Radboud University

S

3

$
s
MiNes©

Post-quantum crypto on uC

Peter Schwabe
peter@cryptojedi.org
https://cryptojedi.org
December 12, 2017

mailto:peter@cryptojedi.org
https://cryptojedi.org

Post-quantum crypto

Asymmetric crypto today

e Signatures today: RSA, DSA, ECDSA, EdDSA
e Key exchange and PKE today: RSA, DH, ECDH,
e All based on factoring or (EC)DL

Post-quantum crypto

Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer*

Peter W. Shorf

Abstract

A digital computer is generally believed to be an efficient universal computing
device; that is, it is believed able to simulate any physical computing device with
an increase in computation time by at most a polynomial factor. This may not be
true when quantum mechanics is taken into consideration. This paper considers
factoring integers and finding discrete logarithms, two problems which are generally
thought to be hard on a classical computer and which have been used as the basis
of several proposed cryptosystems. Efficient randomized algorithms are given for
these two problems on a hypothetical quantum computer. These algorithms take
a number of steps polynomial in the input size. e.g.. the number of digits of the
integer to be factored.

Post-quantum crypto

Asymmetric crypto today
e Signatures today: RSA, DSA, ECDSA, EdDSA
e Key exchange and PKE today: RSA, DH, ECDH,
e All based on factoring or (EC)DL

Post-quantum crypto
(Asymmetric) cryptography that resists attacks by a large quantum
computer, in particular, crypto not based on the hardness of factoring or

(EC)DL.

Post-quantum crypto

Asymmetric crypto today
e Signatures today: RSA, DSA, ECDSA, EdDSA
e Key exchange and PKE today: RSA, DH, ECDH,
e All based on factoring or (EC)DL

Post-quantum crypto

(Asymmetric) cryptography that resists attacks by a large quantum
computer, in particular, crypto not based on the hardness of factoring or
(EC)DL.

Today'’s talk
e Lattice-based (RLWE-based) key exchange

e Hash-based signatures

1C

Cortex-M0

e STM32F0
development
board

e Thumb + subset
Thumb 2
(ARMv6-M)

e 3KB RAM
e 64KB Flash
e 348 registers

Cortex-M3

STM32L100C
development
board

Thumb?2
instruction set
(ARMv7-M)

16KB RAM
256KB Flash

16 registers (2
reserved)

Cortex-M4

STM32F4
development
board

Thumb 2
instruction set
(ARMv7-ME)

192KB RAM
1MB Flash

16 registers (2
reserved)

Google Security Blog

The latest news and insights from Google on security and safety on the Internet

Experimenting with Post-Quantum Cryptography

S h bl
July 7,2016 Q searchblog

m Archive
Posted by Matt Braithwaite, Software Engineer

“We're indebted to Erdem Alkim, Léo Ducas, Thomas Péppelmann and
Peter Schwabe, the researchers who developed “New Hope”, the
post-quantum algorithm that we selected for this experiment.”

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

SOLUTIONS ~ DOCUMENTATION ~ EVENTS PRESS ~ BLOG CONTACT US

ISARA Radiate is the first commercially available security solution offering quantum resistant algorithms that replace or augment classical algorithms,
which will be weakened or broken by quantum computing threats.

"Key Agreement using the ‘NewHope' lattice-based algorithm detailed in
the New Hope paper, and LUKE (Lattice-based Unique Key Exchange),
an ISARA speed-optimized version of the NewHope algorithm.”

https://www.isara.com/isara-radiate/

https://www.isara.com/isara-radiate/

Gfineon

Newsletter Contact WheretoBuy Englsh~ mylnfineon login ~

Products Applications Tools About Infineon ~ Careers

Press Generalinformation Press Releases Market News PressKits MediaPool Events Contacts

>Home >aboutinfineon > Press > Press Releases R

Ready for tomorrow: Infineon demonstrates first
post-quantum cryptography on a contactless
security chip

Q

Press Contact

Karin Braeckle

T 4498923423424
.5 > Send E-mail
8.

