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Secure Crypto

Research over the past decades has produced several secure crypto
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Secure Crypto

Research over the past decades has produced several secure crypto
algorithms:

◮ AES-256 block cipher

◮ AES-CBC + HMAC-SHA256 authenticated encryption

◮ RSA-2048 public-key encryption

◮ ECDSA signatures with the secp256k1 curve (used in Bitcoin)
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Secure Crypto?

◮ Osvik, Shamir, Tromer, 2006: Recover AES-256 secret key of
Linux’s dmcrypt in just 65 ms
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Secure Crypto?

◮ Osvik, Shamir, Tromer, 2006: Recover AES-256 secret key of
Linux’s dmcrypt in just 65 ms

◮ AlFardan, Paterson, 2013: “Lucky13” recovers plaintext of
CBC-mode encryption in pretty much all TLS implementations

◮ Yarom, Falkner, 2014: Attack against RSA-2048 in GnuPG 1.4.13:
“On average, the attack is able to recover 96.7% of the bits of the
secret key by observing a single signature or decryption round.”

◮ Benger, van de Pol, Smart, Yarom, 2014: “reasonable level of
success in recovering the secret key” for OpenSSL ECDSA using
secp256k1 “with as little as 200 signatures”

Those attacks all don’t break the math!
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Timing Attacks

General idea of those attacks

◮ Secret data has influence on timing of software

◮ Attacker measures timing

◮ Attacker computes influence−1 to obtain secret data
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Timing Attacks

General idea of those attacks

◮ Secret data has influence on timing of software

◮ Attacker measures timing

◮ Attacker computes influence−1 to obtain secret data

Two kinds of remote. . .

◮ Timing attacks are a type of side-channel attacks

◮ Unlike other side-channel attacks, they work remotely:
◮ Some need to run attack code in parallel to the target software
◮ Attacker can log in remotely (ssh)
◮ Some attacks work by measuring network delays
◮ Attacker does not even need an account on the target machine

◮ Can’t protect against timing attacks by locking a room
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Problem No. 1

if(secret)

{

do_A();

}

else

{

do_B();

}
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Exponentiation

◮ Core operation in RSA decryption: ad mod n with secret key d

◮ Very similar operation involved in ElGamal, DSA, and ECC
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Exponentiation

◮ Core operation in RSA decryption: ad mod n with secret key d

◮ Very similar operation involved in ElGamal, DSA, and ECC

Example: exponent 105

◮ 105 = 64 + 32 + 8 + 1 = 26 + 25 + 23 + 20

◮ 105 = 1 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20

◮ 105 = ((((((((((1 · 2 + 1) · 2) + 0) · 2) + 1) · 2) + 0) · 2) + 0) · 2) + 1
(Horner’s rule)

◮ a105 = ((((((((((a2 · a)2) · 1)2) · a)2) · 1)2) · 1)2) · a
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Exponentiation

◮ Core operation in RSA decryption: ad mod n with secret key d

◮ Very similar operation involved in ElGamal, DSA, and ECC

Example: exponent 105

◮ 105 = 64 + 32 + 8 + 1 = 26 + 25 + 23 + 20

◮ 105 = 1 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20

◮ 105 = ((((((((((1 · 2 + 1) · 2) + 0) · 2) + 1) · 2) + 0) · 2) + 0) · 2) + 1
(Horner’s rule)

◮ a105 = ((((((((((a2 · a)2) · 1)2) · a)2) · 1)2) · 1)2) · a

◮ Cost: 6 squarings, 3 multiplications

◮ More generally: 1 squaring per bit, 1 multiplication per 1-bit
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Square-and-multiply

typedef unsigned long long uint64;

typedef uint32_t uint32;

/* This really wants to be done with long integers */

uint32 modexp(uint32 a, uint32 mod, unsigned char exp[4]) {

int i,j;

uint32 r = 1;

for(i=3;i>=0;i--) {

for(j=7;j>=0;j--) {

r = ((uint64)r*r) % mod;

if(exp[i] & (1<<j))

r = ((uint64)a*r) % mod;

}

}

return r;

}
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Square-and-multiply-always

/* This really wants to be done with long integers */

uint32 modexp(uint32 a, uint32 mod, unsigned char exp[4]) {

int i,j;

uint32 r = 1,t;

for(i=3;i>=0;i--) {

for(j=7;j>=0;j--) {

r = ((uint64)r*r) % mod;

if(exp[i] & (1<<j))

r = ((uint64)a*r) % mod;

else

t = ((uint64)a*r) % mod;

