
NIST PQC, Kyber, and beyond

August 10, 2022

2

“In the past, people have said, maybe it’s 50 years away, it’s a dream,
maybe it’ll happen sometime. I used to think it was 50. Now I’m thinking
like it’s 15 or a little more. It’s within reach. It’s within our lifetime. It’s
going to happen.”

—Mark Ketchen (IBM), Feb. 2012, about quantum computers

3

Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using
classical and quantum computers.

5 main directions
• Lattice-based crypto (PKE and Sigs)

• Code-based crypto (mainly PKE)

• Multivariate-based crypto (mainly Sigs)

• Hash-based signatures (only Sigs)

• Isogeny-based crypto (so far, mainly PKE)

4

Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using
classical and quantum computers.

5 main directions
• Lattice-based crypto (PKE and Sigs)

• Code-based crypto (mainly PKE)

• Multivariate-based crypto (mainly Sigs)

• Hash-based signatures (only Sigs)

• Isogeny-based crypto (so far, mainly PKE)

4

Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using
classical and quantum computers.

5 main directions
• Lattice-based crypto (PKE and Sigs)

• Code-based crypto (mainly PKE)

• Multivariate-based crypto (mainly Sigs)

• Hash-based signatures (only Sigs)

• Isogeny-based crypto (so far, mainly PKE)

4

The NIST PQC “not-a-competition”

• Inspired by two earlier NIST crypto competitions:
• AES, running from 1997 to 2000
• SHA3, running from 2007 to 2012

• Approach: NIST specifies criteria, everybody is welcome to submit
proposals

• Selection through an open process and multiple rounds

• Actual decisions are being made by NIST
• PQC project:

• Announcement: Feb 2016
• Call for proposals: Dec 2016 (based on community input)
• Deadline for submissions: Nov 2017

5

The NIST PQC “not-a-competition”

• Inspired by two earlier NIST crypto competitions:
• AES, running from 1997 to 2000
• SHA3, running from 2007 to 2012

• Approach: NIST specifies criteria, everybody is welcome to submit
proposals

• Selection through an open process and multiple rounds

• Actual decisions are being made by NIST

• PQC project:
• Announcement: Feb 2016
• Call for proposals: Dec 2016 (based on community input)
• Deadline for submissions: Nov 2017

5

The NIST PQC “not-a-competition”

• Inspired by two earlier NIST crypto competitions:
• AES, running from 1997 to 2000
• SHA3, running from 2007 to 2012

• Approach: NIST specifies criteria, everybody is welcome to submit
proposals

• Selection through an open process and multiple rounds

• Actual decisions are being made by NIST
• PQC project:

• Announcement: Feb 2016
• Call for proposals: Dec 2016 (based on community input)
• Deadline for submissions: Nov 2017

5

The NIST competition: initial overview

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.

