
Eliminating Timing Side-Channels.

A Tutorial.

Peter Schwabe

January 18, 2015

ShmooCon 2015

Secure Crypto

Research over the past decades has produced several secure crypto
algorithms:

◮ AES-256 block cipher

Eliminating Timing Side-Channels.,A Tutorial. 2

Secure Crypto

Research over the past decades has produced several secure crypto
algorithms:

◮ AES-256 block cipher

◮ AES-CBC + HMAC-SHA256 authenticated encryption

Eliminating Timing Side-Channels.,A Tutorial. 2

Secure Crypto

Research over the past decades has produced several secure crypto
algorithms:

◮ AES-256 block cipher

◮ AES-CBC + HMAC-SHA256 authenticated encryption

◮ RSA-2048 public-key encryption

Eliminating Timing Side-Channels.,A Tutorial. 2

Secure Crypto

Research over the past decades has produced several secure crypto
algorithms:

◮ AES-256 block cipher

◮ AES-CBC + HMAC-SHA256 authenticated encryption

◮ RSA-2048 public-key encryption

◮ ECDSA signatures with the secp256k1 curve (used in Bitcoin)

Eliminating Timing Side-Channels.,A Tutorial. 2

Secure Crypto?

◮ Osvik, Shamir, Tromer, 2006: Recover AES-256 secret key of
Linux’s dmcrypt in just 65 ms

Eliminating Timing Side-Channels.,A Tutorial. 3

Secure Crypto?

◮ Osvik, Shamir, Tromer, 2006: Recover AES-256 secret key of
Linux’s dmcrypt in just 65 ms

◮ AlFardan, Paterson, 2013: “Lucky13” recovers plaintext of
CBC-mode encryption in pretty much all TLS implementations

Eliminating Timing Side-Channels.,A Tutorial. 3

Secure Crypto?

◮ Osvik, Shamir, Tromer, 2006: Recover AES-256 secret key of
Linux’s dmcrypt in just 65 ms

◮ AlFardan, Paterson, 2013: “Lucky13” recovers plaintext of
CBC-mode encryption in pretty much all TLS implementations

◮ Yarom, Falkner, 2014: Attack against RSA-2048 in GnuPG 1.4.13:
“On average, the attack is able to recover 96.7% of the bits of the
secret key by observing a single signature or decryption round.”

Eliminating Timing Side-Channels.,A Tutorial. 3

Secure Crypto?

◮ Osvik, Shamir, Tromer, 2006: Recover AES-256 secret key of
Linux’s dmcrypt in just 65 ms

◮ AlFardan, Paterson, 2013: “Lucky13” recovers plaintext of
CBC-mode encryption in pretty much all TLS implementations

◮ Yarom, Falkner, 2014: Attack against RSA-2048 in GnuPG 1.4.13:
“On average, the attack is able to recover 96.7% of the bits of the
secret key by observing a single signature or decryption round.”

◮ Benger, van de Pol, Smart, Yarom, 2014: “reasonable level of
success in recovering the secret key” for OpenSSL ECDSA using
secp256k1 “with as little as 200 signatures”

Eliminating Timing Side-Channels.,A Tutorial. 3

Secure Crypto?

◮ Osvik, Shamir, Tromer, 2006: Recover AES-256 secret key of
Linux’s dmcrypt in just 65 ms

◮ AlFardan, Paterson, 2013: “Lucky13” recovers plaintext of
CBC-mode encryption in pretty much all TLS implementations

◮ Yarom, Falkner, 2014: Attack against RSA-2048 in GnuPG 1.4.13:
“On average, the attack is able to recover 96.7% of the bits of the
secret key by observing a single signature or decryption round.”

◮ Benger, van de Pol, Smart, Yarom, 2014: “reasonable level of
success in recovering the secret key” for OpenSSL ECDSA using
secp256k1 “with as little as 200 signatures”

Those attacks all don’t break the math!

Eliminating Timing Side-Channels.,A Tutorial. 3

Timing Attacks

General idea of those attacks

◮ Secret data has influence on timing of software

◮ Attacker measures timing

◮ Attacker computes influence−1 to obtain secret data

Eliminating Timing Side-Channels.,A Tutorial. 4

Timing Attacks

General idea of those attacks

◮ Secret data has influence on timing of software

◮ Attacker measures timing

◮ Attacker computes influence−1 to obtain secret data

Two kinds of remote. . .

◮ Timing attacks are a type of side-channel attacks

◮ Unlike other side-channel attacks, they work remotely:
◮ Some need to run attack code in parallel to the target software
◮ Attacker can log in remotely (ssh)

Eliminating Timing Side-Channels.,A Tutorial. 4

Timing Attacks

General idea of those attacks

◮ Secret data has influence on timing of software

◮ Attacker measures timing

◮ Attacker computes influence−1 to obtain secret data

Two kinds of remote. . .

