Veritying crypto

Many questions and the beginning of an answer

Peter Schwabe
Radboud University Nijmegen, The Netherlands

$ %
=4 E
o= ()
1, v
MiNne©

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin,
Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang and Shang-Yi Yang

May 20, 2014

Brouwer Seminar

About me

» 2001-2006: Studies of computer science at RWTH Aachen
(Germany)

» 2006-2007: Ph.D. student at RWTH Aachen
» 2008-2011: Ph.D. student at TU Eindhoven

» 2011-2012: Postdoc at Academia Sincia (Taiwan) and National
Taiwan University

» Since 2013: UD in the Digital Security Group
» Since 2014: Work on VENI project “High-speed high-security
cryptography”

Verifying crypto

Research topics

During Ph.D. time

» High-speed cryptography
> Optimizing the Advanced Encryption Standard (AES)
Elliptic-curve cryptography (ECC)
Cryptographic pairings
NaCl (http://nacl.cr.yp.to)

vvVvy

» High-speed cryptanalysis
> Attacking ECC (parallel Pollard rho algorithm)
> Attacking code-based crypto (generalized birthday attack)

Verifying crypto

http://nacl.cr.yp.to

Research topics

During Ph.D. time

» High-speed cryptography
> Optimizing the Advanced Encryption Standard (AES)
Elliptic-curve cryptography (ECC)
Cryptographic pairings
NaCl (http://nacl.cr.yp.to)

vvVvy

» High-speed cryptanalysis
> Attacking ECC (parallel Pollard rho algorithm)
> Attacking code-based crypto (generalized birthday attack)

As a Postdoc

» Focus on constructive side (NaCl)

» Starting to look into automated optimization

Verifying crypto

http://nacl.cr.yp.to

VENI project

“High-speed high-security crypto”

NaCl for embedded microcontrollers

> Very restricted environment (speed, memory, storage)
» Typically exposed to physical attacks

Verifying crypto

VENI project

“High-speed high-security crypto”

NaCl for embedded microcontrollers

» Very restricted environment (speed, memory, storage)
» Typically exposed to physical attacks

A finite-field compiler

» ECC needs operations in large finite fields
» Idea: compile sequence of field operations to superfast assembly

Verifying crypto

VENI project

“High-speed high-security crypto”

NaCl for embedded microcontrollers

» Very restricted environment (speed, memory, storage)
» Typically exposed to physical attacks

A finite-field compiler

» ECC needs operations in large finite fields
» Idea: compile sequence of field operations to superfast assembly

Verification of crypto software

» Started in the context of the finite-field compiler

» Generally important: ensure correctness of crypto software
» Additional: ensure security of crypto software
»

Verification on the assembly level

Verifying crypto

High-speed crypto

» Crypto algorithms are typically small in software
» Example: AES, just a few lines of C
» Executed very often (AES encrypts terabytes each day)

Verifying crypto

High-speed crypto

Crypto algorithms are typically small in software
Example: AES, just a few lines of C
Executed very often (AES encrypts terabytes each day)

Crypto needs to work fast on busy servers

vV v.v. vy

Crypto needs to work fast on small embedded devices

Verifying crypto

High-speed crypto

vV vV vV vV VvV VY

Crypto algorithms are typically small in software
Example: AES, just a few lines of C
Executed very often (AES encrypts terabytes each day)
Crypto needs to work fast on busy servers
Crypto needs to work fast on small embedded devices
Serious optimization is feasible and worth the effort
Typical high-speed crypto:

» Optimize on the assembly level

» Use instruction set to an extent that C does not allow
> Inline, unroll, ...

Verifying crypto

High-speed crypto

vV vV vV vV VvV VY

Crypto algorithms are typically small in software
Example: AES, just a few lines of C
Executed very often (AES encrypts terabytes each day)
Crypto needs to work fast on busy servers
Crypto needs to work fast on small embedded devices
Serious optimization is feasible and worth the effort
Typical high-speed crypto:

» Optimize on the assembly level

» Use instruction set to an extent that C does not allow
> Inline, unroll, ...

10% speedup are typically a paper!

