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5 building blocks for a “secure channel”
Symmetric crypto

= Block or stream cipher (e.g., AES, ChaCha20)
= Authenticator (e.g., HMAC, GMAC, Poly1305)
= Hash function (e.g., SHA-2, SHA-3)

Asymmetric crypto

= Key agreement / public-key encryption (e.g., RSA, Diffie-Hellman,
ECDH)

= Signatures (e.g., RSA, DSA, ECDSA, EdDSA)

The asymmetric monoculture

= All widely deployed asymmetric crypto relies on

= the hardness of factoring, or
= the hardness of (elliptic-curve) discrete logarithms



... Shor, 1996

Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer*

Peter W. Shorf

Abstract

A digital computer is generally believed to be an efficient universal computing
device; that is, it is helieved able to simulate any physical computing device with
an increase in computation time by at most a polynomial factor. This may not be
true when quantum mechanics is taken into consideration. This paper considers
factoring integers and finding discrete logarithms, two problems which are generally
thought to be hard on a classical computer and which have been used as the basis
of several proposed cryptosystems. Efficient randomized algorithms are given for
these two problems on a hypothetical quantum computer. These algorithms take
a number of steps polynomial in the input size, e.g.. the number of digits of the
integer to be factored.



Will there be quantum computers?

“In the past, people have said, maybe it's 50 years away, it's a dream,
maybe it'll happen sometime. | used to think it was 50. Now I'm
thinking like it's 15 or a little more. It's within reach. It's within our
lifetime. It's going to happen.”

—Mark Ketchen (IBM), Feb. 2012, about quantum computers



Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using
classical and quantum computers.



Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using

classical and quantum computers.

5 main directions

Lattice-based crypto (PKE and Sigs)
Code-based crypto (mainly PKE)
Multivariate-based crypto (mainly Sigs)
Hash-based signatures (only Sigs)
Isogeny-based crypto (so far, mainly PKE)
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The NIST PQC “not-a-competition”

= Inspired by two earlier NIST crypto competitions:
= AES, running from 1997 to 2000
= SHA3, running from 2007 to 2012
= Approach: NIST specifies criteria, everybody is welcome to submit
proposals
= Selection through an open process and multiple rounds
= Actual decisions are being made by NIST
= Widely successful in the past, but also some criticism:
= Small tweaks are typically allowed, but standardized scheme
represents state of the art at the beginning of the competition
= AES standardization unaware of cache-timing vulnerabilities
= SHA-3 criterion of 512-bit preimage security unnecessary
= PQC project:
= Announcement: Feb 2016
= Call for proposals: Dec 2016 (based on community input)
= Deadline for submissions: Nov 2017
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The NIST PQC “not-a-competition” ctd.

Submission categories

= Cryptographic signatures (only stateless)

= Security for at least 2°* signatures per key
= Public-key encryption / key encapsulation

= Passive or active security (CPA or CCA2)

Security categories

= Level 1: Equivalent to AES-128 (pre- and post-quantum)
= Level 2: Equivalent to SHA-256 (pre- and post-quantum)

(

(
= Level 3: Equivalent to AES-192 (pre- and post-quantum)
= Level 4: Equivalent to SHA-512 (pre- and post-quantum)
(

= Level 5: Equivalent to AES-256 (pre- and post-quantum)



The NIST competition, initial overview

Count of Problem Category Column Labels |kd

Row Labels ﬂ Key Exchange Signature Grand Total
? 1 1
Braids 1 1 2
Chebychev 1 ik
Codes 19 5 24
Finite Automata 1 1 2
Hash 4 4
Hypercomplex Numbers 1 1
Isogeny 1 1
Lattice 24 4 28
Mult. Var 6 7 13
Rand. walk 1 1
RSA 1 1l 2
Grand Total 57 23 80

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.
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The NIST competition (ctd.)

“Key exchange”

= What is meant is key encapsulation mechanisms (KEMs)
= (vk, sk)«+KeyGen()
= (c, k)<—Encaps(vk)
= k<Decaps(c, sk)

Status of the NIST competition

= |n total 69 submissions accepted as “complete and proper”
= Several broken, 5 withdrawn

= Jan 2019: NIST announces 26 round-2 candidates

= 17 KEMs and PKEs
= O signature schemes
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NIST finalists as drop-in replacements?