N

"“The deployed algorithm is a variant of “New Hope”, a quantum-resistant
cryptosystem”

https://www.infineon.com/cms/en/about- infineon/press/press-releases/2017/INFCCS201705-056.html

https://www.infineon.com/cms/en/about-infineon/press/press-releases/2017/INFCCS201705-056.html

Ring-Learning-with-errors (RLWE)

Let Rq = Zg[X]/(X" + 1)

Let x be an error distribution on R,

Let s € Ry be secret

Attacker is given pairs (a,as + e) with
e a uniformly random from R4

e e sampled from x

Task for the attacker: find s

Ring-Learning-with-errors (RLWE)

o Let Ry =Z4[X]/(X"+1)

e Let x be an error distribution on R,

o Let s € R, be secret

o Attacker is given pairs (a,as + €) with

e a uniformly random from R4
e e sampled from x

e Task for the attacker: find s
e Common choice for x: discrete Gaussian

e Common optimization for protocols: fix a

A bit of (R)LWE history

e Hoffstein, Pipher, Silverman, 1996: NTRU cryptosystem
e Regev, 2005: Introduce LWE-based encryption

e Lyubashevsky, Peikert, Regev, 2010: Ring-LWE and Ring-LWE
encryption

e Ding, Xie, Lin, 2012: Transform to (R)LWE-based key exchange
e Peikert, 2014: Improved RLWE-based key exchange

e Bos, Costello, Naehrig, Stebila, 2015: Instantiate and implement
Peikert's key exchange in TLS:

e Alkim, Ducas, Péppelmann, Schwabe, Aug. 2016: NewHope
e Alkim, Ducas, Péppelmann, Schwabe, Dec. 2016: NewHope-Simple

RLWE-based Encryption, KEM, KEX

Alice (server) Bob (client)
$ n 0B
s,e < Y s,e <
b
b<as+e — u+as’ +¢€
LY
Alicehas t =us =ass }e€'s
Bobhas t =bs =ass' +es

e Secret and noise polynomials s,s’, e, e’ are small

e t and t’ are approximately the same

USENIX Security 2016: NewHope

e Improve IEEE S&P 2015 results by Bos, Costello, Naehrig, Stebila
(BCNS)
e Use reconcilation to go from approximate agreement to agreement
e Originally proposed by Ding (2012)
e Improvements by Peikert (2014)
e More improvements in NewHope

USENIX Security 2016: NewHope

e Improve IEEE S&P 2015 results by Bos, Costello, Naehrig, Stebila
(BCNS)
e Use reconcilation to go from approximate agreement to agreement
e Originally proposed by Ding (2012)
e Improvements by Peikert (2014)
e More improvements in NewHope
e NewHope-Simple (2016): Scrap complex reconciliation (pay 6.25%
increase in ciphertext size)

USENIX Security 2016: NewHope

e Improve IEEE S&P 2015 results by Bos, Costello, Naehrig, Stebila
(BCNS)
e Use reconcilation to go from approximate agreement to agreement
e Originally proposed by Ding (2012)
e Improvements by Peikert (2014)
e More improvements in NewHope
e NewHope-Simple (2016): Scrap complex reconciliation (pay 6.25%
increase in ciphertext size)
e Very conservative parameters (n = 1024, g = 12289)
e Centered binomial noise 1y (HW(a)—HW(b) for k-bit a, b)
e Achieve = 256 bits of post-quantum security according to very
conservative analysis
e Higher security, shorter messages, and > 10x speedup

USENIX Security 2016: NewHope

e Improve IEEE S&P 2015 results by Bos, Costello, Naehrig, Stebila
(BCNS)
e Use reconcilation to go from approximate agreement to agreement
e Originally proposed by Ding (2012)
e Improvements by Peikert (2014)
e More improvements in NewHope
e NewHope-Simple (2016): Scrap complex reconciliation (pay 6.25%
increase in ciphertext size)
e Very conservative parameters (n = 1024, g = 12289)
e Centered binomial noise 1y (HW(a)—HW(b) for k-bit a, b)
e Achieve = 256 bits of post-quantum security according to very
conservative analysis
e Higher security, shorter messages, and > 10x speedup
e Choose a fresh parameter a for every protocol run