Verifying crypto

High-security crypto

> Best known attacks take > 2128 operations

» Attacks have been extensively studied

Verifying crypto

High-security crypto

> Best known attacks take > 2128 operations
» Attacks have been extensively studied

» Implementations must not leak secret information
» Execution time must be independent of secret data

Verifying crypto

High-security crypto

> Best known attacks take > 2128 operations
» Attacks have been extensively studied

» Implementations must not leak secret information

» Execution time must be independent of secret data
> No data flow from secrets into branch conditions
> No data flow from secrets into load/store addresses

Verifying crypto

High-security crypto

> Best known attacks take > 2128 operations
» Attacks have been extensively studied

» Implementations must not leak secret information

» Execution time must be independent of secret data
» No data flow from secrets into branch conditions

> No data flow from secrets into load/store addresses
» Timing attacks are practical and efficient

Verifying crypto

High-security crypto

v

Best known attacks take > 2'28 operations

v

Attacks have been extensively studied

v

Implementations must not leak secret information
» Execution time must be independent of secret data
> No data flow from secrets into branch conditions
> No data flow from secrets into load/store addresses
» Timing attacks are practical and efficient

v

Implementations must be correct (bug attacks!)

Verifying crypto

Correct crypto?

“Are you actually sure that your implementations are correct?”’
—Gerhard Woeginger, Jan. 24, 2011.

Verifying crypto

Correct crypto?

Testing

v

Is cheap, catches many bugs

v

Does not conflict with performance

v

Provides very high confidence in correctness for some crypto
algorithms

v

Typically fails to catch very rarely triggered bugs

Verifying crypto

Correct crypto?

Audits
» Expensive (time and/or money)
» Conflicts with performance

» Standard approach to ensure correctness and quality of (crypto)
software

Verifying crypto

Correct crypto?

Formal verification

» Strongest guarantees of correctness

» Probably conflicts with performance

Verifying crypto

Correct crypto?

Formal verification

» Strongest guarantees of correctness
» Probably conflicts with performance
» Should focus on cases where test and audits fail

Verifying crypto

Elliptic-curve cryptography

> Let IF; be a finite field

> For a1, as9,as,a4,as € Fy, an equation of the form
c 02 _ .3 2
E:y"+aizy+ asy = z° + agx” + agx + ag

defines an elliptic curve E over F,

Verifying crypto

Elliptic-curve cryptography

> Let IF; be a finite field
> For a1, as9,as,a4,as € Fy, an equation of the form

E:y2—|—a1xy—|—a3y::c3—|—a2x2—|—a4z—|—a6

defines an elliptic curve E over F,

» Points (z,y) € F, x F, on E together with a “point at infinity” form

a group E(F,)

Verifying crypto

Elliptic-curve cryptography

v

Let I, be a finite field

For a1, as,as, as,as € Fy, an equation of the form

v

E:y2—|—a1xy—|—a3y::c3—|—a2x2—|—a4z—|—a6

defines an elliptic curve E over F,

v

Points (z,y) € F, x F, on E together with a “point at infinity” form
a group E(F,)

v

Group addition can be computed with a few operations in F,

Verifying crypto

Elliptic-curve cryptography

v

Let I, be a finite field

For a1, as,as, as,as € Fy, an equation of the form

v

E:y2—|—a1xy—|—a3y::c3—|—a2x2—|—a4;1:—|—a6

defines an elliptic curve E over F,

v

Points (z,y) € F, x F, on E together with a “point at infinity” form
a group E(F,)

v

Group addition can be computed with a few operations in F,
For P € E(F,) and k € Z, computing kP is easy (O (log(k)))

v

Verifying crypto

Elliptic-curve cryptography

> Let IF; be a finite field

> For a1, as9,as,a4,as € Fy, an equation of the form
c 02 _ .3 2
E:y"+aizy+ asy = z° + agx” + agx + ag

defines an elliptic curve E over F,

» Points (z,y) € F, x F, on E together with a “point at infinity” form
a group E(F,)

» Group addition can be computed with a few operations in Fy

» For P € E(F,) and k € Z, computing kP is easy (©(log(k)))

> Given Q € (P) and P, computing k with kP = Q is hard (©(Vk))

