
Formosa Crypto – high-assurance crypto software in practice

Peter Schwabe

February 20, 2024



The setting for this talk

Cryptographic software
• Primitives, no protocols

• “Secure-channel” primitives

• Only software-visible side channels

• Big CPUs

1



The setting for this talk

Cryptographic software
• Primitives, no protocols

• “Secure-channel” primitives

• Only software-visible side channels

• Big CPUs

1



The setting for this talk

Cryptographic software
• Primitives, no protocols

• “Secure-channel” primitives

• Only software-visible side channels

• Big CPUs

1



Back in the days. . .

• Use X25519, Ed25519

(or NISTP256-ECDH, ECDSA)

• Use SHA2, ChaCha20, Poly1305

(or AES, HMAC)

• Follow “constant-time” paradigm
• No secret-dependent branches
• No memory access at secret-dependent location
• No variable-time arithmetic (e.g., DIV)

• Fairly little code, doesn’t even need function calls!

2



Back in the days. . .

• Use X25519, Ed25519 (or NISTP256-ECDH, ECDSA)

• Use SHA2, ChaCha20, Poly1305 (or AES, HMAC)

• Follow “constant-time” paradigm
• No secret-dependent branches
• No memory access at secret-dependent location
• No variable-time arithmetic (e.g., DIV)

• Fairly little code, doesn’t even need function calls!

2



Back in the days. . .

• Use X25519, Ed25519 (or NISTP256-ECDH, ECDSA)

• Use SHA2, ChaCha20, Poly1305 (or AES, HMAC)

• Follow “constant-time” paradigm
• No secret-dependent branches
• No memory access at secret-dependent location
• No variable-time arithmetic (e.g., DIV)

• Fairly little code, doesn’t even need function calls!

2



Back in the days. . .

• Use X25519, Ed25519 (or NISTP256-ECDH, ECDSA)

• Use SHA2, ChaCha20, Poly1305 (or AES, HMAC)

• Follow “constant-time” paradigm
• No secret-dependent branches
• No memory access at secret-dependent location
• No variable-time arithmetic (e.g., DIV)

• Fairly little code, doesn’t even need function calls!

2



Post-quantum crypto

• More assumptions, more schemes, more parameters, more code

• More complexity in implementations, protocols, and proofs

• Initially many bugs that were not caught by functional testing

• Early personal intuition:
• no big-integer arithmetic → no “rare” bugs
• Confidence in functional correctness through test vectors . . . ?

• Shattered by Hwang, Liu, Seiler, Shi, Tsai, Wang, and Yang (CHES 2022): Verified NTT
Multiplications for NISTPQC KEM Lattice Finalists: Kyber, SABER, and NTRU.

3

https://tches.iacr.org/index.php/TCHES/article/view/9838
https://tches.iacr.org/index.php/TCHES/article/view/9838


Post-quantum crypto

• More assumptions, more schemes, more parameters, more code

• More complexity in implementations, protocols, and proofs

• Initially many bugs that were not caught by functional testing

• Early personal intuition:
• no big-integer arithmetic → no “rare” bugs
• Confidence in functional correctness through test vectors . . . ?

• Shattered by Hwang, Liu, Seiler, Shi, Tsai, Wang, and Yang (CHES 2022): Verified NTT
Multiplications for NISTPQC KEM Lattice Finalists: Kyber, SABER, and NTRU.

3

https://tches.iacr.org/index.php/TCHES/article/view/9838
https://tches.iacr.org/index.php/TCHES/article/view/9838


Post-quantum crypto

• More assumptions, more schemes, more parameters, more code

• More complexity in implementations, protocols, and proofs

• Initially many bugs that were not caught by functional testing

• Early personal intuition:
• no big-integer arithmetic → no “rare” bugs
• Confidence in functional correctness through test vectors . . . ?

• Shattered by Hwang, Liu, Seiler, Shi, Tsai, Wang, and Yang (CHES 2022): Verified NTT
Multiplications for NISTPQC KEM Lattice Finalists: Kyber, SABER, and NTRU.

