CRYSTALS-Kyber

Roberto Avanzi, Joppe Bos, Jintai Ding, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck, **Peter Schwabe**, Gregor Seiler, Damien Stehlé

authors@pq-crystals.org
https://pq-crystals.org/kyber
November 29, 2022

Kyber summary

- MLWE-based IND-CCA2-secure KEM
 - IND-CPA secure LPR public-key encryption
 - Tweaked FO transform
- Only KEM selected by NIST for standardization after round 3

Kyber summary

- MLWE-based IND-CCA2-secure KEM
 - IND-CPA secure LPR public-key encryption
 - Tweaked FO transform
- Only KEM selected by NIST for standardization after round 3
- Very fast across different platforms
- E.g., $\approx 2 \times$ faster than X25519 on Skylake (at level 3)
- Will be even faster with HW Keccak acceleration

Kyber summary

- MLWE-based IND-CCA2-secure KEM
 - IND-CPA secure LPR public-key encryption
 - Tweaked FO transform
- Only KEM selected by NIST for standardization after round 3
- Very fast across different platforms
- E.g., $\approx 2 \times$ faster than X25519 on Skylake (at level 3)
- Will be even faster with HW Keccak acceleration
- Same optimized routines across all parameter sets
- Designed for efficient constant-time implementation
- Designed for efficient vectorization
- Designed for low memory consumption on embedded platforms

Decisions I: symmetric crypto

Current symmetric crypto Possible alternative

H: H: SHA3-256 cSHAKE-256 G: SHA3-512 G: cSHAKE-256 PRF: SHAKE-256 PRF: cSHAKE-256 KDF: SHAKF-256 KDF: cSHAKF-256 XOF: SHAKE-128 XOF: SHAKE-128

Decisions I: symmetric crypto

Current symmetric crypto Possible alternative

H: SHA3-256 H: cSHAKE-256 G٠ SHA3-512 G٠ cSHAKE-256 PRF: SHAKE-256 PRF. cSHAKE-256 KDF: SHAKF-256 KDF: cSHAKF-256 XOF: SHAKE-128 XOF: SHAKE-128 ... or

TurboSHAKE

- XOF is used to generate public matrix A
- 12-round Keccak sufficient as secure hash function
- Don't even need full-fledged hash function for generating A

Decisions II: FO transform

Hashing prefix(pk)

- Kyber hashes H(pk) into coins and shared key
 - Protection against multitarget failure attacks
 - Makes KEM "contributory"
- Cheaper and sufficient: Use prefix(pk) instead

Decisions II: FO transform

Hashing prefix(pk)

- Kyber hashes H(pk) into coins and shared key
 - Protection against multitarget failure attacks
 - Makes KEM "contributory"
- Cheaper and sufficient: Use prefix(pk) instead

Ciphertext hash

- Kyber hashes H(c) into shared key
- "Robust": shared key depends on full transcript

Decisions II: FO transform

Hashing prefix(pk)

- Kyber hashes H(pk) into coins and shared key
 - Protection against multitarget failure attacks
 - Makes KEM "contributory"
- Cheaper and sufficient: Use prefix(pk) instead

Ciphertext hash

- Kyber hashes H(c) into shared key
- "Robust": shared key depends on full transcript
- Not useful in proofs of any security property
- Complicates QROM proofs
- Dropping this hash would simplify QROM proofs and speed up Encaps

Deployment examples

- All websites and APIs served by Cloudflare; see
 https://blog.cloudflare.com/post-quantum-for-all/
- TLS 1.3 With X25519+Kyber512 in Firefox by Tamvada; see https://github.com/xvzcf/firefox-pq-demos

Deployment examples

- All websites and APIs served by Cloudflare; see https://blog.cloudflare.com/post-quantum-for-all/
- TLS 1.3 With X25519+Kyber512 in Firefox by Tamvada; see https://github.com/xvzcf/firefox-pq-demos
- AWS Secrets Manager using TLS with Kyber; see
 https://aws.amazon.com/about-aws/whats-new/2022/08/
 aws-secrets-manager-connections-support-hybrid-post-quantum-tls-kyber/