= Can wait until NIST standardizes some algorithms in ~ 5 years
= Plug these algorithms into existing protocols and systems

= My impression: that's what many systems designers expect

= Message of this talk: this is a terrible idea!

= Would generate a generation of rather poor protocols
= mediocre performance (designed pre-quantum, instantiated
post-quantum)
= Suboptimal security properties
= Bad crypto is very hard to get rid of (think MD5)
= We probably have one shot to get this done properly
= Systems will have to transition to PQ crypto
= Let's work on getting the best out of this transition!
= Requires interaction between cryptographers and systems designers
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The starting point: ECC

= Today: build asymmetric crypto from elliptic-curve arithmetic
= Given Pon a curve, s € Z, compute Q = sP

= ECDLP: hard to compute s, given P and @

= Use for ECDH for key encapsulation and encryption

= Use for ECDSA or Schnorr signatures

= Use same curves, same parameters

= Performance:

= All operations between 50000 and 200000 cycles
= Keys and ciphertexts: 32 bytes
= Signatures: 64 bytes

= Let's look at post-quantum candidates (at NIST security level 3)
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PQ-Signatures, part 1: M OQ-based

= Find solution to system of m quadratic eqns in n variables over F
= Additional assumption: attacker cannot exploit structure

= No reduction from MQ

= Example: NIST candidate GeMSS (others: Rainbow, LUOV)
= Signing: &~ 2.7 billion cycles
= Verification: =~ 580000 cycles

= Signature: ~ 50 bytes
= Public key: =~ 1.2MB

= Can also construct signatures with reduction from MQ
= Example: NIST candidate MQDSS

= Signing =~ 15 Mio cycles

= Verification ~ 10 Mio cycles

= Signature: ~ 60 KB

= Public key: 64 bytes
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PQ-Signatures, part 2: lattice-based

= Based on, e.g., LWE (see later) and SIS
= All NIST candidates use structured lattices (again, see later)
= Example: Dilithium (others: qTESLA, FALCON)

= Signing: = 500000 cycles

= Verification: &~ 170000 cycles

= Public key: =~ 1.5 KB
= Signature: =~ 2.7KB
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NIST round-2 candidates: SPHINCS™ and Picnic
Two hash-based signatures in NIST PQC round 2:

= SPHINCS™: state-of-the art conservative hash-based
= Picnic: Fiat-Shamir on top of symmetric ID scheme

Hash-based sigs: many tradeoffs possible between
= Speed (signing is generally slow)
= Security (trivially via hash sizes)
= Size (roughly 10-50 KB)
= Maxium number of signatures per key
Example: SPHINCS*-SHA256-192f-robust
= Signing: ~ 66 Mio cycles
= Verification: = 9.6 Mio cycles
= Signature: ~ 35.5KB
= Public key: 48 bytes
= Up to 2% signatures
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= Idea: Take error-correcting code for up to t errors

= Keep decoding algorithm secret

= Encryption: map message to code word, add t errors

= Most prominent example: McEliece (1978), uses binary Goppa codes

= “Classic McEliece” KEM NIST submission (other: NTS-KEM)

= Encapsulation: ~ 90000 cycles
= Decapsulation: = 270000 cycles
= Key generation: =~ 300 Mio cycles
= Cipher text: 188 bytes
= Public key: =~ 0.5 MB
= Probably good choice for, e.g., GPG, but not for low-latency
applications

= Possible solution: use structured codes
(NIST candidates: BIKE, LEDAcrypt, HQC, ROLLO, RQC)

= Less studied, less conservative, often problems with CCA security
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PQ-KEMs, part 3: SIKE