◮ Timing attacks are a type of side-channel attacks

◮ Unlike other side-channel attacks, they work remotely:
◮ Some need to run attack code in parallel to the target software
◮ Attacker can log in remotely (ssh)
◮ Some attacks work by measuring network delays
◮ Attacker does not even need an account on the target machine

Eliminating Timing Side-Channels.,A Tutorial. 4

Timing Attacks

General idea of those attacks

◮ Secret data has influence on timing of software

◮ Attacker measures timing

◮ Attacker computes influence−1 to obtain secret data

Two kinds of remote. . .

◮ Timing attacks are a type of side-channel attacks

◮ Unlike other side-channel attacks, they work remotely:
◮ Some need to run attack code in parallel to the target software
◮ Attacker can log in remotely (ssh)
◮ Some attacks work by measuring network delays
◮ Attacker does not even need an account on the target machine

◮ Can’t protect against timing attacks by locking a room

Eliminating Timing Side-Channels.,A Tutorial. 4

Problem No. 1

if(secret)

{

do_A();

}

else

{

do_B();

}

Eliminating Timing Side-Channels.,A Tutorial. 5

Exponentiation

◮ Core operation in RSA decryption: ad mod n with secret key d

◮ Very similar operation involved in ElGamal, DSA, and ECC

Eliminating Timing Side-Channels.,A Tutorial. 6

Exponentiation

◮ Core operation in RSA decryption: ad mod n with secret key d

◮ Very similar operation involved in ElGamal, DSA, and ECC

Example: exponent 105

◮ 105 = 64 + 32 + 8 + 1 = 26 + 25 + 23 + 20

Eliminating Timing Side-Channels.,A Tutorial. 6

Exponentiation

◮ Core operation in RSA decryption: ad mod n with secret key d

◮ Very similar operation involved in ElGamal, DSA, and ECC

Example: exponent 105

◮ 105 = 64 + 32 + 8 + 1 = 26 + 25 + 23 + 20

◮ 105 = 1 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20

Eliminating Timing Side-Channels.,A Tutorial. 6

Exponentiation

◮ Core operation in RSA decryption: ad mod n with secret key d

◮ Very similar operation involved in ElGamal, DSA, and ECC

Example: exponent 105

◮ 105 = 64 + 32 + 8 + 1 = 26 + 25 + 23 + 20

◮ 105 = 1 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20

◮ 105 = ((((((((((1 · 2 + 1) · 2) + 0) · 2) + 1) · 2) + 0) · 2) + 0) · 2) + 1
(Horner’s rule)

◮ a105 = ((((((((((a2 · a)2) · 1)2) · a)2) · 1)2) · 1)2) · a

Eliminating Timing Side-Channels.,A Tutorial. 6

Exponentiation

◮ Core operation in RSA decryption: ad mod n with secret key d

◮ Very similar operation involved in ElGamal, DSA, and ECC

Example: exponent 105

◮ 105 = 64 + 32 + 8 + 1 = 26 + 25 + 23 + 20

◮ 105 = 1 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20

◮ 105 = ((((((((((1 · 2 + 1) · 2) + 0) · 2) + 1) · 2) + 0) · 2) + 0) · 2) + 1
(Horner’s rule)

◮ a105 = ((((((((((a2 · a)2) · 1)2) · a)2) · 1)2) · 1)2) · a

◮ Cost: 6 squarings, 3 multiplications

◮ More generally: 1 squaring per bit, 1 multiplication per 1-bit

Eliminating Timing Side-Channels.,A Tutorial. 6

Square-and-multiply

typedef unsigned long long uint64;

typedef uint32_t uint32;

/* This really wants to be done with long integers */

uint32 modexp(uint32 a, uint32 mod, unsigned char exp[4]) {

int i,j;

uint32 r = 1;

for(i=3;i>=0;i--) {

for(j=7;j>=0;j--) {

r = ((uint64)r*r) % mod;

if(exp[i] & (1<<j))

r = ((uint64)a*r) % mod;

}

}

return r;

}

Eliminating Timing Side-Channels.,A Tutorial. 7

Square-and-multiply-always

/* This really wants to be done with long integers */

uint32 modexp(uint32 a, uint32 mod, unsigned char exp[4]) {

int i,j;

uint32 r = 1,t;

for(i=3;i>=0;i--) {

for(j=7;j>=0;j--) {

r = ((uint64)r*r) % mod;

if(exp[i] & (1<<j))

r = ((uint64)a*r) % mod;

else

t = ((uint64)a*r) % mod;

}

}

return r;

