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Embedded microcontrollers

“A microcontroller (or MCU for microcontroller unit) is a small computer
on a single integrated circuit. In modern terminology, it is a system on a
chip or SoC.” —Wikipedia

1



Embedded microcontrollers

“A microcontroller (or MCU for microcontroller unit) is a small computer
on a single integrated circuit. In modern terminology, it is a system on a
chip or SoC.” —Wikipedia

1



. . . so many to choose from!

• AVR ATmega and ATtiny 8-bit microcontrollers (e.g., Arduino)

• MSP430 16-bit microcontrollers
• ARM Cortex-M 32-bit MCUs (e.g., in NXP, ST, Infineon chips)

• Low-end M0 and M0+
• Mid-range Cortex-M3
• High-end Cortex-M4 and M7

• RISC-V 32-bit MCUs (e.g., SiFive boards)
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Our Target platform

• ARM Cortex-M4 on
STM32F4-Discovery board

• 192KB RAM, 1MB Flash
(ROM)

• Available for <25 EUR from
various vendors (e.g., ebay, RS
Components, Digi-Key):
https://www.digikey.at/
product-detail/de/stmicro/
STM32F407G-DISC1/
497-16287-ND/5824404

• Additionally need USB-TTL
converter and mini-USB cable
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Getting started: Hello world!

#include <stdio.h>

int main(void) {
printf("Hello World!\n");
return 0;

}

• gcc hello.c is going to
produce an x86 ELF file

• Given an ARM ELF file, how do
we get it to the board?

• How would the ELF file get
run?

• What is printf supposed to
do?

• Should we even expect printf
to work?

4



Getting started: Hello world!

#include <stdio.h>

int main(void) {
printf("Hello World!\n");
return 0;

}

• gcc hello.c is going to
produce an x86 ELF file

• Given an ARM ELF file, how do
we get it to the board?

• How would the ELF file get
run?

• What is printf supposed to
do?

• Should we even expect printf
to work?

4



Getting started: Hello world!

#include <stdio.h>

int main(void) {
printf("Hello World!\n");
return 0;

}

• gcc hello.c is going to
produce an x86 ELF file

• Given an ARM ELF file, how do
we get it to the board?

• How would the ELF file get
run?

• What is printf supposed to
do?

• Should we even expect printf
to work?

4



Getting started: Hello world!

#include <stdio.h>

int main(void) {
printf("Hello World!\n");
return 0;

}

• gcc hello.c is going to
produce an x86 ELF file

• Given an ARM ELF file, how do
we get it to the board?

• How would the ELF file get
run?

• What is printf supposed to
do?

• Should we even expect printf
to work?

4



Getting started: Hello world!

#include <stdio.h>

int main(void) {
printf("Hello World!\n");
return 0;

}

• gcc hello.c is going to
produce an x86 ELF file

• Given an ARM ELF file, how do
we get it to the board?

• How would the ELF file get
run?

• What is printf supposed to
do?

• Should we even expect printf
to work?

4



Getting started: Hello world!

#include <stdio.h>

int main(void) {
printf("Hello World!\n");
return 0;

}

• gcc hello.c is going to
produce an x86 ELF file

• Given an ARM ELF file, how do
we get it to the board?

• How would the ELF file get
run?

• What is printf supposed to
do?

• Should we even expect printf
to work?

4



Fixing all of those issues: the idea

1. Install a cross compiler: apt install gcc-arm-none-eabi

2. Install stlink:
apt install build-essential libusb-1.0-0-dev cmake
git clone https://github.com/texane/stlink.git
cd stlink && make release
cd build/Release && sudo make install

3. Extend hello.c with some setup boilerplate code
• Initialize CPU and set clock frequency
• Set up serial port (USART) using USB-TTL

4. Replace printf with send_USART_str
5. Compile to ARM binary (not ELF) file, say usart.bin
6. Connect USB-TTL converter with board
7. Set up listener on serial port hostside
8. st-flash write usart.bin 0x8000000 (flash over mini-USB)
9. Push “Reset” button to re-run the program
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STM32-getting-started

Good news! Most of that work is already done.

https://github.com/joostrijneveld/STM32-getting-started

• Includes examples for
• Unidirectional communication (“Hello World!”)
• Bidirectional communication (echo)
• Direct Memory Access
• performance benchmarking
• calling a function written in assembly

• Requires python and python-serial packages

6
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Before we optimize: how do we benchmark?