3

https://tches.iacr.org/index.php/TCHES/article/view/9838
https://tches.iacr.org/index.php/TCHES/article/view/9838


Advanced microarchitectural side channels

4



Tools that aren’t built for crypto

“ . . . implementations shall consist of source code written in ANSI C.”

—NIST PQC Call for Proposals, 2017

• No memory safety

• Finicky semantics
• Undefined behavior
• Implementation-specific behavior
• Context-specific behavior

• No mandatory initialization

• No (optional) runtime checks

5



Tools that aren’t built for crypto

“ . . . implementations shall consist of source code written in ANSI C.”

—NIST PQC Call for Proposals, 2017

• No memory safety

• Finicky semantics
• Undefined behavior
• Implementation-specific behavior
• Context-specific behavior

• No mandatory initialization

• No (optional) runtime checks

but. . . Rust!
• Memory safe

• More clear semantics (?)

• Mandatory variable initialization

• (Optional) runtime checks for, e.g.,
overflows

5



Tools that aren’t built for crypto

Lack of security features
• No concept of secret vs. public data

• No preservation of “constant-time”

• Limited protection against microarchitectural attacks

• Limited support for erasure of sensitive data

5



Let’s fix those tools!

“We argue that we must stop fighting the compiler, and instead make it our ally.”

—Simon, Chisnall, Anderson, 2018

6



Let’s fix those tools!

Secure erasure in LLVM
• Simon, Chisnall, Anderson implement secure erasure in LLVM

• Code available at https://github.com/lmrs2/zerostack

• Not adopted in mainline LLVM

6

https://github.com/lmrs2/zerostack


Let’s fix those tools!

Secret types in Rust + LLVM
• Initiative at HACS 2020: secret integer types in Rust, C++, and LLVM

• Rust draft RFC online at https://github.com/rust-lang/rfcs/pull/2859

• Implementation in LLVM is massive effort, no real progress, yet

6

https://github.com/rust-lang/rfcs/pull/2859


Let’s fix those tools!

Spectre protections in LLVM

• Carruth, 2019: Spectre v1 countermeasure in LLVM1 (see later in the talk)

• “does not defend against secret data already loaded from memory and residing in registers”

• Zhang, Barthe, Chuengsatiansup, Schwabe, Yarom, 2023: More principled approach2

• Report and proposed patches to LLVM in March 2022

• September 2022: Status: WontFix (was: New)

1https://llvm.org/docs/SpeculativeLoadHardening.html
2Ultimate SLH: Taking Speculative Load Hardening to the Next Level. USENIX Security, 2023

6

https://llvm.org/docs/SpeculativeLoadHardening.html
https://eprint.iacr.org/2022/715


Let’s fix those tools!

Spectre protections in LLVM

• Carruth, 2019: Spectre v1 countermeasure in LLVM1 (see later in the talk)

• “does not defend against secret data already loaded from memory and residing in registers”

• Zhang, Barthe, Chuengsatiansup, Schwabe, Yarom, 2023: More principled approach2

• Report and proposed patches to LLVM in March 2022

• September 2022: Status: WontFix (was: New)

1https://llvm.org/docs/SpeculativeLoadHardening.html
2Ultimate SLH: Taking Speculative Load Hardening to the Next Level. USENIX Security, 2023

6

https://llvm.org/docs/SpeculativeLoadHardening.html
https://eprint.iacr.org/2022/715


High-assurance crypto

• Effort to formally verify crypto

• Goal: verified PQC ready for deployment
• Three main projects:

• EasyCrypt proof assistant
• Jasmin programming language
• Libjade (PQ-)crypto library

• Core community of ≈ 30–40 people

• Discussion forum with >200 people

7



Joint work with. . .