}

Eliminating Timing Side-Channels.,A Tutorial. 8

Square-and-multiply-always

/* This really wants to be done with long integers */

uint32 modexp(uint32 a, uint32 mod, unsigned char exp[4]) {

int i,j;

uint32 r = 1,t;

for(i=3;i>=0;i--) {

for(j=7;j>=0;j--) {

r = ((uint64)r*r) % mod;

if(exp[i] & (1<<j))

r = ((uint64)a*r) % mod;

else

t = ((uint64)a*r) % mod;

}

}

return r;

}

◮ Compiler may optimize else clause away, but can avoid that

Eliminating Timing Side-Channels.,A Tutorial. 8

Square-and-multiply-always

/* This really wants to be done with long integers */

uint32 modexp(uint32 a, uint32 mod, unsigned char exp[4]) {

int i,j;

uint32 r = 1,t;

for(i=3;i>=0;i--) {

for(j=7;j>=0;j--) {

r = ((uint64)r*r) % mod;

if(exp[i] & (1<<j))

r = ((uint64)a*r) % mod;

else

t = ((uint64)a*r) % mod;

}

}

return r;

}

◮ Compiler may optimize else clause away, but can avoid that
◮ Still not constant time, reasons:

◮ Branch prediction
◮ Instruction cache

Eliminating Timing Side-Channels.,A Tutorial. 8

Eliminating branches

◮ So, what do we do with code like this?

if s then

r ← A

else

r ← B

end if

Eliminating Timing Side-Channels.,A Tutorial. 9

Eliminating branches

◮ So, what do we do with code like this?

if s then

r ← A

else

r ← B

end if

◮ Replace by
r ← sA+ (1− s)B

Eliminating Timing Side-Channels.,A Tutorial. 9

Eliminating branches

◮ So, what do we do with code like this?

if s then

r ← A

else

r ← B

end if

◮ Replace by
r ← sA+ (1− s)B

◮ Can expand s to all-one/all-zero mask and use XOR instead of
addition, AND instead of multiplication

Eliminating Timing Side-Channels.,A Tutorial. 9

Eliminating branches

◮ So, what do we do with code like this?

if s then

r ← A

else

r ← B

end if

◮ Replace by
r ← sA+ (1− s)B

◮ Can expand s to all-one/all-zero mask and use XOR instead of
addition, AND instead of multiplication

◮ For very fast A and B this can even be faster

Eliminating Timing Side-Channels.,A Tutorial. 9

Fixing Square-and-multiply-always

uint32 modexp(uint32 a, uint32 mod, unsigned char exp[4]) {

int i,j;

uint32 r = 1,t;

for(i=3;i>=0;i--) {

for(j=7;j>=0;j--) {

r = ((uint64)r*r) % mod;

t = ((uint64)a*r) % mod;

cmov(&r, &t, (exp[i] & (1<<j)) >> j);

}

}

return r;

}

Eliminating Timing Side-Channels.,A Tutorial. 10

cmov

/* decision bit b has to be either 0 or 1 */

void cmov(uint32 *r, uint32 *a, uint32 b)

{

uint32 t;

b = -b; /* Now b is either 0 or 0xffffffff */

t = (*r ^ *a) & b;

*r ^= t;

}

Eliminating Timing Side-Channels.,A Tutorial. 11

Problem No. 2

table[secret]

Eliminating Timing Side-Channels.,A Tutorial. 12

The Advanced Encryption Standard (AES)

◮ Block cipher Rijndael proposed by Rijmen, Daemen in 1998

◮ Selected as AES by NIST in October 2000

Eliminating Timing Side-Channels.,A Tutorial. 13

The Advanced Encryption Standard (AES)

◮ Block cipher Rijndael proposed by Rijmen, Daemen in 1998

◮ Selected as AES by NIST in October 2000

◮ Block size: 128 bits (AES state: 4× 4 matrix of 16 bytes)

◮ Key size 128/192/256 bits (resp. 10/12/14 rounds)

Eliminating Timing Side-Channels.,A Tutorial. 13

The Advanced Encryption Standard (AES)

◮ Block cipher Rijndael proposed by Rijmen, Daemen in 1998

◮ Selected as AES by NIST in October 2000

◮ Block size: 128 bits (AES state: 4× 4 matrix of 16 bytes)

◮ Key size 128/192/256 bits (resp. 10/12/14 rounds)

◮ AES with n rounds uses n+ 1 16-byte rounds keys K0, . . . ,Kn

Eliminating Timing Side-Channels.,A Tutorial. 13

The Advanced Encryption Standard (AES)

◮ Block cipher Rijndael proposed by Rijmen, Daemen in 1998

◮ Selected as AES by NIST in October 2000

◮ Block size: 128 bits (AES state: 4× 4 matrix of 16 bytes)

◮ Key size 128/192/256 bits (resp. 10/12/14 rounds)

◮ AES with n rounds uses n+ 1 16-byte rounds keys K0, . . . ,Kn

◮ Four operations per round: SubBytes, ShiftRows, MixColumns, and
AddRoundKey

◮ Last round does not have MixColumns

Eliminating Timing Side-Channels.,A Tutorial. 13

Implementing AES on 32-bit machines

“The different steps of the round transformation can be combined in a
single set of table lookups, allowing for very fast implementations on
processors with word length 32 or above.”