Verifying crypto

Elliptic-curve cryptography

> Let IF; be a finite field

> For a1, as9,as,a4,as € Fy, an equation of the form
2 _ .3 2
E:y"+aizy+ asy = z° + agx” + agx + ag

defines an elliptic curve E over F,
» Points (z,y) € F, x F, on E together with a “point at infinity” form
a group E(F,)
» Group addition can be computed with a few operations in Fy
» For P € E(F,) and k € Z, computing kP is easy (©(log(k)))
> Given Q € (P) and P, computing k with kP = Q is hard (©(Vk))
» Use in crypto: choose random k, compute and publish kP

Verifying crypto

Curve25519 ECDH

Diffie-Hellman key exchange protocol by Bernstein (2006)
Uses curve E : 4% = 23 + 48666222 + 2 defined over Fa2ss _1g

Conservative parameter choice, targeting high security

vV v v v

Set speed records on a variety of platforms

Verifying crypto

Curve25519 ECDH

Diffie-Hellman key exchange protocol by Bernstein (2006)
Uses curve E : 4% = 23 + 48666222 + 2 defined over Fa2ss _1g
Conservative parameter choice, targeting high security

Set speed records on a variety of platforms

vV v v v Y

High-level view:
> Input: z-coordinate zp of a point P, scalar k
» Compute z-coordinate zxp of kP as xyp = Xxp/Zrp
> Invert Zip, multiply by X p to obtain zxp
> Inputs and outputs encoded as little-endian byte arrays of length 32

Verifying crypto

The Montgomery ladder

Require: A scalar 0 < k € Z and the z-coordinate xp of some point P
Ensure: (ka,ka) fulfllllng Trp = ka/ka
Xi=ap; Xo=1,2Z,=0;, Xz =2p; Z3=1
for i < n — 1 downto 0 do
if bit 7 of k is 1 then
(X3,73,X2,72) < ladderstep(X1, X3, Z3, X2, Z2)
else
(X2,22,X3,73) + ladderstep(X1, X2, 22, X3, Z3)
end if
end for
return (X5, Z5)

Verifying crypto

10

One Montgomery “ladder step”

const a24 = 121666 (from the curve equation)
function ladderstep(Xq_p, Xp, Zp, X0, Zq)

t1 < Xp+Zp
tg < t2
tQ(*Xp7ZP
ty < t3

ts < tg — t7
tg(—XQ+ZQ
t4(—XQ—ZQ
tg < tg - 11

tg < t3 - to

Xpiq « (ts + 1)

Zpiq — Xq-p - (ts —t9)?

Xop < tg - t7

Zop —t5 - (t7 +a24 - t5)

return (Xgp, Zap, XP+Q, ZP+Q)
end function

Verifying crypto

11

Arithmetic in Fy2s5_19

Need arithmetic on 255-bit integers and reduction mod 2255 — 19
Speed typically determined by speed of multiplications

Use fastest hardware multiplier

On Intel Nehalem: 64 x 64 — 128-bit integer multiply

vV v v .Y

Verifying crypto

12

Arithmetic in Fy2s5_19

Need arithmetic on 255-bit integers and reduction mod 2255 — 19
Speed typically determined by speed of multiplications

Use fastest hardware multiplier

On Intel Nehalem: 64 x 64 — 128-bit integer multiply

Represent 256-bit integer A through 4 64-bit integers ag, a1, az, a3
Value of Ais 327 ;2647

vV v v v v Yy

typedef struct{
unsigned long long v[4];
} £fe25519;

Verifying crypto

12

Addition

int64 r0

int64 ri

int64 r2

int64 r3

int64 tO

int64 t1

enter fe25519_add

r0 = mem64[input_1 + O]
rl = mem64[input_1 + 8]
r2 = mem64[input_1 + 16]
r3 = mem64[input_1 + 24]
carry? rO += mem64[input_2
carry? rl += mem64[input_2
carry? r2 += mem64[input_2
carry? r3 += mem64[input_2

0]

8] + carry
16] + carry
24] + carry

t0 =0

tl = 38

t1

carry?
carry?
carry?
carry?

