[i] >> 16;
  r[i+1] += c;
  c <<= 16;
  r[i] -= c;
}
c = r[15] >> 16;
r[0] += 38*c;
c <<= 16;
r[15] -= c;
```

Carrying after multiplication

```
long long c;
for(i=0;i<15;i++)</pre>
ł
  c = r[i] >> 16;
  r[i+1] += c;
  c <<= 16;
  r[i] -= c:
}
c = r[15] >> 16;
r[0] += 38*c;
c <<= 16;
r[15] -= c;
```

Coefficient r[0] may still be too large: carry again to r[1]

How about squaring?

#define bigint_square(R,X) bigint_mul(R,X,X)

How about squaring?

```
/* 256-bit integers in radix 2<sup>16</sup> */
typedef signed long long bigint[16];
```

```
void square_prodscan(signed long long r[31],
                    const bigint x)
ł
  r[0] = x[0] * x[0];
  r[1] = x[1] * x[0];
  r[1] += x[0] * x[1];
  r[2] = x[2] * x[0];
  r[2] += x[1] * x[1];
  r[2] += x[0] * x[2];
  . . .
  r[29] = x[15] * x[14];
  r[29] += x[14] * x[15];
```

r[30] = x[15] * x[15]:

}

How about squaring?

```
/* 256-bit integers in radix 2^16 */
typedef signed long long bigint[16];
```

```
void square_prodscan(signed long long r[31],
                    const bigint x)
ł
  signed long long _2x[16];
  int i;
  for(i=0;i<16;i++)</pre>
   2x[i] = 2*x[i];
  r[0] = x[0] * x[0];
  r[1] = 2x[1] * x[0];
  r[2] = 2x[2] * x[0];
  r[2] += x[1] * x[1];
  . . .
  r[29] = 2x[15] * x[14];
  r[30] = x[15] * x[15];
```

}

Squaring vs. multiplication

Multiplication needs

- ▶ 256 multiplications
- ▶ 225 additions

Squaring needs

- ▶ 136 multiplications
- ▶ 105 additions
- $\blacktriangleright~15$ additions or shifts or multiplications by 2 for precomputation

How about other prime fields?

- ▶ So far: reductions only modulo "nice" primes
- What if somebody just throws an ugly prime at you?

How about other prime fields?

- So far: reductions only modulo "nice" primes
- What if somebody just throws an ugly prime at you?
- \blacktriangleright Example: German BSI is pushing the "Brainpool curves", over fields \mathbb{F}_p with

2145944992304435472941311

 $= 0xD7C134AA264366862A18302575D1D787B09F07579 \\ 7DA89F57EC8C0FF$

or

 $p_{256} = 7688495639704534422080974662900164909303795 \\0200943055203735601445031516197751 \\= 0xA9FB57DBA1EEA9BC3E660A909D838D726E3BF623D \\52620282013481D1F6E5377$

How about other prime fields?

- So far: reductions only modulo "nice" primes
- What if somebody just throws an ugly prime at you?
- \blacktriangleright Example: German BSI is pushing the "Brainpool curves", over fields \mathbb{F}_p with

2145944992304435472941311

 $= 0xD7C134AA264366862A18302575D1D787B09F07579 \\ 7DA89F57EC8C0FF$

or

 $\begin{array}{l} p_{256} =& 7688495639704534422080974662900164909303795 \backslash \\ & 0200943055203735601445031516197751 \cr =& 0xA9FB57DBA1EEA9BC3E660A909D838D726E3BF623D \backslash \\ & 52620282013481D1F6E5377 \cr \end{array}$

► Another example: Pairing-friendly curves are typically defined over fields F_p where p has some structure, but hard to exploit for fast arithmetic

▶ We have the following problem:

- We multiply two *n*-limb big integers and obtain a 2n-limb result t
- We need to find $t \mod p$

▶ We have the following problem:

- We multiply two n-limb big integers and obtain a 2n-limb result t
- We need to find $t \mod p$

▶ Idea: Perform big-integer division with remainder (expensive!)

We have the following problem:

- We multiply two n-limb big integers and obtain a 2n-limb result t
- We need to find $t \mod p$
- Idea: Perform big-integer division with remainder (expensive!)
- Better idea (Montgomery, 1985):
 - Let R be such that gcd(R, p) = 1 and t
 - Represent an element a of \mathbb{F}_p as $aR \mod p$
 - Multiplication of aR and bR yields $t = abR^2$ (2n limbs)
 - ▶ Now compute *Montgomery reduction*: $tR^{-1} \mod p$

▶ We have the following problem:

- We multiply two n-limb big integers and obtain a 2n-limb result t
- We need to find $t \mod p$
- Idea: Perform big-integer division with remainder (expensive!)
- Better idea (Montgomery, 1985):
 - Let R be such that gcd(R, p) = 1 and t
 - Represent an element a of \mathbb{F}_p as $aR \mod p$
 - Multiplication of aR and bR yields $t = abR^2$ (2n limbs)
 - ▶ Now compute *Montgomery reduction*: $tR^{-1} \mod p$
 - ▶ For some choices of R this is more efficient than division
 - Typical choice for radix-b representation: $R = b^n$

Montgomery reduction (pseudocode)

```
Require: p = (p_{n-1}, ..., p_0)_b with gcd(p, b) = 1, R = b^n,
  p' = -p^{-1} \mod b and t = (t_{2n-1}, \ldots, t_0)_b
Ensure: tR^{-1} \mod p
  A \leftarrow t
  for i from 0 to n-1 do
       u \leftarrow a_i p' \mod b
       A \leftarrow A + u \cdot p \cdot b^i
  end for
  A \leftarrow A/b^n
  if A > p then
       A \leftarrow A - p
  end if
```

return A

- Some cost for transforming to Montgomery representation and back
- Only efficient if many operations are performed in Montgomery representation

- Some cost for transforming to Montgomery representation and back
- Only efficient if many operations are performed in Montgomery representation
- ▶ The algorithms takes $n^2 + n$ multiplication instructions
- \blacktriangleright *n* of those are "shortened" multiplications (modulo *b*)

- ► Some cost for transforming to Montgomery representation and back
- Only efficient if many operations are performed in Montgomery representation
- ▶ The algorithms takes $n^2 + n$ multiplication instructions
- ▶ n of those are "shortened" multiplications (modulo b)
- The cost is roughly the same as schoolbook multiplication

- ► Some cost for transforming to Montgomery representation and back
- Only efficient if many operations are performed in Montgomery representation
- ▶ The algorithms takes $n^2 + n$ multiplication instructions
- ▶ n of those are "shortened" multiplications (modulo b)
- The cost is roughly the same as schoolbook multiplication
- Careful about conditional subtraction (timing attacks!)