—Daemen, Rijmen. AES Proposal: Rijndael, 1999.

Eliminating Timing Side-Channels.,A Tutorial. 14

Implementing AES on 32-bit machines

“The different steps of the round transformation can be combined in a
single set of table lookups, allowing for very fast implementations on
processors with word length 32 or above.”

—Daemen, Rijmen. AES Proposal: Rijndael, 1999.

The first round of AES in C

◮ Input: 32-bit integers y0, y1, y2, y3

◮ Output: 32-bit integers z0, z1, z2, z3

◮ Round keys in 32-bit-integer array rk[44]

z0 = T0[y0 >> 24] ^ T1[(y1 >> 16) & 0xff] \

^ T2[(y2 >> 8) & 0xff] ^ T3[y3 & 0xff] ^ rk [4];

z1 = T0[y1 >> 24] ^ T1[(y2 >> 16) & 0xff] \

^ T2[(y3 >> 8) & 0xff] ^ T3[y0 & 0xff] ^ rk [5];

z2 = T0[y2 >> 24] ^ T1[(y3 >> 16) & 0xff] \

^ T2[(y0 >> 8) & 0xff] ^ T3[y1 & 0xff] ^ rk [6];

z3 = T0[y3 >> 24] ^ T1[(y0 >> 16) & 0xff] \

^ T2[(y1 >> 8) & 0xff] ^ T3[y2 & 0xff] ^ rk [7];

Eliminating Timing Side-Channels.,A Tutorial. 14

Cache-timing attacks

T 0[0] . . . T 0[15]

T 0[16] . . . T 0[31]

T 0[32] . . . T 0[47]

T 0[48] . . . T 0[63]

T 0[64] . . . T 0[79]

T 0[80] . . . T 0[95]

T 0[96] . . . T 0[111]

T 0[112] . . .T 0[127]

T 0[128] . . .T 0[143]

T 0[144] . . .T 0[159]

T 0[160] . . .T 0[175]

T 0[176] . . .T 0[191]

T 0[192] . . .T 0[207]

T 0[208] . . .T 0[223]

T 0[224] . . .T 0[239]

T 0[240] . . .T 0[255]

◮ AES and the attackers program run on
the same CPU

◮ Tables are in cache

Eliminating Timing Side-Channels.,A Tutorial. 15

Cache-timing attacks

T 0[0] . . . T 0[15]

T 0[16] . . . T 0[31]

attacker’s data

attacker’s data

T 0[64] . . . T 0[79]

T 0[80] . . . T 0[95]

attacker’s data

attacker’s data

attacker’s data

attacker’s data

T 0[160] . . .T 0[175]

T 0[176] . . .T 0[191]

T 0[192] . . .T 0[207]

T 0[208] . . .T 0[223]

attacker’s data

attacker’s data

◮ AES and the attackers program run on
the same CPU

◮ Tables are in cache

◮ The attacker’s program replaces some
cache lines

Eliminating Timing Side-Channels.,A Tutorial. 15

Cache-timing attacks

T 0[0] . . . T 0[15]

T 0[16] . . . T 0[31]

???

???

T 0[64] . . . T 0[79]

T 0[80] . . . T 0[95]

???

???

???

???

T 0[160] . . .T 0[175]

T 0[176] . . .T 0[191]

T 0[192] . . .T 0[207]

T 0[208] . . .T 0[223]

???

???

◮ AES and the attackers program run on
the same CPU

◮ Tables are in cache

◮ The attacker’s program replaces some
cache lines

◮ AES continues, loads from table again

Eliminating Timing Side-Channels.,A Tutorial. 15

Cache-timing attacks

T 0[0] . . . T 0[15]

T 0[16] . . . T 0[31]

???

???

T 0[64] . . . T 0[79]

T 0[80] . . . T 0[95]

???

???

???

???

T 0[160] . . .T 0[175]

T 0[176] . . .T 0[191]

T 0[192] . . .T 0[207]

T 0[208] . . .T 0[223]

???

???

◮ AES and the attackers program run on
the same CPU

◮ Tables are in cache

◮ The attacker’s program replaces some
cache lines

◮ AES continues, loads from table again

◮ Attacker loads his data:

Eliminating Timing Side-Channels.,A Tutorial. 15

Cache-timing attacks

T 0[0] . . . T 0[15]

T 0[16] . . . T 0[31]

???

???