SCS_DEMCR |= SCS_DEMCR_TRCENA;
DWT_CYCCNT = 0;
DWT_CTRL |= DWT_CTRL_CYCCNTENA;

int i;
unsigned int oldcount = DWT_CYCCNT;

/⁎ Your code goes here ⁎/

unsigned int newcount = DWT_CYCCNT;

unsigned int cycles = newcount - oldcount;

• See cyclecount.c example in STM32-Getting-Started

• Caveats:

• At >24 MHz wait cycles introduced by memory controller
• Cycle counter overflows after ≈3 min (20 MHz)
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Optimizing

• Optimize software on the assembly level
• Crypto is worth the effort for better performance
• Also, no compiler to introduce, e.g. side-channel leaks
• It’s fun

• Different from optimizing on “large” processors:
• Size matters! (RAM and ROM)
• Less parallelism (no vector units, not superscalar)
• Often critical: reduce number of loads/stores
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Cortex-M4 assembly basics

• 16 registers, r0 to r15

• 32 bits wide
• Not all can be used freely

• r13 is sp, stack pointer (don’t misuse!)
• r14 is lr, link register (can be used)
• r15 is pc, program counter

• Some status registers for, e.g., flags (carry, zero, . . . )

• Instr Rd, Rn, Rn, e.g.:
• add r2, r0, r1 (three operands)
• mov r1, r0 (two operands)

Details on instructions: ARMv7-M Architecture Reference Manual
https://web.eecs.umich.edu/~prabal/teaching/eecs373-f10/
readings/ARMv7-M_ARM.pdf
Instruction summary and timings: Cortex-M4 Technical Reference
Manual http://infocenter.arm.com/help/topic/com.arm.doc.
ddi0439b/DDI0439B_cortex_m4_r0p0_trm.pdf
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A simple example

uint32_t accumulate(uint32_t ⁎array, size_t arraylen) {
size_t i;
uint32_t r=0;
for(i=0;i<arraylen;i++) {
r += array[i];

}
return r;

}

int main(void) {
uint32_t array[1000], sum;

init(array, 1000);
sum = accumulate(array, 1000);

printf("sum: %d\n", sum);
return sum;

}
10



accumulate in assembly

.syntax unified

.cpu cortex-m4

.global accumulate

.type accumulate, %function
accumulate:

mov r2, #0

loop:
cmp r1, #0
beq done
ldr r3,[r0]
add r2,r3
add r0,#4
sub r1,#1
b loop

done:

mov r0,r2
bx lr
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How fast is it?

• Arithmetic instructions cost 1 cycle
• (Single) loads cost 2 cycles
• Branches cost 1 instruction if branch is not taken
• Branches cost at least 2 cycles if branch is taken

• The loop body should cost at least 9 cycles
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Speeding it up, part I

.syntax unified

.cpu cortex-m4

.global accumulate

.type accumulate, %function
accumulate:

mov r2, #0

loop:
subs r1,#1
bmi done
ldr r3,[r0],#4
add r2,r3
b loop

done:

mov r0,r2
bx lr
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What did we do?

• Merge cmp and sub

• Need subs to set flags
• Have ldr auto-increase r0

• Total saving should be 2 cycles
• Also, code is (marginally) smaller

14



Speeding it up, part II

accumulate:
push {r4-r12}

mov r2, #0

loop1:
subs r1,#8
bmi done1
ldm r0!,{r3-r10}

add r2,r3
...
add r2,r10

b loop1

done1:
add r1,#8

loop2:
subs r1,#1
bmi done2
ldr r3,[r0],#4
add r2,r3
b loop2

done2:

pop {r4-r12}
mov r0,r2
bx lr
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What did we do?