- Some cost for transforming to Montgomery representation and back
- Only efficient if many operations are performed in Montgomery representation
- ▶ The algorithms takes $n^2 + n$ multiplication instructions
- ▶ n of those are "shortened" multiplications (modulo b)
- The cost is roughly the same as schoolbook multiplication
- Careful about conditional subtraction (timing attacks!)
- One can merge schoolbook multiplication with Montgomery reduction: "Montgomery multiplication"

Still missing: inversion

▶ Inversion is typically *much* more expensive than multiplication

Still missing: inversion

- Inversion is typically much more expensive than multiplication
- Efficient ECC arithmetic avoids frequent inversions
- ECC can typically not avoid all inversions
- ▶ We need inversion, but we do (usually) not need it often

Still missing: inversion

- Inversion is typically much more expensive than multiplication
- Efficient ECC arithmetic avoids frequent inversions
- ECC can typically not avoid all inversions
- ▶ We need inversion, but we do (usually) not need it often
- Two approaches to inversion:
 - 1. Extended Euclidean algorithm
 - 2. Fermat's little theorem

Extended Euclidean algorithm

 \blacktriangleright Given two integers a,b, the Extended Euclidean algorithm finds

- The greatest common divisor of a and b
- Integers u and v, such that $a \cdot u + b \cdot v = gcd(a, b)$
Extended Euclidean algorithm

 \blacktriangleright Given two integers a,b, the Extended Euclidean algorithm finds

- The greatest common divisor of a and b
- Integers u and v, such that $a \cdot u + b \cdot v = gcd(a, b)$

It is based on the observation that

$$gcd(a,b) = gcd(b,a-qb) \quad \forall q \in \mathbb{Z}$$

Extended Euclidean algorithm

 \blacktriangleright Given two integers a,b, the Extended Euclidean algorithm finds

- The greatest common divisor of a and b
- Integers u and v, such that $a \cdot u + b \cdot v = gcd(a, b)$

It is based on the observation that

$$gcd(a,b) = gcd(b,a-qb) \quad \forall q \in \mathbb{Z}$$

• To compute $a^{-1} \pmod{p}$, use the algorithm to compute

$$a \cdot u + p \cdot v = \gcd(a, p) = 1$$

• Now it holds that $u \equiv a^{-1} \pmod{p}$

Extended Euclidean algorithm (pseudocode)

```
Require: Integers a and b.
Ensure: An integer tuple (u, v, d) satisfying a \cdot u + b \cdot v = d = \gcd(a, b)
   u \leftarrow 1
   v \leftarrow 0
   d \leftarrow a
   v_1 \leftarrow 0
   v_3 \leftarrow b
   while (v_3 \neq 0) do
         q \leftarrow \lfloor \frac{d}{v_2} \rfloor
         t_3 \leftarrow d \mod v_3
         t_1 \leftarrow u - qv_1
         u \leftarrow v_1
         d \leftarrow v_3
         v_1 \leftarrow t_1
         v_3 \leftarrow t_3
   end while
   v \leftarrow \frac{d-au}{b}
   return (u, v, d)
```

Some notes about the Extended Euclidean algorithm

- Core operation are divisions with remainder
- ▶ This lecture: no details about big-integer division
- Version without divisions: binary extended gcd: Handbook of applied cryptography, Alg. 14.61

Some notes about the Extended Euclidean algorithm

- Core operation are divisions with remainder
- This lecture: no details about big-integer division
- Version without divisions: binary extended gcd: Handbook of applied cryptography, Alg. 14.61
- The running time (number of loop iterations) depends on the inputs
- We usually do not want this for cryptography (timing attacks!)

Some notes about the Extended Euclidean algorithm

- Core operation are divisions with remainder
- This lecture: no details about big-integer division
- Version without divisions: binary extended gcd:

Handbook of applied cryptography, Alg. 14.61

- The running time (number of loop iterations) depends on the inputs
- We usually do not want this for cryptography (timing attacks!)
- Possible protection: blinding
 - Multiply a by random integer r
 - ► Invert, obtain r⁻¹a⁻¹
 - Multiply again by r to obtain a^{-1}
- Note that this requires a source of randomness

Theorem

Let p be prime. Then for any integer a it holds that $a^{p-1}\equiv 1 \pmod{p}$

Theorem

Let p be prime. Then for any integer a it holds that $a^{p-1} \equiv 1 \pmod{p}$

• This implies that $a^{p-2} \equiv a^{-1} \pmod{p}$

• Obvious algorithm for inversion: Exponentiation with p-2

Theorem

Let p be prime. Then for any integer a it holds that $a^{p-1}\equiv 1 \pmod{p}$

- This implies that $a^{p-2} \equiv a^{-1} \pmod{p}$
- ▶ Obvious algorithm for inversion: Exponentiation with p-2
- ▶ The exponent is quite large (e.g., 255 bits), is that efficient?

Theorem

Let p be prime. Then for any integer a it holds that $a^{p-1} \equiv 1 \pmod{p}$

- This implies that $a^{p-2} \equiv a^{-1} \pmod{p}$
- ▶ Obvious algorithm for inversion: Exponentiation with p-2
- ▶ The exponent is quite large (e.g., 255 bits), is that efficient?