Aaron Kaiser, Adrien Koutsos, Alley Stoughton, Amber Sprenkels, Andreas Hülsing,
Antoine Séré, Basavesh Ammanaghatta Shivakumar, Benjamin Grégoire, Benjamin Lipp,
Bo-Yin Yang, Bow-Yaw Wang, Chitchanok Chuengsatiansup, Christian Doczkal, Daniel Genkin,
Denis Firsov, Fabio Campos, François Dupressoir, Gilles Barthe, Hugo Pacheco, Jack Barnes,
Jean-Christophe Léchenet, José Bacelar Almeida, Kai-Chun Ning, Lionel Blatter,
Lucas Tabary-Maujean, Manuel Barbosa, Matthias Meijers, Miguel Quaresma,
Ming-Hsien Tsai, Peter Schwabe, Pierre Boutry, Pierre-Yves Strub, Ruben Gonzalez,
Rui Qi Sim, Sabrina Manickam, Santiago Arranz Olmos, Sioli O’Connell, Sunjay Cauligi,
Swarn Priya, Tiago Oliveira, Vincent Hwang, Vincent Laporte, William Wang, Yi Lee,
Yuval Yarom, Zhiyuan Zhang

8



The toolchain and workflow

9



The toolchain and workflow

9



The toolchain and workflow

9



Running example: Kyber

“The public-key encryption and key-establishment algorithm that will be standardized is
CRYSTALS-KYBER.”

—NIST IR 8413-upd1

• Lattice-based KEM, joint work with Avanzi, Bos, Ding, Ducas, Kiltz, Lepoint,
Lyubashevsky, Schanck, Schwabe, Seiler, and Stehlé.

• Three parameter sets; “recommended” is Kyber768

• FIPS draft standard public for comments:
https://csrc.nist.gov/pubs/fips/203/ipd

• Already deployed in TLS by Google and Cloudflare

10

https://csrc.nist.gov/pubs/fips/203/ipd


Functional correctness of Kyber implementations

Almeida, Barbosa, Barthe, Grégoire, Laporte, Léchenet, Oliveira, Pacheco, Quaresma, Schwabe, Séré, and
Strub. Formally verifying Kyber – Episode IV: Implementation Correctness. TCHES 2023-3.

11

https://eprint.iacr.org/2023/215


Functional correctness of Kyber implementations

Almeida, Barbosa, Barthe, Grégoire, Laporte, Léchenet, Oliveira, Pacheco, Quaresma, Schwabe, Séré, and
Strub. Formally verifying Kyber – Episode IV: Implementation Correctness. TCHES 2023-3.

11

https://eprint.iacr.org/2023/215


Functional correctness of Kyber implementations

11



Implementing in Jasmin

Almeida, Barbosa, Barthe, Blot, Grégoire, Laporte, Oliveira, Pacheco, Schmidt, Strub. Jasmin: High-

Assurance and High-Speed Cryptography. ACM CCS 2017

• Language with “C-like” syntax

• Programming in Jasmin is much closer to assembly:
• Generally: 1 line in Jasmin → 1 line in assembly
• A few exceptions, but highly predictable
• Compiler does not schedule code
• Compiler does not spill registers

• Compiler is formally proven to preserve semantics

• Static (trusted) safety checker

• Compiler is formally proven to preserve constant-time property3

3Barthe, Grégoire, Laporte, and Priya. Structured Leakage and Applications to Cryptographic Constant-Time
and Cost. ACM CCS 2022

12

https://dl.acm.org/doi/10.1145/3133956.3134078
https://dl.acm.org/doi/10.1145/3133956.3134078
https://eprint.iacr.org/2021/650
https://eprint.iacr.org/2021/650


Implementing in Jasmin

Almeida, Barbosa, Barthe, Blot, Grégoire, Laporte, Oliveira, Pacheco, Schmidt, Strub. Jasmin: High-

Assurance and High-Speed Cryptography. ACM CCS 2017

• Language with “C-like” syntax

• Programming in Jasmin is much closer to assembly:
• Generally: 1 line in Jasmin → 1 line in assembly
• A few exceptions, but highly predictable
• Compiler does not schedule code
• Compiler does not spill registers

• Compiler is formally proven to preserve semantics

• Static (trusted) safety checker

• Compiler is formally proven to preserve constant-time property3

3Barthe, Grégoire, Laporte, and Priya. Structured Leakage and Applications to Cryptographic Constant-Time
and Cost. ACM CCS 2022