= Started as “supersingular-isogeny Diffie-Hellman"” (SIDH), Jao, De
Feo, 2011
= Given two elliptic curves E, E' from the same isogeny class
= Find path of small isogenies from E to EF'
= Security related to claw finding, but no reduction from claw finding
= Rather young construction, more study needed
= Active attacks in 2016 by Galbraith, Petit, Shani, and Ti
= Secure SIDH (or SIKE) is not “analogous to the Diffie-Hellman key
exchange”
= SIKE performance:
= Keygen: ~ 2.6 Mio cycles
= Encaps: ~ 3.8 Mio cycles
= Decaps: ~ 4.5Mio cycles

= Public key/ciphertext: < 500 bytes each
= Even more compact (and slower) with compression



Lattice-based KEMs

= 9 out of 19 NIST round-2 KEMs are (sort of) lattice based:
= CRYSTALS-Kyber (short: Kyber)
= FrodoKEM
= LAC
= NewHope
= NTRU
= NTRU Prime
= Round5
= Saber
= Threebears

= I'm involved in CRYSTALS-Kyber, NewHope, and NTRU
= Two main reasons for the large number:

= Large design space with many tradeoffs
= Popularity before the NIST project (in particular through NewHope)



Google Security Blog

The latest news and insights from Google on security and safety on the Internet

Experimenting with Post-Quantum Cryptography
Q_ Search blog
July7,2016
Bm Archive

Posted by Matt Braithwaite, Software Engineer

“We're indebted to Erdem Alkim, Léo Ducas, Thomas Péppelmann and
Peter Schwabe, the researchers who developed “New Hope”, the
post-quantum algorithm that we selected for this experiment.”

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html


https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

ABOUT  SOLUTIONS ~ DOCUMENTATION ~ EVENTS  PRESS ~ BLOG ~ CONTACT US

ISARA Radiate i the first commercially available security solution offering quantum resistant algorithms that replace or augment classical algorithms,

which will be weakened or broken by quantum computing threats.

“Key Agreement using the ‘NewHope' lattice-based algorithm detailed in
the New Hope paper, and LUKE (Lattice-based Unique Key Exchange),
an ISARA speed-optimized version of the NewHope algorithm.”

https://www.isara.com/isara-radiate/


https://www.isara.com/isara-radiate/

Gfineon

Newsletter Contact WheretoBuy English <

Products Applications Tools About Infineon ~ Careers

Press ene

Market News  PressKits MediaPool Events Contacts

>Home >aboutinfineon > Press > Press Relsases R

Ready for tomorrow: Infineon demonstrates first "=«
post-quantum cryptography on a contactless
security chip

“The deployed algorithm is a variant of “New Hope”, a
quantum-resistant cryptosystem”

https://www.infineon.com/cms/en/about-infineon/press/press-releases/2017/INFCCS201705-056.html

myinfincon login ~

Q

Karin Braeckle
T+498923423424
> Send E-mail


https://www.infineon.com/cms/en/about-infineon/press/press-releases/2017/INFCCS201705-056.html
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Using structured lattices

= Problem with LWE-based cryptosystems: public-key size
= |dea to solve this: allow structured matrix A, e.g.,
= NewHope: work in Rq = Z4[X]/(X" 4+ 1); n a power of 2, g prime
= NTRU: work in Rq = Zg[X]/(X" — 1); n prime, g a power of 2
= NTRU Prime: work in Rq = Zg[X]/(X" — X —1); q prime, n prime
= Kyber/Saber: use small-dimension matrices and vectors over
Rq = Lq[X]/(X** +1)
= Perform arithmetic on (vectors of) polynomials instead of
vectors/matrices over Z,

20



How to build a KEM?

Alice (server) Bob (client)
s,e & x s, e &y
b<as+e —b 5 utas te
PR
Alicehas v =us =ass' +¢€'s
Bob has v/ =bs" =ass' +es

= Secret and noise polynomials s,s’, e, e’ are small

= v and v/ are approximately the same

21



How to build a KEM, part 2

Alice Bob
$ / / $
s,e < X s',e ¢
b b )
<as+e -
u<as’ + e
vibs’

v/ <us ot

22
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How to build a KEM, part 2

Alice Bob

seed < {0,1}256

a<—Parse(SHAKE-128(seed))

s,e <y s.e,e &y

b<as+e B, a<—Parse(SHAKE-128(seed))
u<—as’ + €’
vi—bs' + €”
k<& {0,1}"
k<—Encode(k)