- Yes, fairly:
 - Exponent is fixed and known at compile time
 - Can spend quite some time on finding an efficient addition chain (next lecture)
 - ► Inversion modulo 2²⁵⁵ 19 needs 254 squarings and 11 multiplications in F_{2²⁵⁵-19}

Inversion in $\mathbb{F}_{2^{255}-19}$

```
void gfe_invert(gfe r, const gfe x)
ſ
gfe z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t;
int i:
/* 2 */
                    gfe_square(z2,x);
/* 4 */
                    gfe_square(t,z2);
/* 8 */
                    gfe_square(t,t);
/* 9 */
                    gfe_mul(z9,t,x);
/* 11 */
                    gfe_mul(z11,z9,z2);
/* 22 */ gfe_square(t,z11);
/* 2^5 - 2^0 = 31 * / gfe_mul(z_2_5_0,t,z_9);
/* 2^6 - 2^1 */
                    gfe_square(t, z2_5_0);
/* 2^10 - 2^5 */
                     for (i = 1;i < 5;i++) { gfe_square(t,t); }</pre>
/* 2^10 - 2^0 */
                    gfe_mul(z2_10_0,t,z2_5_0);
/* 2^11 - 2^1 */
                     gfe_square(t, z2_{10_0});
/* 2^20 - 2^10 */
                     for (i = 1; i < 10; i++) \{ gfe_square(t,t); \}
/* 2^20 - 2^0 */
                     gfe_mul(z2_20_0,t,z2_10_0);
/* 2^21 - 2^1 */
                    gfe_square(t,z2_20_0);
/* 2^40 - 2^20 */
                     for (i = 1;i < 20;i++) { gfe_square(t,t); }</pre>
/* 2^40 - 2^0 */
                    gfe_mul(t,t,z2_20_0);
```

Inversion in $\mathbb{F}_{2^{255}-19}$

/* 2^41 - 2^1 */ gfe_square(t,t); /* 2^50 - 2^10 */ for (i = 1;i < 10;i++) { gfe_square(t,t); }</pre> /* 2^50 - 2^0 */ gfe_mul(z2_50_0,t,z2_10_0); /* 2^51 - 2^1 */ gfe_square(t, $z2_50_0$); /* 2^100 - 2^50 */ for (i = 1;i < 50;i++) { gfe_square(t,t); }</pre> /* 2^100 - 2^0 */ gfe_mul(z2_100_0,t,z2_50_0); /* 2^101 - 2^1 */ gfe_square(t,z2_100_0); /* 2^200 - 2^100 */ for (i = 1;i < 100;i++) { gfe_square(t,t); }</pre> /* 2^200 - 2^0 */ gfe_mul(t,t,z2_100_0); /* 2^201 - 2^1 */ gfe_square(t,t); /* 2^250 - 2^50 */ for (i = 1;i < 50;i++) { gfe_square(t,t); }</pre> /* 2^250 - 2^0 */ gfe_mul(t,t,z2_50_0); /* 2^251 - 2^1 */ gfe_square(t,t); /* 2^252 - 2^2 */ gfe_square(t,t); /* 2^253 - 2^3 */ gfe_square(t,t); /* 2^254 - 2^4 */ gfe_square(t,t); gfe_square(t,t); /* 2^255 - 2^5 */ /* 2^255 - 21 */ gfe_mul(r,t,z11); }

- Why would you write low-level arithmetic yourself?
- Aren't there some good libraries for this?

- Why would you write low-level arithmetic yourself?
- Aren't there some good libraries for this?
- There are:
 - GMP (http://gmplib.org), high-performance arithmetic on multiprecision numbers

- Why would you write low-level arithmetic yourself?
- Aren't there some good libraries for this?
- There are:
 - GMP (http://gmplib.org), high-performance arithmetic on multiprecision numbers
 - NTL (http://shoup.net/ntl/), number-theory library, higher level than GMP, uses GMP

- Why would you write low-level arithmetic yourself?
- Aren't there some good libraries for this?
- There are:
 - GMP (http://gmplib.org), high-performance arithmetic on multiprecision numbers
 - NTL (http://shoup.net/ntl/), number-theory library, higher level than GMP, uses GMP
 - OpenSSL Bignum (http://openssl.org), low-level routines in OpenSSL

- Why would you write low-level arithmetic yourself?
- Aren't there some good libraries for this?
- There are:
 - GMP (http://gmplib.org), high-performance arithmetic on multiprecision numbers
 - NTL (http://shoup.net/ntl/), number-theory library, higher level than GMP, uses GMP
 - OpenSSL Bignum (http://openssl.org), low-level routines in OpenSSL
 - mpF_q (http://mpfq.gforge.inria.fr/), a finite-field library (generator)

► Libraries don't know the modulus (except for mpF_q), cannot optimize for a fixed modulus

- ► Libraries don't know the modulus (except for mpFq), cannot optimize for a fixed modulus
- Libraries don't know the sequence of field operations you're computing (e.g., point addition), cannot use lazy reduction

- ► Libraries don't know the modulus (except for mpFq), cannot optimize for a fixed modulus
- Libraries don't know the sequence of field operations you're computing (e.g., point addition), cannot use lazy reduction
- Libraries are not always timing-attack protected

- ► Libraries don't know the modulus (except for mpF_q), cannot optimize for a fixed modulus
- Libraries don't know the sequence of field operations you're computing (e.g., point addition), cannot use lazy reduction
- Libraries are not always timing-attack protected
- Consequence: ECC speed records are achieved with hand-optimized assembly implementations

Part II Elliptic-curve cryptography from a crypto-engineering perspective

• Let G be a cyclic, finite, abelian Group (written additively) and let P be a generator of G

- Let G be a cyclic, finite, abelian Group (written additively) and let P be a generator of G
- \blacktriangleright Alice chooses random $a \in \{0, \ldots, |G|-1\},$ computes aP , sends to Bob
- \blacktriangleright Bob chooses random $b \in \{0, \ldots, |G|-1\},$ computes bP, sends to Alice

- ► Let G be a cyclic, finite, abelian Group (written additively) and let P be a generator of G
- \blacktriangleright Alice chooses random $a \in \{0, \ldots, |G|-1\},$ computes aP, sends to Bob
- \blacktriangleright Bob chooses random $b \in \{0, \ldots, |G|-1\},$ computes bP, sends to Alice
- Alice computes joint key a(bP)
- Bob computes joint key b(aP)

- Let G be a cyclic, finite, abelian Group (written additively) and let P be a generator of G
- \blacktriangleright Alice chooses random $a \in \{0, \ldots, |G|-1\},$ computes aP, sends to Bob
- \blacktriangleright Bob chooses random $b \in \{0, \ldots, |G|-1\},$ computes bP, sends to Alice