• Use ldm (“load multiple”) instruction
• Loading N items costs only N + 1 cycles
• Need more registers; need to push “caller registers” to the stack

(push)
• Restore caller registers at the end of the function (pop)

• Partially unroll to reduce loop-control overhead
• Makes code somewhat larger, various tradeoffs possible
• Lower limit is slightly above 2000 cycles
• Ideas for further speedups?
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Some useful features of the M4

• We have already seen ldm/stm instructions

• Large 32× 32-bit multiplier with 64-bit result
• Second input of arithmetic instructions goes through barrel shifter
• Can shift/rotate one input for free, e.g.:

• eor r0, r1, r2, lsl #2: left-shift r2 by 2, xor to r1, place result
in r0

• add r2, r0, r1, ror #5: right-rotate r1 by 5, add to r0, place
result in r2

• DSP vector instructions, e.g.:
• smuad r0, r1, r2: r0←r1L · r2L + r1H · r2H
• smuadx r0, r1, r2: r0← r1L · r2H + r1H · r2L
• smlad r0, r1, r2, r3: r0← r1L · r2L + r1H · r2H + r3
• smladx r0, r1, r2, r3: r0← r1L · r2H + r1H · r2L + r3
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Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using
classical and quantum computers.

5 main directions
• Lattice-based crypto (PKE and Sigs)
• Code-based crypto (mainly PKE)
• Multivariate-based crypto (mainly Sigs)
• Hash-based signatures (only Sigs)
• Isogeny-based crypto (so far, mainly PKE)
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The NIST competition, initial overview

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.
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The NIST competition (ctd.)

“Key exchange”
• What is meant is key encapsulation mechanisms (KEMs)

• (vk, sk)←KeyGen()
• (c, k)←Encaps(vk)
• k←Decaps(c, sk)

Status of the NIST competition
• In total 69 submissions accepted as “complete and proper”
• Several broken, 5 withdrawn
• Jan 2019: NIST announces 26 round-2 candidates

• 17 KEMs and PKEs
• 9 signature schemes
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pqm4

• Joint work with
Matthias Kannwischer, Joost Rijneveld, and Ko Stoffelen.

• Started as part of PQCRYPTO H2020 project
• Continued within EPOQUE ERC StG
• Library and testing/benchmarking framework

• PQ-crypto on ARM Cortex-M4
• Uses STM32F4 Discovery board
• 192 KB of RAM, benchmarks at 24 MHz

• Easy to add schemes using NIST API
• Optimized SHA3 and AES shared across primitives

21



pqm4 usage

• Run functional tests of all primitives and implementations:
python3 test.py

• Generate testvectors, compare for consistency (also with host):
python3 testvectors.py

• Run speed and stack benchmarks:
python3 benchmarks.py

• Easy to evaluate only subset of schemes, e.g.:
python3 test.py newhope1024cca sphincs-shake256-128s
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Signatures (not) in pqm4

CRYSTALS-Dilithium 3

FALCON 3

GeMSS 7

LUOV 3

MQDSS 3

Picnic 7

qTESLA 3

Rainbow 7

SPHINCS+ 3
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KEMs (not) in pqm4

ref/clean opt
BIKE — —
Classic McEliece 7 7

CRYSTALS-Kyber 3 3

Frodo-KEM 3 (3)
HQC — —
LAC 3 —
LEDAcrypt WIP WIP
NewHope 3 3

NTRU 3 3

NTRU Prime 3 —
NTS-KEM 7 7

ROLLO — —
Round5 WIP 3

RQC — —
SABER 3 3

SIKE 3 —
ThreeBears 3 (3) 24
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Learning with errors (LWE)

• Given uniform A ∈ Zk×ℓ
q

• Given “noise distribution” χ

• Given samples As + e, with e←χ

• Search version: find s
• Decision version: distinguish from uniform random
• Structured lattices: work in Zq[x ]/f
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Learning with rounding (LWR)