Deployment examples

- All websites and APIs served by Cloudflare; see
 https://blog.cloudflare.com/post-quantum-for-all/
- TLS 1.3 With X25519+Kyber512 in Firefox by Tamvada; see https://github.com/xvzcf/firefox-pq-demos
- AWS Secrets Manager using TLS with Kyber; see
 https://aws.amazon.com/about-aws/whats-new/2022/08/
 aws-secrets-manager-connections-support-hybrid-post-quantum-tls-kyber/
- IBM quantum-secure tape drive; see https://www.ibm.com/blogs/research/2019/08/crystals/
- IBM Cloud key management; see https://www.ibm.com/cloud/blog/ introducing-quantum-safe-crypto-tls-for-ibm-key-protect

• Kyber GitHub repo (C ref and AVX2): https://github.com/pq-crystals/kyber

5

- Kyber GitHub repo (C ref and AVX2): https://github.com/pq-crystals/kyber
- PQClean (C ref and AVX2): https://github.com/PQClean/PQClean

- Kyber GitHub repo (C ref and AVX2): https://github.com/pq-crystals/kyber
- PQClean (C ref and AVX2): https://github.com/PQClean/PQClean
- pqm4 (C/asm for Arm Cortex-M4): https://github.com/mupq/pqm4

- Kyber GitHub repo (C ref and AVX2): https://github.com/pq-crystals/kyber
- PQClean (C ref and AVX2): https://github.com/PQClean/PQClean
- pqm4 (C/asm for Arm Cortex-M4): https://github.com/mupq/pqm4
- libjade (jasmin \rightarrow asm): https://github.com/formosa-crypto/libjade

- Kyber GitHub repo (C ref and AVX2): https://github.com/pq-crystals/kyber
- PQClean (C ref and AVX2): https://github.com/PQClean/PQClean
- pqm4 (C/asm for Arm Cortex-M4): https://github.com/mupq/pqm4
- libjade (jasmin \rightarrow asm): https://github.com/formosa-crypto/libjade
- Incomplete list of third-party implementations: https://pq-crystals.org/kyber/software.shtml

- Baseline: all(?) implementations are constant time
- Protections against Spectre v1 [ABGLOPST22]: https://ia.cr/2022/1270

- Baseline: all(?) implementations are constant time
- Protections against Spectre v1 [ABGLOPST22]: https://ia.cr/2022/1270
- Numerous papers on HW SCA and FI, see, e.g.,
 - survey + new results [RCDB22]: https://ia.cr/2022/737
 - attacks against higher-order masked Saber [NWDP22]: https://ia.cr/2022/919

- Baseline: all(?) implementations are constant time
- Protections against Spectre v1 [ABGLOPST22]: https://ia.cr/2022/1270
- Numerous papers on HW SCA and FI, see, e.g.,
 - survey + new results [RCDB22]: https://ia.cr/2022/737
 - attacks against higher-order masked Saber [NWDP22]: https://ia.cr/2022/919
- Also numerous papers on countermeasures, see, e.g.,
 - first and higher-order masking by [BGRSvV21]: https://ia.cr/2021/483
 - combined SCA and FI countermeasures by [HP21]: https://ia.cr/2021/101

- Baseline: all(?) implementations are constant time
- Protections against Spectre v1 [ABGLOPST22]: https://ia.cr/2022/1270
- Numerous papers on HW SCA and FI, see, e.g.,
 - survey + new results [RCDB22]: https://ia.cr/2022/737
 - attacks against higher-order masked Saber [NWDP22]: https://ia.cr/2022/919
- Also numerous papers on countermeasures, see, e.g.,
 - first and higher-order masking by [BGRSvV21]: https://ia.cr/2021/483
 - combined SCA and FI countermeasures by [HP21]: https://ia.cr/2021/101
- No consensus/understanding on "sufficient" countermeasures; see, e.g.
 https://iacr.org/submit/files/slides/2022/rwc/rwc2022/48/slides.pdf
- Much more work required need for coordination?

Kyber online

https://pq-crystals.org/kyber

7