12

https://dl.acm.org/doi/10.1145/3133956.3134078
https://dl.acm.org/doi/10.1145/3133956.3134078
https://eprint.iacr.org/2021/650
https://eprint.iacr.org/2021/650


Efficiency of Jasmin code

• Can do (almost) everything you can do in assembly

• Architecture-specific implementations

• Small limitations to enable static safety checking (no raw pointers)

• Easier to write and maintain than assembly
• Loops, conditionals
• Function calls (optional: inline)
• Function-local variables
• Register and stack arrays
• Register and stack allocation

13



Efficiency of Jasmin code

• Can do (almost) everything you can do in assembly

• Architecture-specific implementations

• Small limitations to enable static safety checking (no raw pointers)

• Easier to write and maintain than assembly
• Loops, conditionals
• Function calls (optional: inline)
• Function-local variables
• Register and stack arrays
• Register and stack allocation

13



Efficiency of Jasmin code

Performance of Kyber code

Implementation operation Skylake Haswell Comet Lake

C/asm AVX2 keygen 49572 47280 41682
encaps 60018 62900 55956
decaps 45854 47784 43906

Jasmin AVX2 keygen 106578 96296 93244
(fully verified) encaps 119308 111536 107474

decaps 105336 98328 96564

Jasmin AVX2 keygen 50004 48800 45046
(fully optimized) encaps 65132 63988 59496

decaps 50340 51444 48172

13



Security – “constant time”

• Enforce constant-time on Jasmin source level

• Every piece of data is either secret or public

• Flow of secret information is traced by type system

“Any operation with a secret input produces a secret output”

• Branch conditions and memory indices need to be public

• In principle can do this also in, e.g., Rust (secret_integers crate)

• Remember: Jasmin compiler is verified to preserve constant-time!

• Explicit #declassify primitive to move from secret to public

14



Security – “constant time”

• Enforce constant-time on Jasmin source level

• Every piece of data is either secret or public

• Flow of secret information is traced by type system

“Any operation with a secret input produces a secret output”

• Branch conditions and memory indices need to be public

• In principle can do this also in, e.g., Rust (secret_integers crate)

• Remember: Jasmin compiler is verified to preserve constant-time!

• Explicit #declassify primitive to move from secret to public

14



Security – “constant time”

• Enforce constant-time on Jasmin source level

• Every piece of data is either secret or public

• Flow of secret information is traced by type system

“Any operation with a secret input produces a secret output”

• Branch conditions and memory indices need to be public

• In principle can do this also in, e.g., Rust (secret_integers crate)

• Remember: Jasmin compiler is verified to preserve constant-time!

• Explicit #declassify primitive to move from secret to public

14



Security – “constant time”

• Enforce constant-time on Jasmin source level

• Every piece of data is either secret or public

• Flow of secret information is traced by type system

“Any operation with a secret input produces a secret output”

• Branch conditions and memory indices need to be public

• In principle can do this also in, e.g., Rust (secret_integers crate)

• Remember: Jasmin compiler is verified to preserve constant-time!

• Explicit #declassify primitive to move from secret to public

14



Security – Spectre v1 (“Speculative bounds-check bypass”)

stack u8[10] public;
stack u8[32] secret;
reg u8 t;
reg u64 r, i;

i = 0;
while(i < 10) {

t = public[(int) i] ;
r = leak(t);
...

}

15



Extending the type system

• Type system gets three security levels:
• secret: secret
• public: public, also during misspeculation
• transient: public, but possibly secret during misspeculation

• Don’t branch or index memory based on secret or transient data
• Guide programmer to protect code
• Selective speculative load hardening (selSLH):

• Misspeculation flag in register
• Mask “transient” values with flag before leaking them

• Overhead for Kyber768 (on Intel Comet Lake):
• 0.28% for Keypair
• 0.55% for Encaps
• 0.75% for Decaps

• Exploits synergies with protections against “traditional” timing attacks

Ammanaghatta Shivakumar, Barthe, Grégoire, Laporte, Oliveira, Priya, Schwabe, and Tabary-Maujean. Typ-
ing High-Speed Cryptography against Spectre v1. IEEE S&P 2023.