• Given uniform A ∈ Zk×ℓ
q

• Given samples ⌈As⌋p, with p < q

• Search version: find s
• Decision version: distinguish from uniform random
• Structured lattices: work in Zq[x ]/f
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Lattice-based KEMs – the basic idea

Alice (server) Bob (client)
s, e $← χ s′, e′ $← χ

b←as + e b−−−−→ u←as′ + e′

u←−−−−

Alice has v = us = ass′ + e′s
Bob has v′ = bs′ = ass′ + es′

• Secret and noise s, s′, e, e′ are small
• v and v′ are approximately the same
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Core operation: multiplication in Rq = Zq[X ]/f

Power-of-two q
• Several schemes use q = 2m, for small m
• Examples: Round5, NTRU, Saber
• More round-1 examples: Kindi, RLizard

Prime “NTT-friendly” q
• Kyber and NewHope use prime q supporting fast NTT
• For A,B ∈ Rq, A · B = NTT−1(NTT(A) ◦ NTT(B))

• NTT is Fourier Transform over finite field
• Use f = X n + 1 for power-of-two n
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Multiplication in Z2m[X ]

• Joint work with Matthias Kannwischer and Joost Rijneveld
• Represent coefficients as 16-bit integers
• No modular reductions required, 216 is a multiple of q = 2m

• Schoolbook multiplication takes n2 integer muls, (n − 1)2 adds
• Can do better using Karatsuba:

(aℓ + X kah) · (bℓ + X kbh)

= aℓbℓ + X k(aℓbh + ahbℓ) + X nahbh

= aℓbℓ + X k((aℓ + ah)(bℓ + bh)− aℓbℓ − ahbh) + X nahbh

• Recursive application yields complexity Θ(nlog2 3)

• Generalization: Toom-Cook
• Toom-3: split into 5 multiplications of 1/3 size
• Toom-4: split into 7 multiplications of 1/4 size

• Approach: Evaluate, multiply, interpolate
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Initial observations

• Karatsuba/Toom is asymptotically faster, but isn’t for “small”
polynomials

• Toom-3 needs division by 2, loses 1 bit of precision
• Toom-4 needs division by 8, loses 3 bits of precision
• This limits recursive application when using 16-bit integers
• Can use Toom-4 only for q ≤ 213

• Karmakar, Bermudo Mera, Sinha Roy, Verbauwhede (CHES 2018):
• Optimize Saber, q = 213, n = 256
• Use Toom-4 + two levels of Karatsuba
• Optimized 16-coefficient schoolbook multiplication

• Is this the best approach? How about other values of q and n?
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Our approach

• Generate optimized assembly for Karatsuba/Toom
• Use Python scripts, receive as input n and q
• Hand-optimize “small” schoolbook multiplications

• Make heavy use of DSP “vector instructions”
• Perform two 16× 16-bit multiply-accumulate in one cycle
• Carefully schedule instructions to minimize loads/stores

• Benchmark different options, pick fastest
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Multiplication results
approach “small” cycles stack

Saber
(n = 256, q = 213)

Karatsuba only 16 41 121 2 020
Toom-3 11 41 225 3 480
Toom-4 16 39 124 3 800
Toom-4 + Toom-3 - - -

Kindi-256-3-4-2
(n = 256, q = 214)

Karatsuba only 16 41 121 2 020
Toom-3 11 41 225 3 480
Toom-4 - - -
Toom-4 + Toom-3 - - -

NTRU-HRSS
(n = 701, q = 213)

Karatsuba only 11 230 132 5 676
Toom-3 15 217 436 9 384
Toom-4 11 182 129 10 596
Toom-4 + Toom-3 - - -

NTRU-KEM-743
(n = 743, q = 211)

Karatsuba only 12 247 489 6 012
Toom-3 16 219 061 9 920
Toom-4 12 196 940 11 208
Toom-4 + Toom-3 16 197 227 12 152