6

The NIST competition: Jan 2019

• Announcement planned at Real-World Crypto 2019

• Due to US government lockdown slightly later

Encryption / Key agreement
• 9 lattice-based

• 7 code-based

• 1 isogeny-based

Signature schemes
• 3 lattice-based

• 2 symmetric-crypto based

• 4 MQ-based

7

The NIST competition: Jan 2019

• Announcement planned at Real-World Crypto 2019

• Due to US government lockdown slightly later

Encryption / Key agreement
• 9 lattice-based

• 7 code-based

• 1 isogeny-based

Signature schemes
• 3 lattice-based

• 2 symmetric-crypto based

• 4 MQ-based

7

The NIST competition: Jan 2019

• Announcement planned at Real-World Crypto 2019

• Due to US government lockdown slightly later

Encryption / Key agreement
• 9 lattice-based

• 7 code-based

• 1 isogeny-based

Signature schemes
• 3 lattice-based

• 2 symmetric-crypto based

• 4 MQ-based

7

The NIST competition: Jan 2019

• Announcement planned at Real-World Crypto 2019

• Due to US government lockdown slightly later

Encryption / Key agreement
• 9 lattice-based

• 7 code-based

• 1 isogeny-based

Signature schemes
• 3 lattice-based

• 2 symmetric-crypto based

• 4 MQ-based

7

The NIST competition: Jul 2020

• Announcement planned for June 2020

• Due to pandemic (?) slightly later

Finalists
• 4 key-agreement schemes

• 3 lattice-based
• 1 code-based

• 3 signature schemes
• 2 lattice-based
• 1 MQ-based

Alternate schemes
• 5 key-agreement schemes

• 2 lattice-based
• 2 code-based
• 1 isogeny-based

• 3 signature schemes
• 2 symmetric-crypto based
• 1 MQ-based

8

The NIST competition: Jul 2020

• Announcement planned for June 2020

• Due to pandemic (?) slightly later

Finalists
• 4 key-agreement schemes

• 3 lattice-based
• 1 code-based

• 3 signature schemes
• 2 lattice-based
• 1 MQ-based

Alternate schemes
• 5 key-agreement schemes

• 2 lattice-based
• 2 code-based
• 1 isogeny-based

• 3 signature schemes
• 2 symmetric-crypto based
• 1 MQ-based

8

The NIST competition: Jul 2020

• Announcement planned for June 2020

• Due to pandemic (?) slightly later

Finalists
• 4 key-agreement schemes

• 3 lattice-based
• 1 code-based

• 3 signature schemes
• 2 lattice-based
• 1 MQ-based

Alternate schemes
• 5 key-agreement schemes

• 2 lattice-based
• 2 code-based
• 1 isogeny-based

• 3 signature schemes
• 2 symmetric-crypto based
• 1 MQ-based

8

The NIST competition: Jul 2020

• Announcement planned for June 2020

• Due to pandemic (?) slightly later

Finalists
• 4 key-agreement schemes

• 3 lattice-based
• 1 code-based

• 3 signature schemes
• 2 lattice-based
• 1 MQ-based

Alternate schemes
• 5 key-agreement schemes

• 2 lattice-based
• 2 code-based
• 1 isogeny-based

• 3 signature schemes
• 2 symmetric-crypto based
• 1 MQ-based

8

The NIST competition: Aug 2022

• Announcement planned for March 2022

• Due to ??? announcement in July 2022

4 schemes selected for standardization
• CRYSTALS-Kyber: lattice-based key agreement

• CRYSTALS-Dilithium: lattice-based signature

• Falcon: lattice-based signature

• SPHINCS+: hash-based signature

4 schemes advanced to round 4
• Classic McEliece: code-based key agreement

• BIKE: code-based key agreement

• HQC: code-based key agreement

• SIKE: isogeny-based key agreement

• Additionally: call for more signature proposals

9

The NIST competition: Aug 2022

• Announcement planned for March 2022
• Due to ??? announcement in July 2022

4 schemes selected for standardization
• CRYSTALS-Kyber: lattice-based key agreement

• CRYSTALS-Dilithium: lattice-based signature

• Falcon: lattice-based signature

• SPHINCS+: hash-based signature

4 schemes advanced to round 4
• Classic McEliece: code-based key agreement

• BIKE: code-based key agreement

• HQC: code-based key agreement

• SIKE: isogeny-based key agreement

• Additionally: call for more signature proposals

9

The NIST competition: Aug 2022

• Announcement planned for March 2022
• Due to ??? announcement in July 2022

4 schemes selected for standardization
• CRYSTALS-Kyber: lattice-based key agreement

• CRYSTALS-Dilithium: lattice-based signature

• Falcon: lattice-based signature

• SPHINCS+: hash-based signature

4 schemes advanced to round 4
• Classic McEliece: code-based key agreement

• BIKE: code-based key agreement

• HQC: code-based key agreement

• SIKE: isogeny-based key agreement

• Additionally: call for more signature proposals

9

The NIST competition: Aug 2022

• Announcement planned for March 2022
• Due to ??? announcement in July 2022

4 schemes selected for standardization
• CRYSTALS-Kyber: lattice-based key agreement