- Alice computes joint key a(bP)
- Bob computes joint key b(aP)
- DLP in G: given $kP \in G$ and P, find k
- Solving the DLP breaks security of Diffie-Hellman

- Let G be a cyclic, finite, abelian Group (written additively) and let P be a generator of G
- \blacktriangleright Alice chooses random $a \in \{0, \ldots, |G|-1\}$, computes aP , sends to Bob
- \blacktriangleright Bob chooses random $b \in \{0, \ldots, |G|-1\},$ computes bP, sends to Alice
- ▶ Alice computes joint key *a*(*bP*)
- Bob computes joint key b(aP)
- DLP in G: given $kP \in G$ and P, find k
- Solving the DLP breaks security of Diffie-Hellman

Groups with hard DLP

▶ Traditional answer: \mathbb{Z}_p^* with large prime-order subgroup

- ► Let G be a cyclic, finite, abelian Group (written additively) and let P be a generator of G
- \blacktriangleright Alice chooses random $a \in \{0, \ldots, |G|-1\}$, computes aP , sends to Bob
- \blacktriangleright Bob chooses random $b \in \{0, \ldots, |G|-1\},$ computes bP, sends to Alice
- ▶ Alice computes joint key *a*(*bP*)
- Bob computes joint key b(aP)
- DLP in G: given $kP \in G$ and P, find k
- Solving the DLP breaks security of Diffie-Hellman

Groups with hard DLP

- Traditional answer: \mathbb{Z}_p^* with large prime-order subgroup
- Modern answer: Elliptic curve over \mathbb{F}_q with large prime-order subgroup

- Let G be a cyclic, finite, abelian Group (written additively) and let P be a generator of G
- \blacktriangleright Alice chooses random $a \in \{0, \ldots, |G|-1\}$, computes aP , sends to Bob
- \blacktriangleright Bob chooses random $b \in \{0, \ldots, |G|-1\},$ computes bP, sends to Alice
- Alice computes joint key a(bP)
- Bob computes joint key b(aP)
- DLP in G: given $kP \in G$ and P, find k
- Solving the DLP breaks security of Diffie-Hellman

Groups with hard DLP

- ▶ Traditional answer: \mathbb{Z}_p^* with large prime-order subgroup
- Modern answer: Elliptic curve over \mathbb{F}_q with large prime-order subgroup
- Sophisticated answer (not in this lecture): hyperelliptic curves of genus 2

- ► Let G be a cyclic, finite, abelian Group (written additively) and let P be a generator of G
- \blacktriangleright Alice chooses random $a \in \{0, \ldots, |G|-1\}$, computes aP , sends to Bob
- \blacktriangleright Bob chooses random $b \in \{0, \ldots, |G|-1\},$ computes bP, sends to Alice
- Alice computes joint key a(bP)
- Bob computes joint key b(aP)
- DLP in G: given $kP \in G$ and P, find k
- Solving the DLP breaks security of Diffie-Hellman

Groups with hard DLP

- Traditional answer: \mathbb{Z}_p^* with large prime-order subgroup
- Modern answer: Elliptic curve over \mathbb{F}_q with large prime-order subgroup
- Sophisticated answer (not in this lecture): hyperelliptic curves of genus 2

Typical view on elliptic curves

Definition

Let K be a field and let $a_1, a_2, a_3, a_4, a_6 \in K$. Then the following equation defines an elliptic curve E:

$$E: y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

if the discriminant Δ of E is not equal to zero. This equation is called the *Weierstrass form* of an elliptic curve.

Typical view on elliptic curves

Definition

Let K be a field and let $a_1, a_2, a_3, a_4, a_6 \in K$. Then the following equation defines an elliptic curve E:

$$E: y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

if the discriminant Δ of E is not equal to zero. This equation is called the *Weierstrass form* of an elliptic curve.

Characteristic $\neq 2, 3$

If $char(K) \neq 2, 3$ we can use a simplified equation:

$$E: y^2 = x^3 + ax + b$$

Typical view on elliptic curves

Definition

Let K be a field and let $a_1, a_2, a_3, a_4, a_6 \in K$. Then the following equation defines an elliptic curve E:

$$E: y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

if the discriminant Δ of E is not equal to zero. This equation is called the *Weierstrass form* of an elliptic curve.

$\mathsf{Characteristic} \neq 2, 3$

If $char(K) \neq 2, 3$ we can use a simplified equation:

$$E: y^2 = x^3 + ax + b$$

Characteristic 2

If char(K) = 2 we can (usually) use a simplified equation:

$$E: y^2 + xy = x^3 + ax^2 + b$$

Rational points

Setup for cryptography

- Choose $K = \mathbb{F}_q$
- Consider the set of \mathbb{F}_q -rational points:

$$E(\mathbb{F}_q) = \{(x, y) \in \mathbb{F}_q \times \mathbb{F}_q : y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6\} \cup \{\mathcal{O}\}$$

Rational points

Setup for cryptography

- Choose $K = \mathbb{F}_q$
- Consider the set of \mathbb{F}_q -rational points:

 $E(\mathbb{F}_q) = \{(x,y) \in \mathbb{F}_q \times \mathbb{F}_q : y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6\} \cup \{\mathcal{O}\}$

▶ The element *O* is the "point at infinity"

Rational points

Setup for cryptography

- Choose $K = \mathbb{F}_q$
- Consider the set of \mathbb{F}_q -rational points:

 $E(\mathbb{F}_q) = \{(x,y) \in \mathbb{F}_q \times \mathbb{F}_q : y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6\} \cup \{\mathcal{O}\}$

- ▶ The element *O* is the "point at infinity"
- This set forms a group (together with addition law)
Rational points

Setup for cryptography

- Choose $K = \mathbb{F}_q$
- Consider the set of \mathbb{F}_q -rational points:

 $E(\mathbb{F}_q) = \{(x,y) \in \mathbb{F}_q \times \mathbb{F}_q : y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6\} \cup \{\mathcal{O}\}$

- ▶ The element *O* is the "point at infinity"
- This set forms a group (together with addition law)
- Order of this group: $|E(\mathbb{F}_q)| \approx |\mathbb{F}_q|$

Addition of points

• Add points P = (-0, 9; -0, 4135) and Q = (-0, 1; 0, 3146)