T 0[64] . . . T 0[79]

T 0[80] . . . T 0[95]

???

attacker’s data

???

???

T 0[160] . . .T 0[175]

T 0[176] . . .T 0[191]

T 0[192] . . .T 0[207]

T 0[208] . . .T 0[223]

???

???

◮ AES and the attackers program run on
the same CPU

◮ Tables are in cache

◮ The attacker’s program replaces some
cache lines

◮ AES continues, loads from table again

◮ Attacker loads his data:
◮ Fast: cache hit (AES did not just

load from this line)

Eliminating Timing Side-Channels.,A Tutorial. 15

Cache-timing attacks

T 0[0] . . . T 0[15]

T 0[16] . . . T 0[31]

???

???

T 0[64] . . . T 0[79]

T 0[80] . . . T 0[95]

???

T 0[112] . . .T 0[127]

???

???

T 0[160] . . .T 0[175]

T 0[176] . . .T 0[191]

T 0[192] . . .T 0[207]

T 0[208] . . .T 0[223]

???

???

◮ AES and the attackers program run on
the same CPU

◮ Tables are in cache

◮ The attacker’s program replaces some
cache lines

◮ AES continues, loads from table again

◮ Attacker loads his data:
◮ Fast: cache hit (AES did not just

load from this line)
◮ Slow: cache miss (AES just loaded

from this line)

Eliminating Timing Side-Channels.,A Tutorial. 15

The general case

Loads from and stores to addresses that depend on secret data

leak secret data.

Eliminating Timing Side-Channels.,A Tutorial. 16

“Countermeasure”

◮ Observation: This simple cache-timing attack does not reveal the
secret address, only the cache line

◮ Idea: Lookups within one cache line should be safe

Eliminating Timing Side-Channels.,A Tutorial. 17

“Countermeasure”

◮ Observation: This simple cache-timing attack does not reveal the
secret address, only the cache line

◮ Idea: Lookups within one cache line should be safe. . . or are they?

Eliminating Timing Side-Channels.,A Tutorial. 17

“Countermeasure”

◮ Observation: This simple cache-timing attack does not reveal the
secret address, only the cache line

◮ Idea: Lookups within one cache line should be safe. . . or are they?

◮ Bernstein, 2005: “Does this guarantee constant-time S-box lookups?
No!”

Eliminating Timing Side-Channels.,A Tutorial. 17

“Countermeasure”

◮ Observation: This simple cache-timing attack does not reveal the
secret address, only the cache line

◮ Idea: Lookups within one cache line should be safe. . . or are they?

◮ Bernstein, 2005: “Does this guarantee constant-time S-box lookups?
No!”

◮ Osvik, Shamir, Tromer, 2006: “This is insufficient on processors
which leak low address bits”

Eliminating Timing Side-Channels.,A Tutorial. 17

“Countermeasure”

◮ Observation: This simple cache-timing attack does not reveal the
secret address, only the cache line

◮ Idea: Lookups within one cache line should be safe. . . or are they?

◮ Bernstein, 2005: “Does this guarantee constant-time S-box lookups?
No!”

◮ Osvik, Shamir, Tromer, 2006: “This is insufficient on processors
which leak low address bits”

◮ Reasons:
◮ Cache-bank conflicts
◮ Failed store-to-load forwarding
◮

. . .

Eliminating Timing Side-Channels.,A Tutorial. 17

“Countermeasure”

◮ Observation: This simple cache-timing attack does not reveal the
secret address, only the cache line

◮ Idea: Lookups within one cache line should be safe. . . or are they?

◮ Bernstein, 2005: “Does this guarantee constant-time S-box lookups?
No!”

◮ Osvik, Shamir, Tromer, 2006: “This is insufficient on processors
which leak low address bits”

◮ Reasons:
◮ Cache-bank conflicts
◮ Failed store-to-load forwarding
◮

. . .

◮ OpenSSL is using it in BN_mod_exp_mont_consttime

Eliminating Timing Side-Channels.,A Tutorial. 17

“Countermeasure”

◮ Observation: This simple cache-timing attack does not reveal the
secret address, only the cache line

◮ Idea: Lookups within one cache line should be safe. . . or are they?

◮ Bernstein, 2005: “Does this guarantee constant-time S-box lookups?
No!”

◮ Osvik, Shamir, Tromer, 2006: “This is insufficient on processors
which leak low address bits”

◮ Reasons:
◮ Cache-bank conflicts
◮ Failed store-to-load forwarding
◮

. . .

◮ OpenSSL is using it in BN_mod_exp_mont_consttime

◮ Brickell (Intel), 2011: yeah, it’s fine as a countermeasure

Eliminating Timing Side-Channels.,A Tutorial. 17

“Countermeasure”

◮ Observation: This simple cache-timing attack does not reveal the
secret address, only the cache line

◮ Idea: Lookups within one cache line should be safe. . . or are they?