• CRYSTALS-Dilithium: lattice-based signature

• Falcon: lattice-based signature

• SPHINCS+: hash-based signature

4 schemes advanced to round 4
• Classic McEliece: code-based key agreement

• BIKE: code-based key agreement

• HQC: code-based key agreement

• SIKE: isogeny-based key agreement

• Additionally: call for more signature proposals

9

The NIST competition: Aug 2022

• Announcement planned for March 2022
• Due to ??? announcement in July 2022

4 schemes selected for standardization
• CRYSTALS-Kyber: lattice-based key agreement

• CRYSTALS-Dilithium: lattice-based signature

• Falcon: lattice-based signature

• SPHINCS+: hash-based signature

4 schemes advanced to round 4
• Classic McEliece: code-based key agreement

• BIKE: code-based key agreement

• HQC: code-based key agreement

• SIKE: isogeny-based key agreement

• Additionally: call for more signature proposals
9

What now?

• Standards ready “by 2024”

• Time to start upgrading systems!

Store now, decrypt later

• Urgency for key agreement (confidentiality)

• Need PQC now for long-term security

Let’s understand Kyber and what it means to use it.

10

What now?

• Standards ready “by 2024”

• Time to start upgrading systems!

Store now, decrypt later

• Urgency for key agreement (confidentiality)

• Need PQC now for long-term security

Let’s understand Kyber and what it means to use it.

10

What now?

• Standards ready “by 2024”

• Time to start upgrading systems!

Store now, decrypt later

• Urgency for key agreement (confidentiality)

• Need PQC now for long-term security

Let’s understand Kyber and what it means to use it.

10

A long time ago (2015) in a galaxy far,
far away (Šibenik, Croatia)....

What is a Key Encapsulation Mechanism (KEM)?

Initiator Responder

(pk, sk)← KEM.Gen

pk

(ct,K)← KEM.Enc(pk)

ct

K← KEM.Dec(ct, sk)

12

Ring learning with errors (RLWE)

• Given a, uniformly random

• Given “noise distribution” χ

• Given samples as + e, with e← χ

• Search version: find s
• Decision version: distinguish from uniform random

13

Ring learning with errors (RLWE)

• Given a, uniformly random

• Given “noise distribution” χ

• Given samples as + e, with e← χ

• Search version: find s
• Decision version: distinguish from uniform random

13

Where do a, e, and s live?

Short answer
InRq = Zq[X]/(Xn + 1)

14

Where do a, e, and s live?
Longer answer
Polynomials with n coefficients, each coefficient in {0, . . . , q− 1}
Arithmetic uses reduction modulo q and modulo (Xn + 1)

Example
Let q = 7 and n = 4.
Let a = (4X3 + 5X2 + 2X+ 2) and b = (6X3 + 4X2 + 3)

14

Where do a, e, and s live?
Longer answer
Polynomials with n coefficients, each coefficient in {0, . . . , q− 1}
Arithmetic uses reduction modulo q and modulo (Xn + 1)

Example
Let q = 7 and n = 4.
Let a = (4X3 + 5X2 + 2X+ 2) and b = (6X3 + 4X2 + 3)

14

Where do a, e, and s live?
Longer answer
Polynomials with n coefficients, each coefficient in {0, . . . , q− 1}
Arithmetic uses reduction modulo q and modulo (Xn + 1)

Example
Let q = 7 and n = 4.
Let a = (4X3 + 5X2 + 2X+ 2) and b = (6X3 + 4X2 + 3)

a + b = 10X3 + 9X2 + 2X+ 5

= 3X3 + 2X2 + 2X+ 5

14

Where do a, e, and s live?
Longer answer
Polynomials with n coefficients, each coefficient in {0, . . . , q− 1}
Arithmetic uses reduction modulo q and modulo (Xn + 1)

Example
Let q = 7 and n = 4.
Let a = (4X3 + 5X2 + 2X+ 2) and b = (6X3 + 4X2 + 3)

a− b = −2X3 + X2 + 2X− 1

= 5X3 + X2 + 2X+ 6

14

Where do a, e, and s live?
Longer answer
Polynomials with n coefficients, each coefficient in {0, . . . , q− 1}
Arithmetic uses reduction modulo q and modulo (Xn + 1)