Addition of points

- Add points P = (-0, 9; -0, 4135) and Q = (-0, 1; 0, 3146)
- Compute line through the two points

Addition of points

- Add points P = (-0, 9; -0, 4135) and Q = (-0, 1; 0, 3146)
- Compute line through the two points
- Determine third intersection $T = (x_T, y_T)$ with the elliptic curve

Addition of points

- Add points P = (-0, 9; -0, 4135) and Q = (-0, 1; 0, 3146)
- Compute line through the two points
- Determine third intersection $T = (x_T, y_T)$ with the elliptic curve
- Result of the addition: $P + Q = (x_T, -y_T)$

Point doubling

• Double the point P = (-0.7, 0.5975)

- Double the point P = (-0.7, 0.5975)
- \blacktriangleright Compute the tangent on P

- Double the point P = (-0.7, 0.5975)
- Compute the tangent on P
- Determine second intersection $T = (x_T, y_T)$ with the elliptic curve

- Double the point P = (-0.7, 0.5975)
- Compute the tangent on P
- Determine second intersection $T = (x_T, y_T)$ with the elliptic curve
- Result of the addition: $P + Q = (x_T, -y_T)$

Curve equation: $y^2 = x^3 + ax + b$

Curve equation: $y^2 = x^3 + ax + b$ Point addition

▶
$$P = (x_P, y_P), Q = (x_Q, y_Q) \rightarrow P + Q = R = (x_R, y_R)$$
 with

Curve equation: $y^2 = x^3 + ax + b$ Point addition

►
$$P = (x_P, y_P), Q = (x_Q, y_Q) \rightarrow P + Q = R = (x_R, y_R)$$
 with
► $x_R = \left(\frac{y_Q - y_P}{x_Q - x_P}\right)^2 - x_P - x_Q$
► $y_R = \left(\frac{y_Q - y_P}{x_Q - x_P}\right) (x_P - x_R) - y_P$

Curve equation: $y^2 = x^3 + ax + b$ Point addition

►
$$P = (x_P, y_P), Q = (x_Q, y_Q) \rightarrow P + Q = R = (x_R, y_R)$$
 with
► $x_R = \left(\frac{y_Q - y_P}{x_Q - x_P}\right)^2 - x_P - x_Q$
► $y_R = \left(\frac{y_Q - y_P}{x_Q - x_P}\right) (x_P - x_R) - y_P$

•
$$P = (x_P, y_P), 2P = (x_R, y_R)$$
 with

Curve equation: $y^2 = x^3 + ax + b$ Point addition

▶
$$P = (x_P, y_P), Q = (x_Q, y_Q) \rightarrow P + Q = R = (x_R, y_R)$$
 with
▶ $x_R = \left(\frac{y_Q - y_P}{x_Q - x_P}\right)^2 - x_P - x_Q$
▶ $y_R = \left(\frac{y_Q - y_P}{x_Q - x_P}\right) (x_P - x_R) - y_P$

$$P = (x_P, y_P), 2P = (x_R, y_R) \text{ with}$$

$$x_R = \left(\frac{3x_P^2 + a}{2y_P}\right)^2 - 2x_P$$

$$y_R = \left(\frac{3x_P^2 + a}{2y_P}\right)(x_P - x_R) - y_P$$

 $\blacktriangleright \text{ Neutral element is } \mathcal{O}$

• Inverse of a point (x, y) is (x, -y)

- \blacktriangleright Neutral element is ${\cal O}$
- Inverse of a point (x, y) is (x, -y)
- ▶ Note: Formulas don't work for P + (-P), also don't work for \mathcal{O}
- Need to distinguish these cases!

- Neutral element is O
- ▶ Inverse of a point (x, y) is (x, -y)
- ▶ Note: Formulas don't work for P + (-P), also don't work for O
- Need to distinguish these cases!
- "Uniform" addition law in Hışıl's Ph.D. thesis, Section 5.5.2 (http://eprints.qut.edu.au/33233/):
 - Move special cases to other points
 - Not safe to use on arbitrary input points!

- Neutral element is O
- Inverse of a point (x, y) is (x, -y)
- ▶ Note: Formulas don't work for P + (-P), also don't work for \mathcal{O}
- Need to distinguish these cases!
- "Uniform" addition law in Hışıl's Ph.D. thesis, Section 5.5.2 (http://eprints.qut.edu.au/33233/):
 - Move special cases to other points
 - Not safe to use on arbitrary input points!
- \blacktriangleright Formulas for curves over \mathbb{F}_{2^k} look slightly different, but same special cases

Finding a suitable curve

Security requirements for ECC

- ▶ $\ell = |E(\mathbb{F}_q)|$ must have large prime-order subgroup
- \blacktriangleright For n bits of security we need 2n-bit prime-order subgroup

Finding a suitable curve

Security requirements for ECC

- ▶ $\ell = |E(\mathbb{F}_q)|$ must have large prime-order subgroup
- For n bits of security we need 2n-bit prime-order subgroup
- ▶ Impossible to transfer DLP to less secure groups:
 - ℓ must not be equal to q
 - \blacktriangleright We need $\ell \nmid p^k 1$ for small k

Finding a suitable curve

Security requirements for ECC

- ▶ $\ell = |E(\mathbb{F}_q)|$ must have large prime-order subgroup
- For n bits of security we need 2n-bit prime-order subgroup
- Impossible to transfer DLP to less secure groups:
 - ℓ must not be equal to q
 - \blacktriangleright We need $\ell \nmid p^k 1$ for small k

Finding a curve

- Fix finite field \mathbb{F}_q of suitable size
- Fix curve parameter a (quite common: a = -3)
- Pick curve parameter b until E fulfills desired properties
- This requires efficient "point counting"
- This requires efficient factorization or primality proving

"The nice thing about standards is that you have so many to choose from." – Andrew S. Tanenbaum

"The nice thing about standards is that you have so many to choose from. " – Andrew S. Tanenbaum

► Various standardized curves, most well-known: NIST curves:

- ▶ Big-prime field curves with 192, 224, 256, 384, and 521 bits
- ▶ Binary curves with 163, 233, 283, 409, and 571 bits
- ▶ Binary Koblitz curves with 163, 233, 283, 409, and 571 bits

"The nice thing about standards is that you have so many to choose from. " – Andrew S. Tanenbaum

▶ Various standardized curves, most well-known: NIST curves:

- ▶ Big-prime field curves with 192, 224, 256, 384, and 521 bits
- ▶ Binary curves with 163, 233, 283, 409, and 571 bits
- ▶ Binary Koblitz curves with 163, 233, 283, 409, and 571 bits

SECG curves (Certicom), prime-field and binary curves

"The nice thing about standards is that you have so many to choose from. " – Andrew S. Tanenbaum

▶ Various standardized curves, most well-known: NIST curves:

- ▶ Big-prime field curves with 192, 224, 256, 384, and 521 bits
- ▶ Binary curves with 163, 233, 283, 409, and 571 bits