t0 if !carry

r0 += ti1

rl += t0 + carry
r2 += t0 + carry
r3 += t0 + carry

t0 = t1 if carry

r0 += t0

mem64 [input_0 + 0] = r0
mem64 [input_0 + 8] = ri
mem64 [input_0 + 16] = r2
mem64 [input_0 + 24] = r3

return

Verifying crypto

Multiplication

x0 = mem64 [input_1 + 0] rax = mem64[input_2 + 16]
rax = mem64[input_2 + 0] (uint128) rdx rax = rax * x0
(uint128) rdx rax = rax * x0 carry? r2 += rax

r0 = rax r3 =0

rl = rdx r3 += rdx + carry

rax = mem64[input_2 + 8] rax = mem64[input_2 + 24]
(uint128) rdx rax = rax * x0 (uint128) rdx rax = rax * x0
carry? rl += rax carry? r3 += rax

r2 =0 r4d =0

r2 += rdx + carry r4 += rdx + carry

Verifying crypto

Multiplication

x1 = mem64[input_1 + 8]

rax = mem64[input_2 + 0]
(uint128) rdx rax = rax * x1
carry? rl += rax

c=0

c += rdx + carry

rax = mem64[input_2 + 8]
(uint128) rdx rax = rax * x1
carry? r2 += rax

rdx += 0 + carry

carry? r2 += c

c=0

c += rdx + carry

rax = mem64[input_2 + 16]

(uint128) rdx rax
carry? r3 += rax
rdx += 0 + carry
carry? r3 += c
c=20

c += rdx + carry

rax = mem64[input_
(uint128) rdx rax
carry? r4 += rax
rdx += 0 + carry
carry? r4 += c

r5 =0

r5 += rdx + carry

rax * x1

+ 24]
rax * x1

Verifying crypto

14

Multiplication

x3 = mem64 [input_1 + 24]

rax = mem64[input_2 + 0]
(uint128) rdx rax = rax * x3
carry? r3 += rax

c=0

c += rdx + carry

rax = mem64[input_2 + 8]
(uint128) rdx rax = rax * x3
carry? r4 += rax

rdx += 0 + carry

carry? r4d += c

c=0

c += rdx + carry

rax = mem64[input_2 + 16]

(uint128) rdx rax
carry? r5 += rax
rdx += 0 + carry
carry? r5 += c
c=20

c += rdx + carry

rax = mem64[input_
(uint128) rdx rax
carry? r6 += rax
rdx += 0 + carry
carry? r6 += c

r7 =0

r7 += rdx + carry

rax * x3

+ 24]
rax * x3

Verifying crypto

14

Reduction mod 2% — 19

» “Lazy” reduction modulo 22°6 — 38: multiply upper half by 38, add
to lower half

Verifying crypto

Reduction mod 22°° — 19

» “Lazy” reduction modulo 22°6 — 38: multiply upper half by 38, add

to lower half
> In assembly:

rax = ré
(uint128) rdx rax
r4 = rax
rax = rb
rb5 = rdx

(uint128) rdx rax
carry? r5 += rax
rax = ré

6 =0

r6 += rdx + carry

(uint128) rdx rax
carry? r7 += rax
r8 =0

r8 += rdx + carry

rax * mem64[&const_38]

rax * mem64[&const_38]

rax * mem64[&const_38]

Verifying crypto 15

Reduction mod 22°° — 19

» “Lazy” reduction modulo 22°¢ — 38: multiply upper half by 38, add
to lower half
» In assembly:
carry? r0 += r4
carry? rl += rb5 + carry
carry? r2 += r6 + carry
carry? r3 += r7 + carry

zero = 0
r8 += zero + carry
r8 *= 38

carry? rO += r8

carry? rl += zero + carry
carry? r2 += zero + carry
carry? r3 += zero + carry
zero += zero + carry

zero *= 38

r0 += zero

Verifying crypto

Changing the radix

» Radix-26* representation works and is sometimes a good choice

» Highly depends on the efficiency of handling carries

Verifying crypto

Changing the radix

» Radix-26* representation works and is sometimes a good choice
» Highly depends on the efficiency of handling carries

» Example: Intel Nehalem can do 3 additions every cycle, but only 1
addition with carry every two cycles (carries cost a factor of 6!)

Verifying crypto

17

Changing the radix

» Radix-26* representation works and is sometimes a good choice
» Highly depends on the efficiency of handling carries

» Example: Intel Nehalem can do 3 additions every cycle, but only 1
addition with carry every two cycles (carries cost a factor of 6!)