◮ Bernstein, 2005: “Does this guarantee constant-time S-box lookups?
No!”

◮ Osvik, Shamir, Tromer, 2006: “This is insufficient on processors
which leak low address bits”

◮ Reasons:
◮ Cache-bank conflicts
◮ Failed store-to-load forwarding
◮

. . .

◮ OpenSSL is using it in BN_mod_exp_mont_consttime

◮ Brickell (Intel), 2011: yeah, it’s fine as a countermeasure

◮ Bernstein, Schwabe, 2013: Demonstrate timing variability for access
within one cache line

Eliminating Timing Side-Channels.,A Tutorial. 17

“Countermeasure”

◮ Observation: This simple cache-timing attack does not reveal the
secret address, only the cache line

◮ Idea: Lookups within one cache line should be safe. . . or are they?

◮ Bernstein, 2005: “Does this guarantee constant-time S-box lookups?
No!”

◮ Osvik, Shamir, Tromer, 2006: “This is insufficient on processors
which leak low address bits”

◮ Reasons:
◮ Cache-bank conflicts
◮ Failed store-to-load forwarding
◮

. . .

◮ OpenSSL is using it in BN_mod_exp_mont_consttime

◮ Brickell (Intel), 2011: yeah, it’s fine as a countermeasure

◮ Bernstein, Schwabe, 2013: Demonstrate timing variability for access
within one cache line

◮ TODO: Real attack against, e.g., OpenSSL

Eliminating Timing Side-Channels.,A Tutorial. 17

Countermeasure

uint32 table[TABLE_LENGTH];

uint32 lookup(size_t pos)

{

size_t i;

int b;

uint32 r = table[0];

for(i=1;i<TABLE_LENGTH;i++)

{

b = (i == pos);

cmov(&r, &table[i], b);

}

return r;

}

Eliminating Timing Side-Channels.,A Tutorial. 18

Countermeasure

uint32 table[TABLE_LENGTH];

uint32 lookup(size_t pos)

{

size_t i;

int b;

uint32 r = table[0];

for(i=1;i<TABLE_LENGTH;i++)

{

b = (i == pos); /* DON’T! Compiler may do funny things! */

cmov(&r, &table[i], b);

}

return r;

}

Eliminating Timing Side-Channels.,A Tutorial. 18

Countermeasure

uint32 table[TABLE_LENGTH];

uint32 lookup(size_t pos)

{

size_t i;

int b;

uint32 r = table[0];

for(i=1;i<TABLE_LENGTH;i++)

{

b = isequal(i, pos);

cmov(&r, &table[i], b);

}

return r;

}

Eliminating Timing Side-Channels.,A Tutorial. 18

Countermeasure, part 2

int isequal(uint32 a, uint32 b)

{

size_t i; uint32 r = 0;

unsigned char *ta = (unsigned char *)&a;

unsigned char *tb = (unsigned char *)&b;

for(i=0;i<sizeof(uint32);i++)

{

r |= (ta[i] ^ tb[i]);

}

r = (-r) >> 31;

return (int)(1-r);

}

Eliminating Timing Side-Channels.,A Tutorial. 18

Back to AES

How could AES be chosen?
“Table lookup: not vulnerable to timing attacks; relatively easy to effect a
defense against power attacks by software balancing of the lookup
address.”

—Report on the Development of the Advanced Encryption Standard
(AES), October 2000

Eliminating Timing Side-Channels.,A Tutorial. 19

Back to AES

How could AES be chosen?
“Table lookup: not vulnerable to timing attacks; relatively easy to effect a
defense against power attacks by software balancing of the lookup
address.”

—Report on the Development of the Advanced Encryption Standard
(AES), October 2000

What now?

◮ You can use generic constant-time lookups for AES tables

◮ It’s horribly inefficient

Eliminating Timing Side-Channels.,A Tutorial. 19

Back to AES

How could AES be chosen?
“Table lookup: not vulnerable to timing attacks; relatively easy to effect a
defense against power attacks by software balancing of the lookup
address.”

—Report on the Development of the Advanced Encryption Standard
(AES), October 2000

What now?

◮ You can use generic constant-time lookups for AES tables

◮ It’s horribly inefficient

◮ Intel’s answer: let’s do it in hardware (AES-NI, since Westmere)

Eliminating Timing Side-Channels.,A Tutorial. 19

Back to AES

How could AES be chosen?
“Table lookup: not vulnerable to timing attacks; relatively easy to effect a
defense against power attacks by software balancing of the lookup
address.”

—Report on the Development of the Advanced Encryption Standard
(AES), October 2000

What now?