Example
Let q = 7 and n = 4.
Let a = (4X3 + 5X2 + 2X+ 2) and b = (6X3 + 4X2 + 3)

a · b = 24X6 + 16X5 + 12X3 + 30X5 + 20X4 + 15X2+

12X4 + 8X3 + 6X+ 12X3 + 8X2 + 6

= 24X6 + 46X5 + 32X4 + 32X3 + 23X2 + 6

= 3X6 + 4X5 + 4X4 + 4X3 + 2X2 + 6

= − 3X2 − 4X− 4 + 4X3 + 2X2 + 6

= − X2 − 4X+ 4X3 + 2

= 4X3 + 6X2 + 3X+ 2

14

Where do a, e, and s live?
Longer answer
Polynomials with n coefficients, each coefficient in {0, . . . , q− 1}
Arithmetic uses reduction modulo q and modulo (Xn + 1)

Example
Let q = 7 and n = 4.
Let a = (4X3 + 5X2 + 2X+ 2) and b = (6X3 + 4X2 + 3)

a · b = 24X6 + 16X5 + 12X3 + 30X5 + 20X4 + 15X2+

12X4 + 8X3 + 6X+ 12X3 + 8X2 + 6

= 24X6 + 46X5 + 32X4 + 32X3 + 23X2 + 6

= 3X6 + 4X5 + 4X4 + 4X3 + 2X2 + 6

= − 3X2 − 4X− 4 + 4X3 + 2X2 + 6

= − X2 − 4X+ 4X3 + 2

= 4X3 + 6X2 + 3X+ 2

14

Where do a, e, and s live?
Longer answer
Polynomials with n coefficients, each coefficient in {0, . . . , q− 1}
Arithmetic uses reduction modulo q and modulo (Xn + 1)

Example
Let q = 7 and n = 4.
Let a = (4X3 + 5X2 + 2X+ 2) and b = (6X3 + 4X2 + 3)

a · b = 24X6 + 16X5 + 12X3 + 30X5 + 20X4 + 15X2+

12X4 + 8X3 + 6X+ 12X3 + 8X2 + 6

= 24X6 + 46X5 + 32X4 + 32X3 + 23X2 + 6

= 3X6 + 4X5 + 4X4 + 4X3 + 2X2 + 6

= − 3X2 − 4X− 4 + 4X3 + 2X2 + 6

= − X2 − 4X+ 4X3 + 2

= 4X3 + 6X2 + 3X+ 2

14

Where do a, e, and s live?
Longer answer
Polynomials with n coefficients, each coefficient in {0, . . . , q− 1}
Arithmetic uses reduction modulo q and modulo (Xn + 1)

Example
Let q = 7 and n = 4.
Let a = (4X3 + 5X2 + 2X+ 2) and b = (6X3 + 4X2 + 3)

a · b = 24X6 + 16X5 + 12X3 + 30X5 + 20X4 + 15X2+

12X4 + 8X3 + 6X+ 12X3 + 8X2 + 6

= 24X6 + 46X5 + 32X4 + 32X3 + 23X2 + 6

= 3X6 + 4X5 + 4X4 + 4X3 + 2X2 + 6

= − 3X2 − 4X− 4 + 4X3 + 2X2 + 6

= − X2 − 4X+ 4X3 + 2

= 4X3 + 6X2 + 3X+ 2

14

Where do a, e, and s live?
Longer answer
Polynomials with n coefficients, each coefficient in {0, . . . , q− 1}
Arithmetic uses reduction modulo q and modulo (Xn + 1)

Example
Let q = 7 and n = 4.
Let a = (4X3 + 5X2 + 2X+ 2) and b = (6X3 + 4X2 + 3)

a · b = 24X6 + 16X5 + 12X3 + 30X5 + 20X4 + 15X2+

12X4 + 8X3 + 6X+ 12X3 + 8X2 + 6

= 24X6 + 46X5 + 32X4 + 32X3 + 23X2 + 6

= 3X6 + 4X5 + 4X4 + 4X3 + 2X2 + 6

= − 3X2 − 4X− 4 + 4X3 + 2X2 + 6

= − X2 − 4X+ 4X3 + 2

= 4X3 + 6X2 + 3X+ 2

14

Where do a, e, and s live?
Longer answer
Polynomials with n coefficients, each coefficient in {0, . . . , q− 1}
Arithmetic uses reduction modulo q and modulo (Xn + 1)