0 (u,c)

v'<—us c—v+k

k'+c— Vv p+—Extract(k)

ps—Extract(k’)

This is LPR encryption, written as KEX (except for generation of a)

22
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= Attacker can choose arbitrary noise, learns s from failures
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From passive to CCA security

= The base scheme does not have active security
= Attacker can choose arbitrary noise, learns s from failures

= Fujisaki-Okamoto transform (sketched):

Alice (Server) Bob (Client)
Gen(): Enc(seed, b):

pk, sk«—KeyGen() x{0,...,255}%
seed, b+ pk <P xSHA3-256(x)

k, coins«—SHA3-512(x)

u, v<—Encrypt((seed, b), x, coins)
Dec(s, (u, v)):

X+ Decrypt(s, (u, v))

K, coins'+~SHA3-512(X)

u’, V< Encrypt((seed, b), X, coins’)

verify if (u’,V) = (u,v)

23
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Design space 0: The NTRU approach

= Historically first: NTRU
= Use parameters g and p =3
= Keygen:
= Findf,g € R,and f, =f* mod g,f, =f' mod p
= public key: h = pf,g, secret key: (f,f,)
= Encrypt:
= Map message m to m € R, with coefficients in {—1,0,1}

= Sample random small-coefficient polynomial r € R4
= Compute ciphertext e =r-h+m

= Decrypt:
= Computev=Ff-e=f-(r-h+m)="F(r-(pfeg) + m) =prg+f-m
= Compute m=v-f, mod p

= Advantages/Disadvantages compared to LPR:

= Asymptotically weaker than Ring-LWE approach
= Slower keygen, but faster encryption/decryption
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Design space 1: What ring?

= Structured lattice-based schemes use ring Rq = Zg[X]/f
= g typically either prime or a power of two
= ftypically of degree between 512 and 1024
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= g typically either prime or a power of two
= ftypically of degree between 512 and 1024

= First option: g =2k, f= (X" —1), nprime (NTRU)

= Second option: g =2k f=(X"+1), n=2m (Saber)

= Third option: g =2 f=®,.1, n+ 1 prime  (Roundb)

= Fourth option: g prime, f= (X" +1) = &y, n=2"
(NewHope, Kyber, LAC)

= Fifth option: g prime, f= (X" — X — 1) irreducible, n prime
(NTRU Prime)

= Sixth option: ThreeBears works on large integers instead of
polynomials

= No proof that any option is more or less secure
= NTRU Prime advertises “less structure” in their R
= NewHope and Kyber have fastest (NTT-based) arithmetic
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Design space 1: module vs. ring?

= “Traditionally”, work directly with elements of R, (“Ring-LWE")
= Alternative: Module-LWE (MLWE):

= Choose smaller n, e.g., n = 256 (Kyber, Saber, ThreeBears)
= Work with small-dimension matrices and vectors over R4
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= “Traditionally”, work directly with elements of R, (“Ring-LWE")
= Alternative: Module-LWE (MLWE):

= Choose smaller n, e.g., n = 256 (Kyber, Saber, ThreeBears)
= Work with small-dimension matrices and vectors over R4

= MLWE encrypts shorter messages than Ring-LWE
= MLWE eliminates some of the structure of Ring-LWE

= MLWE can very easily scale security (change dimension of matrix):

= Optimize arithmetic in R4 once
= Use same optimized R4 arithmetic for all security levels
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Design space 3: what noise?

= Need to sample noise (for LWE schemes) and small secrets
= More noise means

= more security from the underlying hard problem
= higher failure probability of decryption
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= more security from the underlying hard problem
= higher failure probability of decryption

= Three main choices to make:

= Narrow or wide noise
= Narrow noise (e.g., in {—1,0,1}) not conservative
= Wide noise requires larger g (or more failures)
= Larger g means larger public key and ciphertext

= LWE or LWR
= LWE considered more conservative (independent noise)
= LWR easier to implement (no noise sampling)
= LWR allows more compact public key and ciphertext

= Fixed-weight noise or not?
= Fixed-weight noise needs random permutation (sorting)
= Naive implementations leak secrets through timing
= Advantage of fixed-weight: easier to bound (or eliminate) decryption

failures
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Design space 4: allow failures?