- ▶ Binary Koblitz curves with 163, 233, 283, 409, and 571 bits
- SECG curves (Certicom), prime-field and binary curves
- Brainpool curves (BSI), only prime-field curves

"The nice thing about standards is that you have so many to choose from. " – Andrew S. Tanenbaum

Various standardized curves, most well-known: NIST curves:

- ▶ Big-prime field curves with 192, 224, 256, 384, and 521 bits
- ▶ Binary curves with 163, 233, 283, 409, and 571 bits
- ▶ Binary Koblitz curves with 163, 233, 283, 409, and 571 bits
- SECG curves (Certicom), prime-field and binary curves
- Brainpool curves (BSI), only prime-field curves
- ▶ FRP256v1 (ANSSI), one prime-field curve (256 bits)

Binary vs. big prime

Curves over big-prime fields

- Many fields of a given size \Rightarrow many curves
- Efficient in software (can use hardware multipliers)
- Less efficient in hardware

Binary vs. big prime

Curves over big-prime fields

- Many fields of a given size \Rightarrow many curves
- Efficient in software (can use hardware multipliers)
- Less efficient in hardware

Curves over binary fields

- Important for security: exponent k in \mathbb{F}_{p^k} has to be prime
- Not many fields (not that many curves)
- More efficient in hardware
- Efficient in software only on some microarchitectures
- A hell to implement securely in software on some other microarchitectures

▶ Choose security level (e.g., 128 bits)

- ▶ Choose security level (e.g., 128 bits)
- Decide whether you want binary or big-prime field arithmetic, let's say big prime

- ▶ Choose security level (e.g., 128 bits)
- Decide whether you want binary or big-prime field arithmetic, let's say big prime
- Pick corresponding standard curve, e.g., NIST-P256

- ▶ Choose security level (e.g., 128 bits)
- Decide whether you want binary or big-prime field arithmetic, let's say big prime
- Pick corresponding standard curve, e.g., NIST-P256
- Implement field arithmetic

- ▶ Choose security level (e.g., 128 bits)
- Decide whether you want binary or big-prime field arithmetic, let's say big prime
- Pick corresponding standard curve, e.g., NIST-P256
- Implement field arithmetic
- Implement ECC addition and doubling

- Choose security level (e.g., 128 bits)
- Decide whether you want binary or big-prime field arithmetic, let's say big prime
- Pick corresponding standard curve, e.g., NIST-P256
- Implement field arithmetic
- Implement ECC addition and doubling
- Implement scalar multiplication (next lecture)
Putting it together

- ▶ Choose security level (e.g., 128 bits)
- Decide whether you want binary or big-prime field arithmetic, let's say big prime
- Pick corresponding standard curve, e.g., NIST-P256
- Implement field arithmetic
- Implement ECC addition and doubling
- Implement scalar multiplication (next lecture)
- You're done with ECDH software

Putting it together

- Choose security level (e.g., 128 bits)
- Decide whether you want binary or big-prime field arithmetic, let's say big prime
- Pick corresponding standard curve, e.g., NIST-P256
- Implement field arithmetic
- Implement ECC addition and doubling
- Implement scalar multiplication (next lecture)
- ▶ You're done with BAD (!) ECDH software

Inversions

- \blacktriangleright Adding $P=(x_P,y_P)$ and $Q=(x_Q,y_Q)$ needs an inversion in \mathbb{F}_q
- Inversions are expensive
- Constant-time inversions are even more expensive

Inversions

- \blacktriangleright Adding $P=(x_P,y_P)$ and $Q=(x_Q,y_Q)$ needs an inversion in \mathbb{F}_q
- Inversions are expensive
- Constant-time inversions are even more expensive

Solution: projective coordinates

▶ Store fractions of elements of \mathbb{F}_q , invert only once at the end

Inversions

- ▶ Adding $P = (x_P, y_P)$ and $Q = (x_Q, y_Q)$ needs an inversion in \mathbb{F}_q
- Inversions are expensive
- Constant-time inversions are even more expensive

Solution: projective coordinates

- ▶ Store fractions of elements of \mathbb{F}_q , invert only once at the end
- ▶ Represent points in *projective coordinates*: $P = (X_P : Y_P : Z_P)$ with $x_P = X_P/Z_P$ and $y_P = Y_P/Z_P$
- The point (1:1:0) is the point at infinity

Inversions

- \blacktriangleright Adding $P=(x_P,y_P)$ and $Q=(x_Q,y_Q)$ needs an inversion in \mathbb{F}_q
- Inversions are expensive
- Constant-time inversions are even more expensive

Solution: projective coordinates

- ▶ Store fractions of elements of \mathbb{F}_q , invert only once at the end
- ▶ Represent points in *projective coordinates*: $P = (X_P : Y_P : Z_P)$ with $x_P = X_P/Z_P$ and $y_P = Y_P/Z_P$
- The point (1:1:0) is the point at infinity
- Also possible: weighted projective coordinates:
 - ► Jacobian coordinates: $P = (X_P : Y_P : Z_P)$ with $x_P = X_P/Z_P^2$ and $y_P = Y_P/Z_P^3$
 - ► López-Dahab coordinates (for binary curves): $P = (X_P : Y_P : Z_P)$ with $x_P = X_P/Z_P$ and $y_P = Y_P/Z_P^2$

Inversions

- ▶ Adding $P = (x_P, y_P)$ and $Q = (x_Q, y_Q)$ needs an inversion in \mathbb{F}_q
- Inversions are expensive
- Constant-time inversions are even more expensive

Solution: projective coordinates

- ▶ Store fractions of elements of \mathbb{F}_q , invert only once at the end
- ▶ Represent points in *projective coordinates*: $P = (X_P : Y_P : Z_P)$ with $x_P = X_P/Z_P$ and $y_P = Y_P/Z_P$
- The point (1:1:0) is the point at infinity
- Also possible: weighted projective coordinates:
 - ► Jacobian coordinates: $P = (X_P : Y_P : Z_P)$ with $x_P = X_P/Z_P^2$ and $y_P = Y_P/Z_P^3$
 - ▶ López-Dahab coordinates (for binary curves): P = (X_P : Y_P : Z_P) with x_P = X_P/Z_P and y_P = Y_P/Z_P²
- Important: Never send projective representation, always convert to affine!