USENIX Security 2016: NewHope

e Improve IEEE S&P 2015 results by Bos, Costello, Naehrig, Stebila
(BCNS)
e Use reconcilation to go from approximate agreement to agreement
e Originally proposed by Ding (2012)
e Improvements by Peikert (2014)
e More improvements in NewHope
e NewHope-Simple (2016): Scrap complex reconciliation (pay 6.25%
increase in ciphertext size)
e Very conservative parameters (n = 1024, g = 12289)
e Centered binomial noise 1y (HW(a)—HW(b) for k-bit a, b)
e Achieve = 256 bits of post-quantum security according to very
conservative analysis
e Higher security, shorter messages, and > 10x speedup
e Choose a fresh parameter a for every protocol run
e Encode polynomials in NTT domain

USENIX Security 2016: NewHope

e Improve IEEE S&P 2015 results by Bos, Costello, Naehrig, Stebila
(BCNS)
e Use reconcilation to go from approximate agreement to agreement
e Originally proposed by Ding (2012)
e Improvements by Peikert (2014)
e More improvements in NewHope
e NewHope-Simple (2016): Scrap complex reconciliation (pay 6.25%
increase in ciphertext size)
e Very conservative parameters (n = 1024, g = 12289)
e Centered binomial noise 1y (HW(a)—HW(b) for k-bit a, b)
e Achieve = 256 bits of post-quantum security according to very
conservative analysis
e Higher security, shorter messages, and > 10x speedup
e Choose a fresh parameter a for every protocol run
e Encode polynomials in NTT domain

C reference and AVX2 optimized implementation

SPACE 2016: NewHope on ARM Cortex-Mx

Joint work with Erdem Alkim and Philipp Jakubeit

Hand-optimized NTT implementation

New speed records for NTT on Cortex-M

Most other routines also in assembly
Fits into 8 KB of RAM on the MO!

SPACE 2016: NewHope on ARM Cortex-Mx

e Joint work with Erdem Alkim and Philipp Jakubeit

Hand-optimized NTT implementation

New speed records for NTT on Cortex-M

Most other routines also in assembly

Fits into 8 KB of RAM on the MO!

Performance on the M0

e All measurements at 48 MHz
e Keygen cycles: 1170892 cycles
e Encaps cycles: 1760837 cycles
e Decaps cycles: 298877 cycles

SPACE 2016: NewHope on ARM Cortex-Mx

e Joint work with Erdem Alkim and Philipp Jakubeit

Hand-optimized NTT implementation

New speed records for NTT on Cortex-M

Most other routines also in assembly

Fits into 8 KB of RAM on the MO!

Performance on the M0

e All measurements at 48 MHz

e Keygen cycles: 1170892 cycles
e Encaps cycles: 1760837 cycles
e Decaps cycles: 298877 cycles
Curve25519: 3589850

SPACE 2016: NewHope on ARM Cortex-Mx

e Joint work with Erdem Alkim and Philipp Jakubeit

Hand-optimized NTT implementation

New speed records for NTT on Cortex-M

Most other routines also in assembly
Fits into 8 KB of RAM on the MO!

Performance on the M4

e All measurements at 48 MHz
e Keygen cycles: 781518 cycles
e Encaps cycles: 1140594 cycles
e Decaps cycles: 174798 cycles

SPACE 2016: NewHope on ARM Cortex-Mx

e Joint work with Erdem Alkim and Philipp Jakubeit

Hand-optimized NTT implementation

New speed records for NTT on Cortex-M

Most other routines also in assembly
Fits into 8 KB of RAM on the MO!

Performance on the M4

e All measurements at 48 MHz
e Keygen cycles: 781518 cycles
e Encaps cycles: 1140594 cycles

Decaps cycles: 174798 cycles
Curve25519: 907 240 cycles

SPACE 2016: NewHope on ARM Cortex-Mx

e Joint work with Erdem Alkim and Philipp Jakubeit

Hand-optimized NTT implementation

New speed records for NTT on Cortex-M

Most other routines also in assembly
Fits into 8 KB of RAM on the MO!