RLizard-1024
(n = 1024,
q = 211)

Karatsuba only 16 400 810 8 188
Toom-3 11 360 589 13 756
Toom-4 16 313 744 15 344
Toom-4 + Toom-3 11 315 788 16 816
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NTT-based multiplication

• Joint work with Leon Botros and Matthias Kannwischer
• Primary goal: optimize Kyber
• Secondary effect: optimize NewHope (improved by Gérard)

• NTT is an FFT in a finite field
• Evaluate polynomial f = f0 + f1X + · · ·+ fn−1X n−1 at all n-th roots

of unity
• Divide-and-conquer approach

• Write polynomial f as f0(X 2) + Xf1(X 2)

• Huge overlap between evaluating

f (β) = f0(β
2) + βf1(β

2) and

f (−β) = f0(β
2)− βf1(β

2)

• f0 has n/2 coefficients
• Evaluate f0 at all (n/2)-th roots of unity by recursive application
• Same for f1
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NTT-based multiplication

• First thing to do: replace recursion by iteration
• Loop over log n levels with n/2 “butterflies” each

• Butterfly on level k:
• Pick up fi and fi+2k

• Multiply fi+2k by a power of ω to obtain t
• Compute fi+2k←ai − t
• Compute fi←ai + t

• Main optimizations on Cortex-M4:
• “Merge” levels: fewer loads/stores
• Optimize modular arithmetic (precompute powers of ω in

Montgomery domain)
• Lazy reductions
• Carefully optimize using DSP instructions
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Selected optimized lattice KEM cycles

Scheme Key Generation Encapsulation Decapsulation
ntruhps2048509 77 698 713 645 329 542 439
ntruhps2048677 144 383 491 955 902 836 959
ntruhps4096821 211 758 452 1 205 662 1 066 879
ntruhrss701 154 676 705 402 784 890 231
lightsaber 459 965 651 273 678 810
saber 896 035 1 161 849 1 204 633
firesaber 1 448 776 1 786 930 1 853 339
kyber512 514 291 652 769 621 245
kyber768 976 757 1 146 556 1 094 849
kyber1024 1 575 052 1 779 848 1 709 348
newhope1024cpa 975 736 975 452 162 660
newhope1024cca 1 161 112 1 777 918 1 760 470

Comparison: Curve25519 scalarmult: 625 358 cycles
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Selected optimized lattice KEM stack bytes

Scheme Key Generation Encapsulation Decapsulation
ntruhps2048509 21 412 15 452 14 828
ntruhps2048677 28 524 20 604 19 756
ntruhps4096821 34 532 24 924 23 980
ntruhrss701 27 580 19 372 20 580
lightsaber 9 656 11 392 12 136
saber 13 256 15 544 16 640
firesaber 20 144 23 008 24 592
kyber512 2 952 2 552 2 560
kyber768 3 848 3 128 3 072
kyber1024 4 360 3 584 3 592
newhope1024cpa 11 096 17 288 8 308
newhope1024cca 11 080 17 360 19 576
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Resources online

• Cortex-M4 examples (including accumulate):
https://cryptojedi.org/peter/data/
stm32f4examples.tar.bz2

• pqm4 library and benchmarking suite:
https://github.com/mupq/pqm4

• pqriscv library and benchmarking suite:
https://github.com/mupq/pqriscv

• Code of Z2m [x ] multiplication paper, including scripts:
https://github.com/mupq/polymul-z2mx-m4

• Z2m [x ] multiplication paper:
https://cryptojedi.org/papers/#latticem4

• Kyber optimization paper:
https://cryptojedi.org/papers/#nttm4

38

https://cryptojedi.org/peter/data/stm32f4examples.tar.bz2
https://cryptojedi.org/peter/data/stm32f4examples.tar.bz2
https://github.com/mupq/pqm4
https://github.com/mupq/pqriscv
https://github.com/mupq/polymul-z2mx-m4
https://cryptojedi.org/papers/#latticem4
https://cryptojedi.org/papers/#nttm4