}

}

return r;

}
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int i,j;

uint32 r = 1,t;

for(i=3;i>=0;i--) {

for(j=7;j>=0;j--) {

r = ((uint64)r*r) % mod;

if(exp[i] & (1<<j))
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}

}

return r;
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◮ Compiler may optimize else clause away, but can avoid that
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Square-and-multiply-always

/* This really wants to be done with long integers */

uint32 modexp(uint32 a, uint32 mod, unsigned char exp[4]) {

int i,j;

uint32 r = 1,t;

for(i=3;i>=0;i--) {

for(j=7;j>=0;j--) {

r = ((uint64)r*r) % mod;

if(exp[i] & (1<<j))

r = ((uint64)a*r) % mod;

else

t = ((uint64)a*r) % mod;

}

}

return r;

}

◮ Compiler may optimize else clause away, but can avoid that
◮ Still not constant time, reasons:

◮ Branch prediction
◮ Instruction cache

Eliminating Timing Side-Channels.,A Tutorial. 8



Eliminating branches

◮ So, what do we do with code like this?

if s then

r ← A

else

r ← B

end if
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◮ Can expand s to all-one/all-zero mask and use XOR instead of
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Eliminating branches

◮ So, what do we do with code like this?

if s then

r ← A

else

r ← B

end if

◮ Replace by
r ← sA+ (1− s)B

◮ Can expand s to all-one/all-zero mask and use XOR instead of
addition, AND instead of multiplication

◮ For very fast A and B this can even be faster
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Fixing Square-and-multiply-always

uint32 modexp(uint32 a, uint32 mod, unsigned char exp[4]) {

int i,j;

uint32 r = 1,t;

for(i=3;i>=0;i--) {

for(j=7;j>=0;j--) {

r = ((uint64)r*r) % mod;

t = ((uint64)a*r) % mod;

cmov(&r, &t, (exp[i] & (1<<j)) >> j);

}

}

return r;

}
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cmov

/* decision bit b has to be either 0 or 1 */

void cmov(uint32 *r, uint32 *a, uint32 b)

{

uint32 t;

b = -b; /* Now b is either 0 or 0xffffffff */

t = (*r ^ *a) & b;

*r ^= t;

}
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Problem No. 2

table[secret]
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The Advanced Encryption Standard (AES)

◮ Block cipher Rijndael proposed by Rijmen, Daemen in 1998

◮ Selected as AES by NIST in October 2000
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The Advanced Encryption Standard (AES)

◮ Block cipher Rijndael proposed by Rijmen, Daemen in 1998

◮ Selected as AES by NIST in October 2000

◮ Block size: 128 bits (AES state: 4× 4 matrix of 16 bytes)

◮ Key size 128/192/256 bits (resp. 10/12/14 rounds)

◮ AES with n rounds uses n+ 1 16-byte rounds keys K0, . . . ,Kn

◮ Four operations per round: SubBytes, ShiftRows, MixColumns, and
AddRoundKey

◮ Last round does not have MixColumns
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Implementing AES on 32-bit machines

“The different steps of the round transformation can be combined in a
single set of table lookups, allowing for very fast implementations on
processors with word length 32 or above.”

—Daemen, Rijmen. AES Proposal: Rijndael, 1999.
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Implementing AES on 32-bit machines

“The different steps of the round transformation can be combined in a
single set of table lookups, allowing for very fast implementations on
processors with word length 32 or above.”

—Daemen, Rijmen. AES Proposal: Rijndael, 1999.

The first round of AES in C

◮ Input: 32-bit integers y0, y1, y2, y3

◮ Output: 32-bit integers z0, z1, z2, z3

◮ Round keys in 32-bit-integer array rk[44]

z0 = T0[ y0 >> 24 ] ^ T1[(y1 >> 16) & 0xff ] \

^ T2[(y2 >> 8) & 0xff ] ^ T3[ y3 & 0xff ] ^ rk [4];

z1 = T0[ y1 >> 24 ] ^ T1[(y2 >> 16) & 0xff ] \

^ T2[(y3 >> 8) & 0xff ] ^ T3[ y0 & 0xff ] ^ rk [5];

z2 = T0[ y2 >> 24 ] ^ T1[(y3 >> 16) & 0xff ] \

^ T2[(y0 >> 8) & 0xff ] ^ T3[ y1 & 0xff ] ^ rk [6];

z3 = T0[ y3 >> 24 ] ^ T1[(y0 >> 16) & 0xff ] \

^ T2[(y1 >> 8) & 0xff ] ^ T3[ y2 & 0xff ] ^ rk [7];
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Cache-timing attacks