Performance on the M4

e All measurements at 48 MHz

e Keygen cycles: 781518 cycles
e Encaps cycles: 1140594 cycles
e Decaps cycles: 174798 cycles
e Curve25519: 907 240 cycles

Public key and ciphertext each ~2 KB

NIST PQC “competition” 2017

e Submission by Erdem Alkim, Roberto Avanzi, Joppe Bos, Léo Ducas,
Antonio de la Piedra, Thomas Poppelmann, Peter Schwabe, and
Douglas Stebila

10

NIST PQC “competition” 2017

e Submission by Erdem Alkim, Roberto Avanzi, Joppe Bos, Léo Ducas,
Antonio de la Piedra, Thomas Poppelmann, Peter Schwabe, and
Douglas Stebila

e Start with NewHope-Simple
e Slightly modify noise — negligible failure prob.

10

NIST PQC “competition” 2017

Submission by Erdem Alkim, Roberto Avanzi, Joppe Bos, Léo Ducas,
Antonio de la Piedra, Thomas Poppelmann, Peter Schwabe, and
Douglas Stebila

e Start with NewHope-Simple

Slightly modify noise — negligible failure prob.
Provide CPA-secure and CCA-secure KEM

10

NIST PQC “competition” 2017

e Submission by Erdem Alkim, Roberto Avanzi, Joppe Bos, Léo Ducas,
Antonio de la Piedra, Thomas Poppelmann, Peter Schwabe, and
Douglas Stebila

e Start with NewHope-Simple

e Slightly modify noise — negligible failure prob.
e Provide CPA-secure and CCA-secure KEM

e Additional tweaks to improve speed

e Also provide low-security (“level 1) variant

10

SPHINCS: practical stateless hash-based incredibly nice cryp-

tographic signatures

Daniel J. Bernstein

Daira Hopwood

Andreas Hiilsing

Tanja Lange

Ruben Niederhagen
Louiza Papachristodoulou
Michael Schneider

Peter Schwabe

Zooko Wilcox-O'Hearn

Signatures for 1-bit messages

Key generation

e Generate 256-bit random values (rp, r1) = s (secret key)

e Compute (h(rg), h(r1)) = (po, p1) = p (public key)

12

Signatures for 1-bit messages

Key generation
e Generate 256-bit random values (rp, r1) = s (secret key)
e Compute (h(rg), h(r1)) = (po, p1) = p (public key)
Signing
e Signature for message b =0: 0 = g

e Signature for message b=1: 0 = n

12

Signatures for 1-bit messages

Key generation
e Generate 256-bit random values (rp, r1) = s (secret key)
e Compute (h(rg), h(r1)) = (po, p1) = p (public key)
Signing
e Signature for message b =0: 0 = g

e Signature for message b=1: 0 = n

Verification
Check that h(o) = pp

12

One-time signatures for 256-bit messages

Key generation

e Generate 256-bit random values s = (o0, f0,1 - - - , 12550, 255.1)

e Compute p = (h(ro,0), h(ro,1),--.,h(rss,0), h(rss,1)) =
(Po,o, Po,1,- - -, P255,0, P255,1)

13

One-time signatures for 256-bit messages

Key generation

e Generate 256-bit random values s = (o0, f0,1 - - - , 12550, 255.1)

e Compute p = (h(ro,0), h(ro,1),--.,h(rss,0), h(rss,1)) =
(Po,o, Po,1,- - -, P255,0, P255,1)

Signing
e Signature for message (bo, .. ., bass):
0= (Uo, e ,0255) = (r07b°7- S f2557b255)

13

One-time signatures for 256-bit messages

Key generation

e Generate 256-bit random values s = (o0, f0,1 - - - , 12550, 255.1)

e Compute p = (h(ro,0), h(ro,1),--.,h(rss,0), h(rss,1)) =
(P0,05 0,1 - - - , P255,0, P255,1)