Verifying crypto

17

Changing the radix

» Radix-26* representation works and is sometimes a good choice
» Highly depends on the efficiency of handling carries

» Example: Intel Nehalem can do 3 additions every cycle, but only 1
addition with carry every two cycles (carries cost a factor of 6!)

> Let's get rid of the carries, represent A as (ag, a1, ag, as,aq) with

4
A=Y a2
=0

» This is called radix-2°! representation

Verifying crypto

17

Changing the radix

» Radix-26* representation works and is sometimes a good choice
» Highly depends on the efficiency of handling carries

» Example: Intel Nehalem can do 3 additions every cycle, but only 1
addition with carry every two cycles (carries cost a factor of 6!)

> Let's get rid of the carries, represent A as (ag, a1, ag, as,aq) with

4
A=Y a2
=0

» This is called radix-2°! representation

» Multiple ways to write the same integer A, for example A = 252
> (252, 0,0,0,0)

> (0,2,0,0,0)

Verifying crypto

17

» Multiple ways to write the same integer A, for example A

Changing the radix

Radix-264 representation works and is sometimes a good choice
Highly depends on the efficiency of handling carries

Example: Intel Nehalem can do 3 additions every cycle, but only 1
addition with carry every two cycles (carries cost a factor of 6!)

Let’s get rid of the carries, represent A as (ag, a1, as, as, as) with

4
A=Y a2
=0

» This is called radix-2°! representation

= 252

> (2°,0,0,0,0)
> (0,2,0,0,0)

Call a representation (ag, a1, as,as, ayq) reduced, if all
a; €10,...,2°2 — 1]

Verifying crypto

17

Addition

enter fe25519_add

r0 = mem64[input_1 + 0]
rl = mem64[input_1 + 8]
r2 = mem64[input_1 + 16]
r3 = mem64 [input_1 + 24]
r4 = mem64[input_1 + 32]
r0 += mem64[input_2 + 0]
rl += mem64[input_2 + 8]
r2 += mem64[input_2 + 16]
r3 += mem64[input_2 + 24]
r4 += mem64[input_2 + 32]
mem64 [input_0 + 0] = r0
mem64 [input_0 + 8] = ril
mem64 [input_0 + 16] = r2
mem64 [input_0 + 24] = r3
mem64 [input_0 + 32] = r4

return

Verifying crypto

Multiplication

rax = mem64[input_1 + 0]

(int128) rdx rax = rax * mem64[input_2
r0 = rax

rOh = rdx

rax = mem64[input_1 + 0]

(int128) rdx rax = rax * mem64[input_2
rl = rax

rih = rdx

rax = mem64[input_1 + 0]

(int128) rdx rax = rax * mem64[input_2
r2 = rax

r2h = rdx

rax = mem64[input_1 + 0]

(int128) rdx rax = rax * mem64[input_2
r3 = rax

r3h = rdx

rax = mem64[input_1 + 0]

(int128) rdx rax = rax * mem64[input_2
r4d = rax
rdh = rdx

+

+

0]

8]

16]

24]

32]

Verifying crypto

19

Multiplication

rax = mem64[input_1 + 8]

(int128) rdx rax = rax * mem64[input_2
carry? rl += rax

rih += rdx + carry

rax = mem64[input_1 + 8]

(int128) rdx rax = rax * mem64[input_2
carry? r2 += rax

r2h += rdx + carry

rax = mem64[input_1 + 8]

(int128) rdx rax = rax * mem64[input_2
carry? r3 += rax

r3h += rdx + carry

rax = mem64[input_1 + 8]

(int128) rdx rax = rax * mem64[input_2
carry? r4 += rax

r4h += rdx + carry

rax = mem64[input_1 + 8]

(int128) rdx rax = rax * mem64[input_2
r5 = rax
rbh = rdx

+

+

0]

8]

16]

24]

32]

Verifying crypto

19

Multiplication

mem64 [input_0
mem64 [input_0
mem64 [input_0
mem64 [input_0
mem64 [input_0
mem64 [input_0

mem64 [input_0
mem64 [input_0

+ o+ o+ o+ + o+

+

0]
8]
16]
24]
32]
40]