◮ You can use generic constant-time lookups for AES tables

◮ It’s horribly inefficient

◮ Intel’s answer: let’s do it in hardware (AES-NI, since Westmere)

◮ ARM’s answer: let’s do it in hardware (crypto extension in ARMv8)

Eliminating Timing Side-Channels.,A Tutorial. 19

Back to AES

How could AES be chosen?
“Table lookup: not vulnerable to timing attacks; relatively easy to effect a
defense against power attacks by software balancing of the lookup
address.”

—Report on the Development of the Advanced Encryption Standard
(AES), October 2000

What now?

◮ You can use generic constant-time lookups for AES tables

◮ It’s horribly inefficient

◮ Intel’s answer: let’s do it in hardware (AES-NI, since Westmere)

◮ ARM’s answer: let’s do it in hardware (crypto extension in ARMv8)

◮ Solutions in software:
◮ AES with vector-permute instructions (Hamburg, 2009)
◮ Bitslicing (Biham, 1997, for DES)

Eliminating Timing Side-Channels.,A Tutorial. 19

Bitslicing

◮ Imagine registers that have only one bit

◮ Perform arithmetic on those registers using XOR, AND, OR

◮ Essentially the same as hardware implementations

Eliminating Timing Side-Channels.,A Tutorial. 20

Bitslicing

◮ Imagine registers that have only one bit

◮ Perform arithmetic on those registers using XOR, AND, OR

◮ Essentially the same as hardware implementations

◮ But wait, registers are longer!

◮ Think of them as vectors of bits

◮ Perform the simulated hardware implementations on many
independent data streams

Eliminating Timing Side-Channels.,A Tutorial. 20

Bitslicing

◮ Imagine registers that have only one bit

◮ Perform arithmetic on those registers using XOR, AND, OR

◮ Essentially the same as hardware implementations

◮ But wait, registers are longer!

◮ Think of them as vectors of bits

◮ Perform the simulated hardware implementations on many
independent data streams

◮ Bitslicing works for every algorithm

◮ Bitslicing is inherently protected against timing attacks

◮ Efficient bitslicing needs a huge amount of data-level parallelism

Eliminating Timing Side-Channels.,A Tutorial. 20

Bitslicing binary polynomials

4-coefficient binary polynomials

(a3x
3 + a2x

2 + a1x+ a0), with ai ∈ {0, 1}

4-coefficient bitsliced binary polynomials

typedef unsigned char poly4; /* 4 coefficients in the low 4 bits */

typedef unsigned long long poly4x64[4];

void poly4_bitslice(poly4x64 r, const poly4 x[64])

{

int i,j;

for(i=0;i<4;i++)

{

r[i] = 0;

for(j=0;j<64;j++)

r[i] |= (unsigned long long)(1 & (x[j] >> i))<<j;

}

}

Eliminating Timing Side-Channels.,A Tutorial. 21

Bitsliced binary-polynomial multiplication

typedef unsigned long long poly4x64[4];

typedef unsigned long long poly7x64[7];

void poly4x64_mul(poly7x64 r, const poly4x64 a, const poly4x64 b)

{

r[0] = a[0] & b[0];

r[1] = (a[0] & b[1]) ^ (a[1] & b[0]);

r[2] = (a[0] & b[2]) ^ (a[1] & b[1]) ^ (a[2] & b[0]);

r[3] = (a[0] & b[3]) ^ (a[1] & b[2]) ^ (a[2] & b[1]) ^ (a[3] & b[0]);

r[4] = (a[1] & b[3]) ^ (a[2] & b[2]) ^ (a[3] & b[1]);

r[5] = (a[2] & b[3]) ^ (a[3] & b[2]);

r[6] = (a[3] & b[3]);

}

Eliminating Timing Side-Channels.,A Tutorial. 22

Is that all?

Lesson so far

◮ Avoid all data flow from secrets to branch conditions and memory
addresses

◮ This can always be done; cost highly depends on the algorithm

Eliminating Timing Side-Channels.,A Tutorial. 23

Is that all?

Lesson so far

◮ Avoid all data flow from secrets to branch conditions and memory
addresses

◮ This can always be done; cost highly depends on the algorithm

◮ Test this with valgrind and uninitialized secret data (or use
Langley’s ctgrind)

Eliminating Timing Side-Channels.,A Tutorial. 23

Is that all?

Lesson so far

◮ Avoid all data flow from secrets to branch conditions and memory
addresses

◮ This can always be done; cost highly depends on the algorithm

◮ Test this with valgrind and uninitialized secret data (or use
Langley’s ctgrind)

“In order for a function to be constant time, the branches taken and
memory addresses accessed must be independent of any secret inputs.
(That’s assuming that the fundamental processor instructions are
constant time, but that’s true for all sane CPUs.)”

—Langley, Apr. 2010

Eliminating Timing Side-Channels.,A Tutorial. 23

Is that all?