Signing
e Signature for message (by, . . ., bass):
o= (0’0, . ,0’255) = (r07b°7-) r2557b255)

Verification

e Check that h(oo) = po,b,

o Check that h(o2s5) = P255,bass

13

Merkle Trees

Xooo Xoo1 Xo1o Xo11 X100 X101 X110 X111

e Merkle, 1979: Leverage one-time signatures to multiple messages
e Binary hash tree on top of OTS public keys
e Use OTS keys sequentially

14

Merkle Trees

| Auth for i = 001

Xooo Xoo1 Xo1o Xo11 X100 X101 X110 X111

e SIG = (i,sign(M, X;), Y;, Auth)
e Need to remember current index (= stateful scheme)

e State is a “huge foot cannon” (Langley, 2013)

14

Eurocrypt 2015: SPHINCS

TN
e Combine Merkle tree with “signing tree” by
Goldreich h/dI A

e Use a “hyper-tree” of total height h
e Pick index (pseudo-)randomly

e Messages signed with few-time signature
scheme

e SPHINCS-256 for 128-bit post-quantum
security (up to 2% signatures under one

key)
log t I

e Signature size of 41 KB

«%}95....5

15

PKC 2016: SPHINCS on ARM Cortex-M3

e Main challenge: Fit 40 KB signature into 16 KB of RAM
e Use Treehash (Merkle, 1990) inside FTS computation

e Maintain a stack: at most log(n) = 16 nodes
(or log(8) = 3, in the example below)

1
.)
CO_A
P N
- ~
- N
PR N~ -
/ X 7 N
\ 0 \ /’
»-< ~ =X

/ \ / \

7 N _ N
- - -

/ \’ / \’ / \’ / \’
\ \ \ \

7/ 7/ 7/ 7/
2= 2= 2= 2=
/A /A /A /A

o A= i 2= -~ » = P s~
! \1/ \1/ \1/ \1/ \1/ \1/ \1/ \1
Vo a Sy a Sy ,

16

PKC 2016: SPHINCS on ARM Cortex-M3

e Main challenge: Fit 40 KB signature into 16 KB of RAM
e Use Treehash (Merkle, 1990) inside FTS computation

e Maintain a stack: at most log(n) = 16 nodes
(or log(8) = 3, in the example below)

16

PKC 2016: SPHINCS on ARM Cortex-M3

e Main challenge: Fit 40 KB signature into 16 KB of RAM
e Use Treehash (Merkle, 1990) inside FTS computation

e Maintain a stack: at most log(n) = 16 nodes
(or log(8) = 3, in the example below)

SO A
- - ~
- ~
- N
PR N~ -
/ X 7 N
\ 0 \ /’
»-< ~ =X
/ \ / \
’ N 7 N
- -
/ \l / \l / \’
\ \ \
7/ 7/ /
2= 2= 2=
/A /A /A
.= P .= P .= o=
! \1/ \1/ \1/ \1/ \1/ \1
. /\ /\ /\ /\ /\ 7

16

PKC 2016: SPHINCS on ARM Cortex-M3

e Main challenge: Fit 40 KB signature into 16 KB of RAM
e Use Treehash (Merkle, 1990) inside FTS computation

e Maintain a stack: at most log(n) = 16 nodes
(or log(8) = 3, in the example below)

16

PKC 2016: SPHINCS on ARM Cortex-M3

e Main challenge: Fit 40 KB signature into 16 KB of RAM
e Use Treehash (Merkle, 1990) inside FTS computation

e Maintain a stack: at most log(n) = 16 nodes
(or log(8) = 3, in the example below)

‘/ N -
- -
/ \’ / \’
\ \

’ ,
2= 2=
/A /A

-~ » = P A=
! \1/ \1/ \1/ \1
\ a Sy ,

16

PKC 2016: SPHINCS on ARM Cortex-M3

e Main challenge: Fit 40 KB signature into 16 KB of RAM
e Use Treehash (Merkle, 1990) inside FTS computation

e Maintain a stack: at most log(n) = 16 nodes
(or log(8) = 3, in the example below)