16

https://eprint.iacr.org/2022/1270
https://eprint.iacr.org/2022/1270


Extending the type system

• Type system gets three security levels:
• secret: secret
• public: public, also during misspeculation
• transient: public, but possibly secret during misspeculation

• Don’t branch or index memory based on secret or transient data

• Guide programmer to protect code
• Selective speculative load hardening (selSLH):

• Misspeculation flag in register
• Mask “transient” values with flag before leaking them

• Overhead for Kyber768 (on Intel Comet Lake):
• 0.28% for Keypair
• 0.55% for Encaps
• 0.75% for Decaps

• Exploits synergies with protections against “traditional” timing attacks

Ammanaghatta Shivakumar, Barthe, Grégoire, Laporte, Oliveira, Priya, Schwabe, and Tabary-Maujean. Typ-
ing High-Speed Cryptography against Spectre v1. IEEE S&P 2023.

16

https://eprint.iacr.org/2022/1270
https://eprint.iacr.org/2022/1270


Extending the type system

• Type system gets three security levels:
• secret: secret
• public: public, also during misspeculation
• transient: public, but possibly secret during misspeculation

• Don’t branch or index memory based on secret or transient data
• Guide programmer to protect code
• Selective speculative load hardening (selSLH):

• Misspeculation flag in register
• Mask “transient” values with flag before leaking them

• Overhead for Kyber768 (on Intel Comet Lake):
• 0.28% for Keypair
• 0.55% for Encaps
• 0.75% for Decaps

• Exploits synergies with protections against “traditional” timing attacks

Ammanaghatta Shivakumar, Barthe, Grégoire, Laporte, Oliveira, Priya, Schwabe, and Tabary-Maujean. Typ-
ing High-Speed Cryptography against Spectre v1. IEEE S&P 2023.

16

https://eprint.iacr.org/2022/1270
https://eprint.iacr.org/2022/1270


Extending the type system

• Type system gets three security levels:
• secret: secret
• public: public, also during misspeculation
• transient: public, but possibly secret during misspeculation

• Don’t branch or index memory based on secret or transient data
• Guide programmer to protect code
• Selective speculative load hardening (selSLH):

• Misspeculation flag in register
• Mask “transient” values with flag before leaking them

• Overhead for Kyber768 (on Intel Comet Lake):
• 0.28% for Keypair
• 0.55% for Encaps
• 0.75% for Decaps

• Exploits synergies with protections against “traditional” timing attacks

Ammanaghatta Shivakumar, Barthe, Grégoire, Laporte, Oliveira, Priya, Schwabe, and Tabary-Maujean. Typ-
ing High-Speed Cryptography against Spectre v1. IEEE S&P 2023.

16

https://eprint.iacr.org/2022/1270
https://eprint.iacr.org/2022/1270


Security – zeroization

“ . . .A cryptographic module shall provide methods to zeroize all plaintext secret and private
cryptographic keys”

—FIPS 140-3, Section 9.7.A

Goal of zeroization

Scrub all (sensitive) data from memory (stack) and registers when crypto routine returns.

Failure modes
0. Don’t perform any zeroization

1. Dead-store elimination

2. Only API-level stack zeroization

3. Don’t scrub source-level invisible data

4. Mis-estimate stack space when scrubbing from caller

17



Security – zeroization

“ . . .A cryptographic module shall provide methods to zeroize all plaintext secret and private
cryptographic keys”

—FIPS 140-3, Section 9.7.A

Goal of zeroization

Scrub all (sensitive) data from memory (stack) and registers when crypto routine returns.

Failure modes
0. Don’t perform any zeroization

1. Dead-store elimination

2. Only API-level stack zeroization

3. Don’t scrub source-level invisible data

4. Mis-estimate stack space when scrubbing from caller

17



Security – zeroization

“ . . .A cryptographic module shall provide methods to zeroize all plaintext secret and private
cryptographic keys”

—FIPS 140-3, Section 9.7.A

Goal of zeroization

Scrub all (sensitive) data from memory (stack) and registers when crypto routine returns.