- Addition of P + Q needs to distinguish different cases:
 - If $P = \mathcal{O}$ return Q
 - Else if $Q = \mathcal{O}$ return P
 - Else if P = Q call doubling routine
 - Else if P = -Q return \mathcal{O}
 - Else use addition formulas

- Addition of P + Q needs to distinguish different cases:
 - If $P = \mathcal{O}$ return Q
 - Else if $Q = \mathcal{O}$ return P
 - Else if P = Q call doubling routine
 - Else if P = -Q return \mathcal{O}
 - Else use addition formulas
- Similar for doubling *P*:
 - If $P = \mathcal{O}$ return P
 - Else if $y_P = 0$ return \mathcal{O}
 - Else use doubling formulas

- Addition of P + Q needs to distinguish different cases:
 - If $P = \mathcal{O}$ return Q
 - Else if $Q = \mathcal{O}$ return P
 - Else if P = Q call doubling routine
 - Else if P = -Q return \mathcal{O}
 - Else use addition formulas
- Similar for doubling P:
 - If $P = \mathcal{O}$ return P
 - Else if $y_P = 0$ return \mathcal{O}
 - Else use doubling formulas
- Constant-time implementations of this are horrible

- Addition of P + Q needs to distinguish different cases:
 - If $P = \mathcal{O}$ return Q
 - Else if $Q = \mathcal{O}$ return P
 - Else if P = Q call doubling routine
 - Else if P = -Q return \mathcal{O}
 - Else use addition formulas
- Similar for doubling P:
 - If $P = \mathcal{O}$ return P
 - Else if $y_P = 0$ return \mathcal{O}
 - Else use doubling formulas
- Constant-time implementations of this are horrible
- \blacktriangleright Good news: Can avoid the checks when computing $k\cdot P$ and $k<|E(\mathbb{F}_q)|$

- Addition of P + Q needs to distinguish different cases:
 - If $P = \mathcal{O}$ return Q
 - Else if $Q = \mathcal{O}$ return P
 - Else if P = Q call doubling routine
 - Else if P = -Q return \mathcal{O}
 - Else use addition formulas
- Similar for doubling P:
 - If $P = \mathcal{O}$ return P
 - Else if $y_P = 0$ return \mathcal{O}
 - Else use doubling formulas
- Constant-time implementations of this are horrible
- \blacktriangleright Good news: Can avoid the checks when computing $k\cdot P$ and $k<|E(\mathbb{F}_q)|$
- ▶ Bad news: Side-channel countermeasures use $k > |E(\mathbb{F}_q)|$

- Addition of P + Q needs to distinguish different cases:
 - If $P = \mathcal{O}$ return Q
 - Else if $Q = \mathcal{O}$ return P
 - Else if P = Q call doubling routine
 - Else if P = -Q return \mathcal{O}
 - Else use addition formulas
- Similar for doubling P:
 - If $P = \mathcal{O}$ return P
 - Else if $y_P = 0$ return \mathcal{O}
 - Else use doubling formulas
- Constant-time implementations of this are horrible
- \blacktriangleright Good news: Can avoid the checks when computing $k\cdot P$ and $k<|E(\mathbb{F}_q)|$
- ▶ Bad news: Side-channel countermeasures use $k > |E(\mathbb{F}_q)|$
- More bad news: Doesn't work for multi-scalar multiplication (next lecture)

- Addition of P + Q needs to distinguish different cases:
 - If $P = \mathcal{O}$ return Q
 - Else if $Q = \mathcal{O}$ return P
 - Else if P = Q call doubling routine
 - Else if P = -Q return \mathcal{O}
 - Else use addition formulas
- Similar for doubling P:
 - If $P = \mathcal{O}$ return P
 - Else if $y_P = 0$ return \mathcal{O}
 - Else use doubling formulas
- Constant-time implementations of this are horrible
- \blacktriangleright Good news: Can avoid the checks when computing $k \cdot P$ and $k < |E(\mathbb{F}_q)|$
- ▶ Bad news: Side-channel countermeasures use $k > |E(\mathbb{F}_q)|$
- More bad news: Doesn't work for multi-scalar multiplication (next lecture)
- Baseline: simple implementations are likely to be wrong or insecure

• Use Montgomery curve: $E_M : By^2 = x^3 + Ax^2 + x$.

 Use x-coordinate-only differential addition chain ("Montgomery ladder", next lecture)

- Use x-coordinate-only differential addition chain ("Montgomery ladder", next lecture)
- Advantages:
 - Works on all inputs, no special cases
 - Very regular structure, easy to protect against timing attacks
 - Point compression/decompression for free

- Use x-coordinate-only differential addition chain ("Montgomery ladder", next lecture)
- Advantages:
 - Works on all inputs, no special cases
 - Very regular structure, easy to protect against timing attacks
 - Point compression/decompression for free
 - Easy to implement, harder to screw up in hard-to-detect ways
 - Simple implementations are likely to be correct and secure

- Use x-coordinate-only differential addition chain ("Montgomery ladder", next lecture)
- Advantages:
 - Works on all inputs, no special cases
 - Very regular structure, easy to protect against timing attacks
 - Point compression/decompression for free
 - Easy to implement, harder to screw up in hard-to-detect ways
 - Simple implementations are likely to be correct and secure
- Disadvantages:
 - Not all curves can be converted to Montgomery shape
 - Always have a cofactor of at least 4
 - Ladders on general Weierstrass curves are much less efficient

- Use x-coordinate-only differential addition chain ("Montgomery ladder", next lecture)
- Advantages:
 - Works on all inputs, no special cases
 - Very regular structure, easy to protect against timing attacks
 - Point compression/decompression for free
 - Easy to implement, harder to screw up in hard-to-detect ways
 - Simple implementations are likely to be correct and secure
- Disadvantages:
 - Not all curves can be converted to Montgomery shape
 - Always have a cofactor of at least 4
 - Ladders on general Weierstrass curves are much less efficient
 - We only get the x coordinate of the result, tricky for signatures
 - Can reconstruct y, but that involves some additional cost

- ► Edwards, 2007: New form for elliptic curves ("Edwards curves")
- Bernstein, Lange, 2007: very fast addition and doubling on these curves
- Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to "twisted Edwards curves"

- ▶ Edwards, 2007: New form for elliptic curves ("Edwards curves")
- Bernstein, Lange, 2007: very fast addition and doubling on these curves
- Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to "twisted Edwards curves"
- Core advantage of (twisted) Edwards curves: complete group law
- No need to handle special cases
- ▶ No "point at infinity" to work with

- ▶ Edwards, 2007: New form for elliptic curves ("Edwards curves")
- Bernstein, Lange, 2007: very fast addition and doubling on these curves
- Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to "twisted Edwards curves"
- Core advantage of (twisted) Edwards curves: complete group law
- ▶ No need to handle special cases
- No "point at infinity" to work with
- \blacktriangleright Can speed up doubling, but addition formulas work for P+P

- ▶ Edwards, 2007: New form for elliptic curves ("Edwards curves")
- Bernstein, Lange, 2007: very fast addition and doubling on these curves
- Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to "twisted Edwards curves"
- Core advantage of (twisted) Edwards curves: complete group law
- No need to handle special cases
- No "point at infinity" to work with
- \blacktriangleright Can speed up doubling, but addition formulas work for P+P
- Efficient (for cryptography) transformation from Weierstrass to (twisted) Edwards only for some curves

- ▶ Edwards, 2007: New form for elliptic curves ("Edwards curves")
- Bernstein, Lange, 2007: very fast addition and doubling on these curves
- Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to "twisted Edwards curves"
- Core advantage of (twisted) Edwards curves: complete group law
- No need to handle special cases
- No "point at infinity" to work with
- \blacktriangleright Can speed up doubling, but addition formulas work for P+P
- Efficient (for cryptography) transformation from Weierstrass to (twisted) Edwards only for some curves
- Always efficient: transformation between Montgomery curves and twisted Edwards curves

- ▶ Edwards, 2007: New form for elliptic curves ("Edwards curves")
- Bernstein, Lange, 2007: very fast addition and doubling on these curves
- Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to "twisted Edwards curves"
- Core advantage of (twisted) Edwards curves: complete group law
- No need to handle special cases
- No "point at infinity" to work with
- \blacktriangleright Can speed up doubling, but addition formulas work for P+P
- Efficient (for cryptography) transformation from Weierstrass to (twisted) Edwards only for some curves
- Always efficient: transformation between Montgomery curves and twisted Edwards curves
- Again: simple implementations are likely to be correct and secure

- ▶ Edwards, 2007: New form for elliptic curves ("Edwards curves")
- Bernstein, Lange, 2007: very fast addition and doubling on these curves
- Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to "twisted Edwards curves"
- Core advantage of (twisted) Edwards curves: complete group law
- No need to handle special cases
- No "point at infinity" to work with
- \blacktriangleright Can speed up doubling, but addition formulas work for P+P
- Efficient (for cryptography) transformation from Weierstrass to (twisted) Edwards only for some curves
- Always efficient: transformation between Montgomery curves and twisted Edwards curves
- Again: simple implementations are likely to be correct and secure
- Disadvantage: always have a cofactor of at least 4

So, what's the deal with the cofactor?