Example
Let q = 7 and n = 4.
Let a = (4X3 + 5X2 + 2X+ 2) and b = (6X3 + 4X2 + 3)

a · b = 24X6 + 16X5 + 12X3 + 30X5 + 20X4 + 15X2+

12X4 + 8X3 + 6X+ 12X3 + 8X2 + 6

= 24X6 + 46X5 + 32X4 + 32X3 + 23X2 + 6

= 3X6 + 4X5 + 4X4 + 4X3 + 2X2 + 6

= − 3X2 − 4X− 4 + 4X3 + 2X2 + 6

= − X2 − 4X+ 4X3 + 2

= 4X3 + 6X2 + 3X+ 2

14

How to build a KEM: the basic idea

Alice (server) Bob (client)
s, e $← χ s′, e′ $← χ

b← as + e b−−−−→ u← as′ + e′
u←−−−−

Alice has v = us = ass′ + e′s
Bob has v′ = bs′ = ass′ + es′

• Secret and noise polynomials s, s′, e, e′ are small

• v and v′ are approximately the same

15

How to build a KEM: the construction

Alice Bob

seed $← {0, 1}256

a← Parse(XOF(seed))

s, e $← χ s′, e′

, e′′

$← χ

b← as + e (b

,seed

)−−−−−→

a← Parse(XOF(seed))

u← as′ + e′
v← bs′

k $← {0, 1}n

k← Encode(k)

v′ ← us (u

,c

)←−−−

c← v + k
k′ ← c− v′ µ← Extract(k)
µ← Extract(k′)

This is LPR encryption, written as KEM (except for generation of a)

16

How to build a KEM: the construction

Alice Bob
seed $← {0, 1}256

a← Parse(XOF(seed))
s, e $← χ s′, e′

, e′′

$← χ

b← as + e (b,seed)−−−−−→ a← Parse(XOF(seed))
u← as′ + e′
v← bs′

k $← {0, 1}n

k← Encode(k)

v′ ← us (u

,c

)←−−−

c← v + k
k′ ← c− v′ µ← Extract(k)
µ← Extract(k′)

This is LPR encryption, written as KEM (except for generation of a)

16

How to build a KEM: the construction

Alice Bob
seed $← {0, 1}256

a← Parse(XOF(seed))
s, e $← χ s′, e′

, e′′

$← χ

b← as + e (b,seed)−−−−−→ a← Parse(XOF(seed))
u← as′ + e′
v← bs′

k $← {0, 1}n

k← Encode(k)

v′ ← us (u,c)←−−− c← v + k

k′ ← c− v′ µ← Extract(k)
µ← Extract(k′)

This is LPR encryption, written as KEM (except for generation of a)

16

How to build a KEM: the construction

Alice Bob
seed $← {0, 1}256

a← Parse(XOF(seed))
s, e $← χ s′, e′, e′′ $← χ

b← as + e (b,seed)−−−−−→ a← Parse(XOF(seed))
u← as′ + e′
v← bs′ + e′′

k $← {0, 1}n

k← Encode(k)

v′ ← us (u,c)←−−− c← v + k

k′ ← c− v′ µ← Extract(k)
µ← Extract(k′)

This is LPR encryption, written as KEM (except for generation of a)

16

How to build a KEM: the construction

Alice Bob
seed $← {0, 1}256

a← Parse(XOF(seed))
s, e $← χ s′, e′, e′′ $← χ

b← as + e (b,seed)−−−−−→ a← Parse(XOF(seed))
u← as′ + e′
v← bs′ + e′′

k $← {0, 1}n

k← Encode(k)

v′ ← us (u,c)←−−− c← v + k
k′ ← c− v′

µ← Extract(k)
µ← Extract(k′)