T 0[0] . . . T 0[15]

T 0[16] . . . T 0[31]

T 0[32] . . . T 0[47]

T 0[48] . . . T 0[63]

T 0[64] . . . T 0[79]

T 0[80] . . . T 0[95]

T 0[96] . . . T 0[111]

T 0[112] . . .T 0[127]

T 0[128] . . .T 0[143]

T 0[144] . . .T 0[159]

T 0[160] . . .T 0[175]

T 0[176] . . .T 0[191]

T 0[192] . . .T 0[207]

T 0[208] . . .T 0[223]

T 0[224] . . .T 0[239]

T 0[240] . . .T 0[255]

◮ AES and the attackers program run on
the same CPU

◮ Tables are in cache
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Cache-timing attacks

T 0[0] . . . T 0[15]

T 0[16] . . . T 0[31]

attacker’s data

attacker’s data

T 0[64] . . . T 0[79]

T 0[80] . . . T 0[95]

attacker’s data

attacker’s data

attacker’s data

attacker’s data

T 0[160] . . .T 0[175]

T 0[176] . . .T 0[191]

T 0[192] . . .T 0[207]

T 0[208] . . .T 0[223]

attacker’s data

attacker’s data

◮ AES and the attackers program run on
the same CPU

◮ Tables are in cache

◮ The attacker’s program replaces some
cache lines
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Cache-timing attacks

T 0[0] . . . T 0[15]

T 0[16] . . . T 0[31]

???

???

T 0[64] . . . T 0[79]

T 0[80] . . . T 0[95]

???

???

???

???

T 0[160] . . .T 0[175]

T 0[176] . . .T 0[191]

T 0[192] . . .T 0[207]

T 0[208] . . .T 0[223]

???

???

◮ AES and the attackers program run on
the same CPU

◮ Tables are in cache

◮ The attacker’s program replaces some
cache lines

◮ AES continues, loads from table again
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Cache-timing attacks

T 0[0] . . . T 0[15]

T 0[16] . . . T 0[31]

???

???

T 0[64] . . . T 0[79]
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T 0[160] . . .T 0[175]

T 0[176] . . .T 0[191]

T 0[192] . . .T 0[207]

T 0[208] . . .T 0[223]

???

???

◮ AES and the attackers program run on
the same CPU

◮ Tables are in cache

◮ The attacker’s program replaces some
cache lines

◮ AES continues, loads from table again

◮ Attacker loads his data:
◮ Fast: cache hit (AES did not just

load from this line)
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Cache-timing attacks

T 0[0] . . . T 0[15]

T 0[16] . . . T 0[31]

???

???

T 0[64] . . . T 0[79]

T 0[80] . . . T 0[95]

???

T 0[112] . . .T 0[127]

???

???

T 0[160] . . .T 0[175]

T 0[176] . . .T 0[191]

T 0[192] . . .T 0[207]

T 0[208] . . .T 0[223]

???

???

◮ AES and the attackers program run on
the same CPU

◮ Tables are in cache

◮ The attacker’s program replaces some
cache lines

◮ AES continues, loads from table again

◮ Attacker loads his data:
◮ Fast: cache hit (AES did not just

load from this line)
◮ Slow: cache miss (AES just loaded

from this line)
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The general case

Loads from and stores to addresses that depend on secret data

leak secret data.
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“Countermeasure”

◮ Observation: This simple cache-timing attack does not reveal the
secret address, only the cache line

◮ Idea: Lookups within one cache line should be safe
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◮ Bernstein, 2005: “Does this guarantee constant-time S-box lookups?
No!”

◮ Osvik, Shamir, Tromer, 2006: “This is insufficient on processors
which leak low address bits”

◮ Reasons:
◮ Cache-bank conflicts
◮ Failed store-to-load forwarding
◮

. . .
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“Countermeasure”

◮ Observation: This simple cache-timing attack does not reveal the
secret address, only the cache line

◮ Idea: Lookups within one cache line should be safe. . . or are they?