‘/ N -
- -
/ \’ / \’
\ \

’ ,
2= 2=
/A /A

e

16

PKC 2016: SPHINCS on ARM Cortex-M3

e Main challenge: Fit 40 KB signature into 16 KB of RAM
e Use Treehash (Merkle, 1990) inside FTS computation

e Maintain a stack: at most log(n) = 16 nodes
(or log(8) = 3, in the example below)

16

PKC 2016: SPHINCS on ARM Cortex-M3

e Main challenge: Fit 40 KB signature into 16 KB of RAM
e Use Treehash (Merkle, 1990) inside FTS computation

e Maintain a stack: at most log(n) = 16 nodes
(or log(8) = 3, in the example below)

-

’ N

Jo_A
- - ~
- N
- ~
- S oo
7 \’
8 7
» =X
/ \
’ N
>
/ \’
\
/
2=
/A
)‘\
! l
\
\4/

16

PKC 2016: SPHINCS on ARM Cortex-M3

e Main challenge: Fit 40 KB signature into 16 KB of RAM
e Use Treehash (Merkle, 1990) inside FTS computation

e Maintain a stack: at most log(n) = 16 nodes
(or log(8) = 3, in the example below)

PKC 2016: SPHINCS on ARM Cortex-M3

e Main challenge: Fit 40 KB signature into 16 KB of RAM
e Use Treehash (Merkle, 1990) inside FTS computation

e Maintain a stack: at most log(n) = 16 nodes
(or log(8) = 3, in the example below)

e Trace 32 ‘random’ paths through tree

PKC 2016: SPHINCS on ARM Cortex-M3

e Main challenge: Fit 40 KB signature into 16 KB of RAM
e Use Treehash (Merkle, 1990) inside FTS computation

e Maintain a stack: at most log(n) = 16 nodes
(or log(8) = 3, in the example below)

e Trace 32 ‘random’ paths through tree

e Stream in message “piece by piece”

16

PKC 2016: SPHINCS on ARM Cortex-M3

e Main challenge: Fit 40 KB signature into 16 KB of RAM
e Use Treehash (Merkle, 1990) inside FTS computation

e Maintain a stack: at most log(n) = 16 nodes
(or log(8) = 3, in the example below)

e Trace 32 ‘random’ paths through tree

e Stream in message “piece by piece”
e Stream out signature “piece by piece”

e Rearrange puzzle pieces on the hostside

16

e Works on 16KB RAM v
e Uses less than 7KB

e Benchmarks at 32 MHz

e Key generation: 0.88 seconds

Signing: 18.41 seconds

Verification: 0.51 seconds

17

e Works on 16KB RAM v
e Uses less than 7KB

e Benchmarks at 32 MHz

e Key generation: 0.88 seconds

e Signing: 18.41 seconds

e Verification: 0.51 seconds

e Cost for eliminating the state: 30x signing slowdown

e Typically better to use stateful XMSS

(Verification) code for SPHINCS and XMSS has very large overlap

17

NIST PQC “competition” 2017: SPHINCS™

e Submission by Daniel J. Bernstein, Christoph Dobraunig, Maria
Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Andreas Hiilsing,
Panos Kampanakis, Stefan Kolbl, Tanja Lange, Martin M.
Lauridsen, Florian Mendel, Ruben Niederhagen, Christian
Rechberger, Joost Rijneveld, and Peter Schwabe

18

NIST PQC “competition” 2017: SPHINCS™

e Submission by Daniel J. Bernstein, Christoph Dobraunig, Maria
Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Andreas Hiilsing,
Panos Kampanakis, Stefan Kolbl, Tanja Lange, Martin M.
Lauridsen, Florian Mendel, Ruben Niederhagen, Christian
Rechberger, Joost Rijneveld, and Peter Schwabe

e Various improvements to SPHINCS — SPHINCS™

e Incorporate multi-target protection (Hiilsing, Rijneveld, Song, PKC
2016)
e Better security properties
e Shorter keys (64 bytes)
o Slower signing