This is LPR encryption, written as KEM (except for generation of a)

16

How to build a KEM: the construction

Alice Bob
seed $← {0, 1}256

a← Parse(XOF(seed))
s, e $← χ s′, e′, e′′ $← χ

b← as + e (b,seed)−−−−−→ a← Parse(XOF(seed))
u← as′ + e′
v← bs′ + e′′

k $← {0, 1}n

k← Encode(k)

v′ ← us (u,c)←−−− c← v + k
k′ ← c− v′ µ← Extract(k)
µ← Extract(k′)

This is LPR encryption, written as KEM (except for generation of a)

16

How to build a KEM: the construction

Alice Bob
seed $← {0, 1}256

a← Parse(XOF(seed))
s, e $← χ s′, e′, e′′ $← χ

b← as + e (b,seed)−−−−−→ a← Parse(XOF(seed))
u← as′ + e′
v← bs′ + e′′

k $← {0, 1}n

k← Encode(k)

v′ ← us (u,c)←−−− c← v + k
k′ ← c− v′ µ← Extract(k)
µ← Extract(k′)

This is LPR encryption, written as KEM (except for generation of a)

16

Encode and Extract

• Encoding in LPR encryption: map n bits to n coefficients:
• A zero bit maps to 0

• A one bit maps to q/2

• Idea: Noise affects low bits of coefficients, put data into high bits

• Decode: map coefficient into [−q/2, q/2]
• Closer to 0 (i.e., in [−q/4, q/4]): set bit to zero
• Closer to ±q/2: set bit to one

17

Encode and Extract

• Encoding in LPR encryption: map n bits to n coefficients:
• A zero bit maps to 0

• A one bit maps to q/2

• Idea: Noise affects low bits of coefficients, put data into high bits
• Decode: map coefficient into [−q/2, q/2]

• Closer to 0 (i.e., in [−q/4, q/4]): set bit to zero
• Closer to ±q/2: set bit to one

17

K Y B E R

The KEM

Roberto Avanzi Joppe Bos Jintai Ding
Léo Ducas Eike Kiltz Tancrede Lepoint
Vadim Lyubashevsky John M. Schanck Peter Schwabe
Gregor Seiler Damien Stehlé

18

Two more steps to Kyber

MLWE instead of RLWE

• Easily scale security

• Optimized routines the same for all security levels

IND-CCA2 Security

• Support static (or cached) keys

• More robust

• Useful for authenticated key exchange

• Easy to construct PKE

19

Two more steps to Kyber

MLWE instead of RLWE
• Easily scale security

• Optimized routines the same for all security levels

IND-CCA2 Security

• Support static (or cached) keys

• More robust

• Useful for authenticated key exchange

• Easy to construct PKE

19

Two more steps to Kyber

MLWE instead of RLWE
• Easily scale security

• Optimized routines the same for all security levels

IND-CCA2 Security
• Support static (or cached) keys

• More robust

• Useful for authenticated key exchange

• Easy to construct PKE

19

Module Learning with Errors (MLWE)

• RLWE uses arithmetic on large degree polynomials

• For example, NEWHOPE uses n = 1024, q = 12289

• MLWE uses matrices and vectors of smaller polynomials of small
dimension

• Kyber: n = 256, q = 3329

• Security level 1 (AES-128): d = 2

• Security level 3 (AES-192): d = 3

• Security level 5 (AES-256): d = 4

• Core arithmetic is in Z3329[X]/(X256 + 1) for all security levels

• Noise is centered binomial HW(x)− HW(y) for 2-bit x and y

20

Module Learning with Errors (MLWE)

• RLWE uses arithmetic on large degree polynomials

• For example, NEWHOPE uses n = 1024, q = 12289

• MLWE uses matrices and vectors of smaller polynomials of small
dimension

• Kyber: n = 256, q = 3329

• Security level 1 (AES-128): d = 2

• Security level 3 (AES-192): d = 3

• Security level 5 (AES-256): d = 4

• Core arithmetic is in Z3329[X]/(X256 + 1) for all security levels

• Noise is centered binomial HW(x)− HW(y) for 2-bit x and y

20

Module Learning with Errors (MLWE)