= Can avoid decryption failures entirely (NTRU, NTRU Prime)
= Advantage:

= Easier CCA security transform and analysis
= Disadvantage:

= Need to limit noise (or have larger q)
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Design space 4: allow failures?

= Can avoid decryption failures entirely (NTRU, NTRU Prime)
= Advantage:
= Easier CCA security transform and analysis
= Disadvantage:
= Need to limit noise (or have larger q)
= For passive-security-only can go the other way:
= Allow failure probability of, e.g., 273

= Reduce size of public key and ciphertext

= Active (CCA) security needs negligible failure prob.
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Design space 5: public parameters?

= “Traditional” approach to choosing a in LWE/LWR schemes:

’

“Let a be a uniformly random. ..’
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Design space 5: public parameters?

= “Traditional” approach to choosing a in LWE/LWR schemes:
“Let a be a uniformly random. .. "

= Before NewHope: real-world approach: generate fixed a once

= What if a is backdoored?

= Parameter-generating authority can break key exchange

= “Solution”: Nothing-up-my-sleeves (involves endless discussion!)

= Even without backdoor:

= Perform massive precomputation based on a

= Use precomputation to break all key exchanges
= [nfeasible today, but who knows. ..

= Attack in the spirit of Logjam

= Solution in NewHope: Choose a fresh a every time
= Server can cache a for some time (e.g., 1h)

= All NIST PQC candidates now use this approach
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Design space 6: error-correcting codes?

= Ring-LWE/LWR schemes work with polynomials of > 256
coefficients

= “Encrypt” messages of > 256 bits
= Need to encrypt only 256-bit key
= Question: How do we put those additional bits to use?

= Answer: Use error-correcting code (ECC) to reduce failure
probability
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Design space 6: error-correcting codes?

= Ring-LWE/LWR schemes work with polynomials of > 256
coefficients

= “Encrypt” messages of > 256 bits
= Need to encrypt only 256-bit key
= Question: How do we put those additional bits to use?

= Answer: Use error-correcting code (ECC) to reduce failure
probability

= NewHope: very simple threshold decoding

= LAC, Round5: more advanced ECC

= Correct more error, obtain smaller public key and ciphertext
= More complex to implement, in particular without leaking through
timing
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Design space 7: CCA security?

= Ephemeral key exchange does not need CCA security
= Can offer passively secure version

= Protocols will combine this with signatures for authentication
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Design space 7: CCA security?

= Ephemeral key exchange does not need CCA security
= Can offer passively secure version
= Protocols will combine this with signatures for authentication

= Advantages:

= Higher failure probability — more compact
= Simpler to implement, no CCA transform

= Disadvantages:

= Less robust (will somebody reuse keys?)
= More options (CCA vs. CPA): easier to make mistakes
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Design space 8: CCA transforms

= General Fujisaki-Okamoto principle is the same for most KEMs
(exception: NTRU)
= Tweaks to FO transform:

= Hash public-key into coins: multitarget protection (for non-zero
failure probability)
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Design space 8: CCA transforms

= General Fujisaki-Okamoto principle is the same for most KEMs
(exception: NTRU)
= Tweaks to FO transform:

= Hash public-key into coins: multitarget protection (for non-zero
failure probability)

= Hash public-key into shared key: KEM becomes contributory

= Hash ciphertext into shared key: more robust (?)

= How to handle rejection?

= Return special symbol (return -1): explicit
= Return H(s, C) for secret s: implicit

As of round 2, no proposal uses explicit rejection

= Would break some security reduction
= More robust in practice (return value alwas 0)
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(Exercise) Resources

= Overview NIST round-2 candidates: https://csrc.nist.gov/
Projects/Post-Quantum-Cryptography/round-2-submissions

= Slides from 2nd NIST standardization conference:
https://csrc.nist.gov/Events/2019/
Second-PQC-Standardization-Conference

= NIST PQC Wiki (Florida Atlantic University):
https://pqc-wiki.fau.edu
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