)	Forum Funding System Vulnera	ollity Response The Moner	ro Project English -	
Get Started -	Downloads	Recent News -	Community -	Resources -	
Disclosure of a Major Bug in CryptoNote Based Currencies Posted by: luigi1111 and Riccardo "fluffypony" Spagni May 17, 2017			Ree Logs for the (Held on 2015 Logs for the (Held on 2015	cent Posts Community Meeting 1-02-16 Community Meeting 1-02-02	
Overview			Monero Adds	Blockchain Pruning and	
based cryptocurrencies, and	and patched a critical bu allows for the creation o	n Improves Tra	Improves Transaction Efficiency		
a way that is undetectable to an observer unless they know about the fatal flaw and can search for it.			Logs for the Held on 2019	Logs for the Community Meeting Held on 2019-01-19	

So, what's the deal with the cofactor?

- Protocols need to be careful to avoid subgroup attacks
- Monero screwed this up, which allowed double-spending
- Elegant solution: "Ristretto" encoding by Hamburg, see: https://github.com/otrv4/libgoldilocks

Solution III: Complete group law on Weierstrass curves

- ▶ Bosma, Lenstra, 1995: complete group law for Weierstrass curves
- Problem: Extremely inefficient

Solution III: Complete group law on Weierstrass curves

- ▶ Bosma, Lenstra, 1995: complete group law for Weierstrass curves
- Problem: Extremely inefficient
- Renes, Costello, Batina, 2016: Much faster complete group law for Weierstrass curves
- Somewhat less efficient than (twisted) Edwards
- Covers all curves

ECDH attack scenario

- ► Alice sends point on different (insecure) curve with small subgroup
- Bob computes "shared key" in that small subgroup
- ► Alice learns "shared key" through brute force
- Alice learns Bob's secret scalar modulo the order of the small subgroup

ECDH attack scenario

- ► Alice sends point on different (insecure) curve with small subgroup
- Bob computes "shared key" in that small subgroup
- ► Alice learns "shared key" through brute force
- Alice learns Bob's secret scalar modulo the order of the small subgroup

Countermeasures

 Check that input point is on the curve (functional tests will miss this!)

ECDH attack scenario

- ► Alice sends point on different (insecure) curve with small subgroup
- Bob computes "shared key" in that small subgroup
- ► Alice learns "shared key" through brute force
- Alice learns Bob's secret scalar modulo the order of the small subgroup

Countermeasures

- Check that input point is on the curve (functional tests will miss this!)
- Send compressed points (x, parity(y)); decompression returns (x, y) on the curve or fails

ECDH attack scenario

- ► Alice sends point on different (insecure) curve with small subgroup
- Bob computes "shared key" in that small subgroup
- Alice learns "shared key" through brute force
- Alice learns Bob's secret scalar modulo the order of the small subgroup

Countermeasures

- Check that input point is on the curve (functional tests will miss this!)
- Send compressed points (x, parity(y)); decompression returns (x, y) on the curve or fails
- Send only x (Montgomery ladder); but: x could still be on the "twist" of E
- Make sure that the twist is also secure ("twist security")

Problem IV: Backdoors in standards?

""I no longer trust the [NIST Elliptic Curves] constants. I believe the NSA has manipulated them through their relationships with industry." – Bruce Schneier, 2013.

Problem IV: Backdoors in standards?

""I no longer trust the [NIST Elliptic Curves] constants. I believe the NSA has manipulated them through their relationships with industry." – Bruce Schneier, 2013.

- It is pretty clear that NSA put a backdoor in Dual_EC_DRBG
- Constants of NIST curves have been obtained by hashing random values
- No-backdoor claim: We know the preimages
- It is pretty clear that NSA put a backdoor in Dual_EC_DRBG
- Constants of NIST curves have been obtained by hashing random values
- No-backdoor claim: We know the preimages
- Possible attack if you know a class of vulnerable curves: Generate random seeds until you have found a vulnerable (and seemingly secure) curve

- It is pretty clear that NSA put a backdoor in Dual_EC_DRBG
- Constants of NIST curves have been obtained by hashing random values
- No-backdoor claim: We know the preimages
- Possible attack if you know a class of vulnerable curves: Generate random seeds until you have found a vulnerable (and seemingly secure) curve
- ▶ Fact: There are no known insecurities of NIST curves

- It is pretty clear that NSA put a backdoor in Dual_EC_DRBG
- Constants of NIST curves have been obtained by hashing random values
- No-backdoor claim: We know the preimages
- Possible attack if you know a class of vulnerable curves: Generate random seeds until you have found a vulnerable (and seemingly secure) curve
- ▶ Fact: There are no known insecurities of NIST curves
- Fact: There is no proof that there are no intentional vulnerabilities in NIST curves

- It is pretty clear that NSA put a backdoor in Dual_EC_DRBG
- Constants of NIST curves have been obtained by hashing random values
- No-backdoor claim: We know the preimages
- Possible attack if you know a class of vulnerable curves: Generate random seeds until you have found a vulnerable (and seemingly secure) curve
- ▶ Fact: There are no known insecurities of NIST curves
- Fact: There is no proof that there are no intentional vulnerabilities in NIST curves
- ► For more details, see BADA55 elliptic curves

Overview of various elliptic curves and thorough security analysis by Bernstein and Lange:

https://safecurves.cr.yp.to

(doesn't list cofactor-1 curves, so best to combine with Ristretto)

Point representation and arithmetic

Collection of elliptic-curve shapes, point representations and group-operation formulas by Bernstein and Lange:

https://www.hyperelliptic.org/EFD/