• RLWE uses arithmetic on large degree polynomials

• For example, NEWHOPE uses n = 1024, q = 12289

• MLWE uses matrices and vectors of smaller polynomials of small
dimension

• Kyber: n = 256, q = 3329

• Security level 1 (AES-128): d = 2

• Security level 3 (AES-192): d = 3

• Security level 5 (AES-256): d = 4

• Core arithmetic is in Z3329[X]/(X256 + 1) for all security levels

• Noise is centered binomial HW(x)− HW(y) for 2-bit x and y

20

Module Learning with Errors (MLWE)

• RLWE uses arithmetic on large degree polynomials

• For example, NEWHOPE uses n = 1024, q = 12289

• MLWE uses matrices and vectors of smaller polynomials of small
dimension

• Kyber: n = 256, q = 3329

• Security level 1 (AES-128): d = 2

• Security level 3 (AES-192): d = 3

• Security level 5 (AES-256): d = 4

• Core arithmetic is in Z3329[X]/(X256 + 1) for all security levels

• Noise is centered binomial HW(x)− HW(y) for 2-bit x and y

20

Chosen-ciphertext attacks

• Decryption failures are a function of s, e, s′, e′

• Attacker can choose larger secret/noise e′ and s′

• Observe if decryption fails

• Learn something about s

• This is a chosen ciphertext attack (CCA)

• Learn full s after a few thousand queries

• NEWHOPE never claimed CCA-security!

• This “attack” is completely expected

• Not a problem for ephemeral s

21

Chosen-ciphertext attacks

• Decryption failures are a function of s, e, s′, e′

• Attacker can choose larger secret/noise e′ and s′

• Observe if decryption fails

• Learn something about s
• This is a chosen ciphertext attack (CCA)

• Learn full s after a few thousand queries

• NEWHOPE never claimed CCA-security!

• This “attack” is completely expected

• Not a problem for ephemeral s

21

Chosen-ciphertext attacks

• Decryption failures are a function of s, e, s′, e′

• Attacker can choose larger secret/noise e′ and s′

• Observe if decryption fails

• Learn something about s
• This is a chosen ciphertext attack (CCA)

• Learn full s after a few thousand queries

• NEWHOPE never claimed CCA-security!

• This “attack” is completely expected

• Not a problem for ephemeral s

21

From passive to CCA security

The Fujisaki-Okamoto Transform (idea)
• Build CCA-secure KEM from passively secure encryption scheme

• Make failure probability negligible for honest s′, e′, e′′

• Force encapsulator to generate s′, e′, e′′ honestly

Additionally in Kyber:

• Hash the (hash of the) public key into x
• Multi-target protection (for coins)
• Turn into contributory KEM

• Hash the (hash of the) ciphertext into the final key

22

From passive to CCA security

The Fujisaki-Okamoto Transform

Alice (Server) Bob (Client)

Gen(): Encaps(pk):

pk, sk← KeyGen() pk→ x← {0, . . . , 255}32
k, coins← SHA3-512(x)

ct← ct← Encrypt(pk, x, coins)
Decaps((sk, pk), ct):
x′ ← Decrypt(sk, ct)
k′, coins′ ← SHA3-512(x′)
ct′ ← Encrypt(pk, x′, coins′)
verify if ct = ct′

Additionally in Kyber:

• Hash the (hash of the) public key into x
• Multi-target protection (for coins)
• Turn into contributory KEM

• Hash the (hash of the) ciphertext into the final key

22

From passive to CCA security

The Fujisaki-Okamoto Transform

Alice (Server) Bob (Client)

Gen(): Encaps(pk):

pk, sk← KeyGen() pk→ x← {0, . . . , 255}32
k, coins← SHA3-512(x)

ct← ct← Encrypt(pk, x, coins)
Decaps((sk, pk), ct):
x′ ← Decrypt(sk, ct)
k′, coins′ ← SHA3-512(x′)
ct′ ← Encrypt(pk, x′, coins′)
verify if ct = ct′