Failure modes
0. Don’t perform any zeroization

1. Dead-store elimination

2. Only API-level stack zeroization

3. Don’t scrub source-level invisible data

4. Mis-estimate stack space when scrubbing from caller

17



Security – zeroization

“ . . .A cryptographic module shall provide methods to zeroize all plaintext secret and private
cryptographic keys”

—FIPS 140-3, Section 9.7.A

Goal of zeroization

Scrub all (sensitive) data from memory (stack) and registers when crypto routine returns.

Failure modes
0. Don’t perform any zeroization

1. Dead-store elimination

2. Only API-level stack zeroization

3. Don’t scrub source-level invisible data

4. Mis-estimate stack space when scrubbing from caller

17



Security – zeroization

“ . . .A cryptographic module shall provide methods to zeroize all plaintext secret and private
cryptographic keys”

—FIPS 140-3, Section 9.7.A

Goal of zeroization

Scrub all (sensitive) data from memory (stack) and registers when crypto routine returns.

Failure modes
0. Don’t perform any zeroization

1. Dead-store elimination

2. Only API-level stack zeroization

3. Don’t scrub source-level invisible data

4. Mis-estimate stack space when scrubbing from caller

17



Security – zeroization

“ . . .A cryptographic module shall provide methods to zeroize all plaintext secret and private
cryptographic keys”

—FIPS 140-3, Section 9.7.A

Goal of zeroization

Scrub all (sensitive) data from memory (stack) and registers when crypto routine returns.

Failure modes
0. Don’t perform any zeroization

1. Dead-store elimination

2. Only API-level stack zeroization

3. Don’t scrub source-level invisible data

4. Mis-estimate stack space when scrubbing from caller

17



Security – zeroization

“ . . .A cryptographic module shall provide methods to zeroize all plaintext secret and private
cryptographic keys”

—FIPS 140-3, Section 9.7.A

Goal of zeroization

Scrub all (sensitive) data from memory (stack) and registers when crypto routine returns.

Failure modes
0. Don’t perform any zeroization

1. Dead-store elimination

2. Only API-level stack zeroization

3. Don’t scrub source-level invisible data

4. Mis-estimate stack space when scrubbing from caller

17



Security – zeroization (ctd.)

Solution in Jasmin compiler

Zeroize used stack space and registers when returning from export function

• Make use of multiple features of Jasmin:
• Compiler has global view
• All stack usage is known at compile time
• Entry/return point is clearly defined

• Performance overhead for Kyber768:
• 0.59% for Keypair
• 0.24% for Encaps
• 1.04% for Decaps

Arranz Olmos, Barthe, Gonzalez, Grégoire, Laporte, Léchenet, Oliveira, Schwabe: High-assurance zeroization.
TCHES 2024-1.

18

https://eprint.iacr.org/2023/1713


Security – zeroization (ctd.)

Solution in Jasmin compiler

Zeroize used stack space and registers when returning from export function

• Make use of multiple features of Jasmin:
• Compiler has global view
• All stack usage is known at compile time
• Entry/return point is clearly defined

• Performance overhead for Kyber768:
• 0.59% for Keypair
• 0.24% for Encaps
• 1.04% for Decaps

Arranz Olmos, Barthe, Gonzalez, Grégoire, Laporte, Léchenet, Oliveira, Schwabe: High-assurance zeroization.
TCHES 2024-1.

18

https://eprint.iacr.org/2023/1713


Security – zeroization (ctd.)

Solution in Jasmin compiler

Zeroize used stack space and registers when returning from export function

• Make use of multiple features of Jasmin:
• Compiler has global view
• All stack usage is known at compile time
• Entry/return point is clearly defined

• Performance overhead for Kyber768:
• 0.59% for Keypair
• 0.24% for Encaps
• 1.04% for Decaps

Arranz Olmos, Barthe, Gonzalez, Grégoire, Laporte, Léchenet, Oliveira, Schwabe: High-assurance zeroization.
TCHES 2024-1.