◮ Bernstein, 2005: “Does this guarantee constant-time S-box lookups?
No!”

◮ Osvik, Shamir, Tromer, 2006: “This is insufficient on processors
which leak low address bits”

◮ Reasons:
◮ Cache-bank conflicts
◮ Failed store-to-load forwarding
◮

. . .

◮ OpenSSL is using it in BN_mod_exp_mont_consttime

◮ Brickell (Intel), 2011: yeah, it’s fine as a countermeasure

◮ Bernstein, Schwabe, 2013: Demonstrate timing variability for access
within one cache line
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“Countermeasure”

◮ Observation: This simple cache-timing attack does not reveal the
secret address, only the cache line

◮ Idea: Lookups within one cache line should be safe. . . or are they?

◮ Bernstein, 2005: “Does this guarantee constant-time S-box lookups?
No!”

◮ Osvik, Shamir, Tromer, 2006: “This is insufficient on processors
which leak low address bits”

◮ Reasons:
◮ Cache-bank conflicts
◮ Failed store-to-load forwarding
◮

. . .

◮ OpenSSL is using it in BN_mod_exp_mont_consttime

◮ Brickell (Intel), 2011: yeah, it’s fine as a countermeasure

◮ Bernstein, Schwabe, 2013: Demonstrate timing variability for access
within one cache line

◮ TODO: Real attack against, e.g., OpenSSL
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Countermeasure

uint32 table[TABLE_LENGTH];

uint32 lookup(size_t pos)

{

size_t i;

int b;

uint32 r = table[0];

for(i=1;i<TABLE_LENGTH;i++)

{

b = (i == pos);

cmov(&r, &table[i], b);

}

return r;

}

Eliminating Timing Side-Channels.,A Tutorial. 18



Countermeasure

uint32 table[TABLE_LENGTH];

uint32 lookup(size_t pos)

{

size_t i;

int b;

uint32 r = table[0];

for(i=1;i<TABLE_LENGTH;i++)

{

b = (i == pos); /* DON’T! Compiler may do funny things! */

cmov(&r, &table[i], b);

}

return r;

}
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Countermeasure

uint32 table[TABLE_LENGTH];

uint32 lookup(size_t pos)

{

size_t i;

int b;

uint32 r = table[0];

for(i=1;i<TABLE_LENGTH;i++)

{

b = isequal(i, pos);

cmov(&r, &table[i], b);

}

return r;

}
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Countermeasure, part 2

int isequal(uint32 a, uint32 b)

{

size_t i; uint32 r = 0;

unsigned char *ta = (unsigned char *)&a;

unsigned char *tb = (unsigned char *)&b;

for(i=0;i<sizeof(uint32);i++)

{

r |= (ta[i] ^ tb[i]);

}

r = (-r) >> 31;

return (int)(1-r);

}
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Back to AES

How could AES be chosen?
“Table lookup: not vulnerable to timing attacks; relatively easy to effect a
defense against power attacks by software balancing of the lookup
address.”

—Report on the Development of the Advanced Encryption Standard
(AES), October 2000
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What now?

◮ You can use generic constant-time lookups for AES tables

◮ It’s horribly inefficient
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Back to AES

How could AES be chosen?
“Table lookup: not vulnerable to timing attacks; relatively easy to effect a
defense against power attacks by software balancing of the lookup
address.”

—Report on the Development of the Advanced Encryption Standard
(AES), October 2000

What now?

◮ You can use generic constant-time lookups for AES tables

◮ It’s horribly inefficient

◮ Intel’s answer: let’s do it in hardware (AES-NI, since Westmere)

◮ ARM’s answer: let’s do it in hardware (crypto extension in ARMv8)

◮ Solutions in software:
◮ AES with vector-permute instructions (Hamburg, 2009)
◮ Bitslicing (Biham, 1997, for DES)
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Bitslicing

◮ Imagine registers that have only one bit

◮ Perform arithmetic on those registers using XOR, AND, OR

◮ Essentially the same as hardware implementations
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◮ Perform arithmetic on those registers using XOR, AND, OR

◮ Essentially the same as hardware implementations

◮ But wait, registers are longer!