Additionally in Kyber:

• Hash the (hash of the) public key into x
• Multi-target protection (for coins)
• Turn into contributory KEM

• Hash the (hash of the) ciphertext into the final key
22

Kyber for Engineers, the baseline

Key exchange today: ECDH
• Key-pair generation ≈ 125, 000 Comet Lake cycles

• Shared-key computation ≈ 125, 000 Comet Lake cycles

• Public keys have 32 bytes

23

Kyber for Engineers, part I: A KEM is not DH!

Alice Bob

A← ga B← gb

A

B

K← Ba = (gb)a = gab K← Ab = (ga)b = gab

24

Kyber for Engineers, part I: A KEM is not DH!

Alice Bob

A← ga B← gb

B

A

K← Ba = (gb)a = gab K← Ab = (ga)b = gab

24

Kyber for Engineers, part I: A KEM is not DH!

Initiator Responder

(pk, sk)← KEM.Gen

pk

(ct,K)← KEM.Enc(pk)

ct

K← KEM.Dec(ct, sk)

24

Kyber for Engineers, part II: Performance

Kyber768 (NIST Security level 3)
• Key-pair generation ≈ 40, 000 Comet Lake cycles

• Encapsulation ≈ 55, 000 Comet Lake cycles

• Decapsulation ≈ 45, 000 Comet Lake cycles

• Public keys have 1184 bytes

• Ciphertexts have 1088 bytes

• Cycles are dominated by Keccak!

25

Kyber for Engineers, part II: Performance

Kyber768 (NIST Security level 3)
• Key-pair generation ≈ 40, 000 Comet Lake cycles

• Encapsulation ≈ 55, 000 Comet Lake cycles

• Decapsulation ≈ 45, 000 Comet Lake cycles

• Public keys have 1184 bytes

• Ciphertexts have 1088 bytes

• Cycles are dominated by Keccak!

25

Kyber for Engineers, part II: Performance

Kyber768 (NIST Security level 3)
• Key-pair generation ≈ 40, 000 Comet Lake cycles

• Encapsulation ≈ 55, 000 Comet Lake cycles

• Decapsulation ≈ 45, 000 Comet Lake cycles

• Public keys have 1184 bytes

• Ciphertexts have 1088 bytes

• Cycles are dominated by Keccak!

25

Kyber for Engineers, part III: SCA and FI against FO

• FO-transform: hide if decryption succeeded

• Use full re-encryption to do this

• Long computation, one bit of information

• Very hard to protect against SCA/FI

26

Kyber for Engineers, part III: SCA and FI against FO

• FO-transform: hide if decryption succeeded

• Use full re-encryption to do this

• Long computation, one bit of information

• Very hard to protect against SCA/FI

26

Recommendations

• Start playing with Kyber

• Assume that details may still change

• Always combine with pre-quantum crypto (hybrid KEMs)

• Use Kyber768 (or Kyber1024)

27

Recommendations

• Start playing with Kyber

• Assume that details may still change

• Always combine with pre-quantum crypto (hybrid KEMs)

• Use Kyber768 (or Kyber1024)

27

. . . and beyond

• Will need to migrate to PQC in the next 5–10 years
• Use this to migrate to high-assurance implementations!

• Computer-verified correctness
• Computer-verified security
• Computer-verified implementation security

https://formosa-crypto.org

28

https://formosa-crypto.org

Online references

• NIST PQC website:
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

• NIST mailing list:
https://csrc.nist.gov/projects/post-quantum-cryptography/
email-list
https://groups.google.com/a/list.nist.gov/g/pqc-forum

• Kyber:
https://pq-crystals.org/kyber
https://github.com/pq-crystals/kyber

29

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography/email-list
https://csrc.nist.gov/projects/post-quantum-cryptography/email-list
https://groups.google.com/a/list.nist.gov/g/pqc-forum
https://pq-crystals.org/kyber
https://github.com/pq-crystals/kyber