18

https://eprint.iacr.org/2023/1713


Libjade – the interface to Formosa Crypto

https://github.com/formosa-crypto/libjade

• Collection of primitive implementations rather than library

• “A library to be used by libraries”

• Example:

cd src/crypto_kem/kyber/kyber768/amd64/ref/ && make

will build

src/crypto_kem/kyber/kyber768/amd64/ref/kem.s

with API described in

src/crypto_kem/kyber/kyber768/amd64/ref/include/api.h

19

https://github.com/formosa-crypto/libjade


Libjade – the interface to Formosa Crypto

https://github.com/formosa-crypto/libjade

• Collection of primitive implementations rather than library

• “A library to be used by libraries”

• Example:

cd src/crypto_kem/kyber/kyber768/amd64/ref/ && make

will build

src/crypto_kem/kyber/kyber768/amd64/ref/kem.s

with API described in

src/crypto_kem/kyber/kyber768/amd64/ref/include/api.h

19

https://github.com/formosa-crypto/libjade


Libjade – releases and plans

• Releases contain
• compiled assembly files + headers
• jasmin files
• usage examples written in C

• Latest release: 2023.05-1

• Plans for next release:
• Integrate EasyCrypt proofs (covered by CI)
• Integrate/consolidate various features
• Special focus on Kyber-768

20



Libjade – releases and plans

• Releases contain
• compiled assembly files + headers
• jasmin files
• usage examples written in C

• Latest release: 2023.05-1

• Plans for next release:
• Integrate EasyCrypt proofs (covered by CI)
• Integrate/consolidate various features
• Special focus on Kyber-768

20



Challenges, ongoing work, TODOs

More proof automation!

• Integrate with CryptoLine (https://github.com/fmlab-iis/cryptoline)4

• (semi-)automated proof of branch-free arithmetic
• “Prove without understanding code”

• Automated equivalence proving. . .

Beyond Spectre v1
• Spectre v2: Avoid by not using indirect branches

• Spectre v4: Use SSBD: https://github.com/tyhicks/ssbd-tools

• Spectre protection requires separation of crypto code!

4Fu, Liu, Shi, Tsai, Wang, and Yang. Signed Cryptographic Program Verification with Typed CryptoLine. ACM
CCS 2019

21

https://github.com/fmlab-iis/cryptoline
https://github.com/tyhicks/ssbd-tools
https://dl.acm.org/doi/10.1145/3319535.3354199


Challenges, ongoing work, TODOs

More proof automation!

• Integrate with CryptoLine (https://github.com/fmlab-iis/cryptoline)4

• (semi-)automated proof of branch-free arithmetic
• “Prove without understanding code”

• Automated equivalence proving. . .

Beyond Spectre v1
• Spectre v2: Avoid by not using indirect branches

• Spectre v4: Use SSBD: https://github.com/tyhicks/ssbd-tools

• Spectre protection requires separation of crypto code!

4Fu, Liu, Shi, Tsai, Wang, and Yang. Signed Cryptographic Program Verification with Typed CryptoLine. ACM
CCS 2019

21

https://github.com/fmlab-iis/cryptoline
https://github.com/tyhicks/ssbd-tools
https://dl.acm.org/doi/10.1145/3319535.3354199


Challenges, ongoing work, TODOs, part 2

Support more architectures
• 32-bit Arm (ARMv7ME): works, still “experimental”

• Opentitan’s OTBN: work in progress

• 64-bit ARM and RISC-V: very early WIP

Secure interfacing
• Currently use C function-call ABI (caller/callee contract through documentation)

• Check/Enforce caller requirements?

• Stronger safety notions (e.g., interfacing with Rust)

22



Challenges, ongoing work, TODOs, part 2

Support more architectures
• 32-bit Arm (ARMv7ME): works, still “experimental”

• Opentitan’s OTBN: work in progress

• 64-bit ARM and RISC-V: very early WIP

Secure interfacing
• Currently use C function-call ABI (caller/callee contract through documentation)

• Check/Enforce caller requirements?

• Stronger safety notions (e.g., interfacing with Rust)

22



The big challenge

Make high-assurance tools mainstream/default!

23



Formosa online

https://formosa-crypto.org

24

https://formosa-crypto.org