18

NIST PQC “competition” 2017: SPHINCS™

e Submission by Daniel J. Bernstein, Christoph Dobraunig, Maria
Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Andreas Hiilsing,
Panos Kampanakis, Stefan Kolbl, Tanja Lange, Martin M.
Lauridsen, Florian Mendel, Ruben Niederhagen, Christian
Rechberger, Joost Rijneveld, and Peter Schwabe

e Various improvements to SPHINCS — SPHINCS™

e Incorporate multi-target protection (Hiilsing, Rijneveld, Song, PKC
2016)
e Better security properties
e Shorter keys (64 bytes)
o Slower signing

e Improvements to FTS — smaller signatures

18

NIST PQC “competition” 2017: SPHINCS™

e Submission by Daniel J. Bernstein, Christoph Dobraunig, Maria
Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Andreas Hiilsing,
Panos Kampanakis, Stefan Kolbl, Tanja Lange, Martin M.
Lauridsen, Florian Mendel, Ruben Niederhagen, Christian
Rechberger, Joost Rijneveld, and Peter Schwabe

e Various improvements to SPHINCS — SPHINCS™

e Incorporate multi-target protection (Hiilsing, Rijneveld, Song, PKC
2016)

e Better security properties

e Shorter keys (64 bytes)

o Slower signing
e Improvements to FTS — smaller signatures
e Support 254 signatures under one key

18

NIST PQC “competition” 2017: SPHINCS™

e Submission by Daniel J. Bernstein, Christoph Dobraunig, Maria
Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Andreas Hiilsing,
Panos Kampanakis, Stefan Kolbl, Tanja Lange, Martin M.
Lauridsen, Florian Mendel, Ruben Niederhagen, Christian
Rechberger, Joost Rijneveld, and Peter Schwabe

e Various improvements to SPHINCS — SPHINCS™

e Incorporate multi-target protection (Hiilsing, Rijneveld, Song, PKC
2016)

e Better security properties
e Shorter keys (64 bytes)
o Slower signing

e Improvements to FTS — smaller signatures

e Support 254 signatures under one key

e Framework supporting different hash functions

18

NIST PQC “competition” 2017: SPHINCS™

e Submission by Daniel J. Bernstein, Christoph Dobraunig, Maria
Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Andreas Hiilsing,
Panos Kampanakis, Stefan Kolbl, Tanja Lange, Martin M.
Lauridsen, Florian Mendel, Ruben Niederhagen, Christian
Rechberger, Joost Rijneveld, and Peter Schwabe

e Various improvements to SPHINCS — SPHINCS™

e Incorporate multi-target protection (Hiilsing, Rijneveld, Song, PKC
2016)

e Better security properties
e Shorter keys (64 bytes)
o Slower signing

e Improvements to FTS — smaller signatures

e Support 254 signatures under one key

e Framework supporting different hash functions

e Add lower-security variants (parameters for levels 1,3, and 5)

18

NIST PQC “competition” 2017: SPHINCS™

e Submission by Daniel J. Bernstein, Christoph Dobraunig, Maria
Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Andreas Hiilsing,
Panos Kampanakis, Stefan Kolbl, Tanja Lange, Martin M.
Lauridsen, Florian Mendel, Ruben Niederhagen, Christian
Rechberger, Joost Rijneveld, and Peter Schwabe

e Various improvements to SPHINCS — SPHINCS™

e Incorporate multi-target protection (Hiilsing, Rijneveld, Song, PKC
2016)

e Better security properties
e Shorter keys (64 bytes)
o Slower signing

e Improvements to FTS — smaller signatures

e Support 254 signatures under one key

e Framework supporting different hash functions

e Add lower-security variants (parameters for levels 1,3, and 5)

e Signature sizes between 8 KB and 49 KB

18

More online

NewHope

https://newhopecrypto.org (soon)

SPHINCS™*

https://sphincs.org (soon)

19

https://newhopecrypto.org
https://sphincs.org