Lesson so far

◮ Avoid all data flow from secrets to branch conditions and memory
addresses

◮ This can always be done; cost highly depends on the algorithm

◮ Test this with valgrind and uninitialized secret data (or use
Langley’s ctgrind)

“In order for a function to be constant time, the branches taken and
memory addresses accessed must be independent of any secret inputs.
(That’s assuming that the fundamental processor instructions are
constant time, but that’s true for all sane CPUs.)”

—Langley, Apr. 2010

“So the argument to the DIV instruction was smaller and DIV, on Intel,
takes a variable amount of time depending on its arguments!”

—Langley, Feb. 2013
Eliminating Timing Side-Channels.,A Tutorial. 23

Dangerous arithmetic (examples)

◮ DIV, IDIV, FDIV on pretty much all Intel/AMD CPUs

◮ Various math instructions on Intel/AMD CPUs (FSIN, FCOS. . .)

Eliminating Timing Side-Channels.,A Tutorial. 24

Dangerous arithmetic (examples)

◮ DIV, IDIV, FDIV on pretty much all Intel/AMD CPUs

◮ Various math instructions on Intel/AMD CPUs (FSIN, FCOS. . .)

◮ MUL, MULHW, MULHWU on many PowerPC CPUs

◮ UMULL, SMULL, UMLAL, and SMLAL on ARM Cortex-M3.

Eliminating Timing Side-Channels.,A Tutorial. 24

Dangerous arithmetic (examples)

◮ DIV, IDIV, FDIV on pretty much all Intel/AMD CPUs

◮ Various math instructions on Intel/AMD CPUs (FSIN, FCOS. . .)

◮ MUL, MULHW, MULHWU on many PowerPC CPUs

◮ UMULL, SMULL, UMLAL, and SMLAL on ARM Cortex-M3.

Solution

◮ Avoid these instructions

◮ Make sure that inputs to the instructions don’t leak timing
information

Eliminating Timing Side-Channels.,A Tutorial. 24

References I

◮ Osvik, Shamir, Tromer, 2006: Cache Attacks and Countermeasures:
the Case of AES.
http://eprint.iacr.org/2005/271/

◮ AlFardan, Paterson, 2013: Lucky Thirteen: Breaking the TLS and
DTLS Record Protocols.
http://www.isg.rhul.ac.uk/tls/Lucky13.html

◮ Yarom, Falkner, 2014: FLUSH + RELOAD: a High Resolution, Low
Noise, L3 Cache Side-Channel Attack.
http://eprint.iacr.org/2013/448/

◮ Benger, van de Pol, Smart, Yarom, 2014: “Ooh Aah... Just a Little
Bit”: A small amount of side channel can go a long way.
http://eprint.iacr.org/2014/161/

Eliminating Timing Side-Channels.,A Tutorial. 25

http://eprint.iacr.org/2005/271/
http://www.isg.rhul.ac.uk/tls/Lucky13.html
http://eprint.iacr.org/2013/448/
http://eprint.iacr.org/2014/161/

References II

◮ Bernstein, 2005: Cache-timing attacks on AES.
http://cr.yp.to/papers.html#cachetiming

◮ Brickell, 2011: Technologies to Improve Platform Security.
http://www.chesworkshop.org/ches2011/presentations/

Invited%201/CHES2011_Invited_1.pdf

◮ Bernstein, Schwabe, 2013: A word of warning.
https://cryptojedi.org/peter/data/chesrump-20130822.

pdf

https://cryptojedi.org/peter/data/cacheline.tar.bz2

◮ Hamburg, 2009: Accelerating AES with Vector Permute Instructions.
http://mikehamburg.com/papers/vector_aes/vector_aes.

pdf

◮ Biham, 1997: “A Fast New DES Implementation in Software.”
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/

tr-info.cgi?1997/CS/CS0891

Eliminating Timing Side-Channels.,A Tutorial. 26

http://cr.yp.to/papers.html#cachetiming
http://www.chesworkshop.org/ches2011/presentations/Invited%201/CHES2011_Invited_1.pdf
http://www.chesworkshop.org/ches2011/presentations/Invited%201/CHES2011_Invited_1.pdf
https://cryptojedi.org/peter/data/chesrump-20130822.pdf
https://cryptojedi.org/peter/data/chesrump-20130822.pdf
https://cryptojedi.org/peter/data/cacheline.tar.bz2
http://mikehamburg.com/papers/vector_aes/vector_aes.pdf
http://mikehamburg.com/papers/vector_aes/vector_aes.pdf
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi?1997/CS/CS0891
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi?1997/CS/CS0891

Contact

http://cryptojedi.org

Eliminating Timing Side-Channels.,A Tutorial. 27

http://cryptojedi.org