◮ Think of them as vectors of bits

◮ Perform the simulated hardware implementations on many
independent data streams
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Bitslicing

◮ Imagine registers that have only one bit

◮ Perform arithmetic on those registers using XOR, AND, OR

◮ Essentially the same as hardware implementations

◮ But wait, registers are longer!

◮ Think of them as vectors of bits

◮ Perform the simulated hardware implementations on many
independent data streams

◮ Bitslicing works for every algorithm

◮ Bitslicing is inherently protected against timing attacks

◮ Efficient bitslicing needs a huge amount of data-level parallelism
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Bitslicing binary polynomials

4-coefficient binary polynomials

(a3x
3 + a2x

2 + a1x+ a0), with ai ∈ {0, 1}

4-coefficient bitsliced binary polynomials

typedef unsigned char poly4; /* 4 coefficients in the low 4 bits */

typedef unsigned long long poly4x64[4];

void poly4_bitslice(poly4x64 r, const poly4 x[64])

{

int i,j;

for(i=0;i<4;i++)

{

r[i] = 0;

for(j=0;j<64;j++)

r[i] |= (unsigned long long)(1 & (x[j] >> i))<<j;

}

}
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Bitsliced binary-polynomial multiplication

typedef unsigned long long poly4x64[4];

typedef unsigned long long poly7x64[7];

void poly4x64_mul(poly7x64 r, const poly4x64 a, const poly4x64 b)

{

r[0] = a[0] & b[0];

r[1] = (a[0] & b[1]) ^ (a[1] & b[0]);

r[2] = (a[0] & b[2]) ^ (a[1] & b[1]) ^ (a[2] & b[0]);

r[3] = (a[0] & b[3]) ^ (a[1] & b[2]) ^ (a[2] & b[1]) ^ (a[3] & b[0]);

r[4] = (a[1] & b[3]) ^ (a[2] & b[2]) ^ (a[3] & b[1]);

r[5] = (a[2] & b[3]) ^ (a[3] & b[2]);

r[6] = (a[3] & b[3]);

}
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Is that all?

Lesson so far

◮ Avoid all data flow from secrets to branch conditions and memory
addresses

◮ This can always be done; cost highly depends on the algorithm
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Langley’s ctgrind)
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◮ Avoid all data flow from secrets to branch conditions and memory
addresses

◮ This can always be done; cost highly depends on the algorithm

◮ Test this with valgrind and uninitialized secret data (or use
Langley’s ctgrind)

“In order for a function to be constant time, the branches taken and
memory addresses accessed must be independent of any secret inputs.
(That’s assuming that the fundamental processor instructions are
constant time, but that’s true for all sane CPUs.)”

—Langley, Apr. 2010
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Is that all?

Lesson so far

◮ Avoid all data flow from secrets to branch conditions and memory
addresses

◮ This can always be done; cost highly depends on the algorithm

◮ Test this with valgrind and uninitialized secret data (or use
Langley’s ctgrind)

“In order for a function to be constant time, the branches taken and
memory addresses accessed must be independent of any secret inputs.
(That’s assuming that the fundamental processor instructions are
constant time, but that’s true for all sane CPUs.)”

—Langley, Apr. 2010

“So the argument to the DIV instruction was smaller and DIV, on Intel,
takes a variable amount of time depending on its arguments!”

—Langley, Feb. 2013
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Dangerous arithmetic (examples)

◮ DIV, IDIV, FDIV on pretty much all Intel/AMD CPUs

◮ Various math instructions on Intel/AMD CPUs (FSIN, FCOS. . . )
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Dangerous arithmetic (examples)

◮ DIV, IDIV, FDIV on pretty much all Intel/AMD CPUs

◮ Various math instructions on Intel/AMD CPUs (FSIN, FCOS. . . )

◮ MUL, MULHW, MULHWU on many PowerPC CPUs

◮ UMULL, SMULL, UMLAL, and SMLAL on ARM Cortex-M3.

Eliminating Timing Side-Channels.,A Tutorial. 24



Dangerous arithmetic (examples)

◮ DIV, IDIV, FDIV on pretty much all Intel/AMD CPUs

◮ Various math instructions on Intel/AMD CPUs (FSIN, FCOS. . . )

◮ MUL, MULHW, MULHWU on many PowerPC CPUs

◮ UMULL, SMULL, UMLAL, and SMLAL on ARM Cortex-M3.

Solution

◮ Avoid these instructions

◮ Make sure that inputs to the instructions don’t leak timing
information
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