128]
136]

r0
rOh
rl
rih
r2
r2h

r8
r8h

Verifying crypto

Reduction mod p

» We now have rg,...,rs, such that
8 4 4
>t = () ()
i=0 i=0 i=0
» We want to have rq,..., 74, such that

4 4 4
Zrﬂm'i = <Z ai251'i> (Z bi251'i> (mod 2%5° — 19)
i=0 i=0 i=0

Verifying crypto 20

Reduction mod p

» We now have rg,...,rs, such that
8 4 4
>t = () ()
i=0 i=0 i=0
» We want to have rq,..., 74, such that

4 4 4
Zrﬂm'i = <Z ai251'i> (Z bi251'i> (mod 2%5° — 19)
i=0 i=0 i=0

» We can reduce modulo p as
ro < ro + 1975

Verifying crypto 20

Reduction mod p

» We now have rg,...,rs, such that
8 4 4
>t = (o) (Lo
i=0 i=0 i=0
» We want to have rq,..., 74, such that

)

4 4 4
Zrﬂm'i = <Z ai251'i> (Z bi251'i> (mod 2%5° — 19)
i=0 i=0 i=0

» We can reduce modulo p as
ro < ro + 1975
r1 < r1 4+ 197r¢
ro < 1o + 1977
rg <— 13+ 1973

Verifying crypto

Reduction mod p

» We now have rg,...,rs, such that
8 4 4
>t = () ()
i=0 i=0 i=0
» We want to have rq,..., 74, such that

4 4 4
Zri251-i = <Z ai251~i> (Z b2251’b> (mod 2255 _ 19)
=0 =0 =0

» We can reduce modulo p as
ro < ro + 1975
r1 < r1 4+ 197r¢
ro < 1o + 1977
rg <— 13+ 1973
» Can even merge this reduction with multiplication:
> Precompute 19a1, 19a2, 19a3, 19a4
> Multiply b; by 19a; if i+ j > 4

Verifying crypto

20

Carrying after multiplication

» Coefficients r; are way too large
» Need to carry. In pseudocode:

carry = (rOh.r0) >> 51
(rith.r1) += carry
carry <<= b1

(rOh.r0) -= carry

Verifying crypto

21

Carrying after multiplication

v

Coefficients r; are way too large

v

Need to carry. In pseudocode:
carry = (rOh.r0) >> 51
(rith.r1) += carry
carry <<= b1
(rOh.r0) -= carry

v

Carry from rg to r1; from 71 to 7o, and so on

v

Multiply carry from r4 by 19 and add to 7

Verifying crypto

21

Carrying after multiplication

v

v

vV v v v

Coefficients r; are way too large
Need to carry. In pseudocode:

carry = (rOh.r0) >> 51
(rith.r1) += carry
carry <<= b1

(rOh.r0) -= carry

Carry from rg to r1; from 71 to 7o, and so on
Multiply carry from r4 by 19 and add to 7
After one round of carries we have signed 64-bit integers

Perform another round of carries to obtain reduced coefficients

Verifying crypto

21

Ladderstep observations

Ladderstep

» Two versions, fully inlined sequence of Fa255_14 operations:
» One using radix-2%4 representation

> One using radix-2°! representation

Verifying crypto

Ladderstep observations

Ladderstep

» Two versions, fully inlined sequence of Fa2s5_14 operations:

> One using radix-2%4 representation
> One using radix-2°! representation

Nice for formal verification

» Code is completely branch-free
» Can even write down branch-free Montgomery ladder (unrolling)

Verifying crypto

22

Ladderstep observations

Ladderstep

» Two versions, fully inlined sequence of Fa2s5_14 operations:

> One using radix-2%4 representation
> One using radix-2°! representation

Nice for formal verification

Code is completely branch-free
Can even write down branch-free Montgomery ladder (unrolling)

>
| 4
» No dynamic memory allocations
» No function calls

>

No side effects (except for flags)

Verifying crypto

22

Ladderstep observations

Ladderstep

» Two versions, fully inlined sequence of Fa2s5_14 operations:

> One using radix-2%4 representation
> One using radix-2°! representation

Nice for formal verification

>
>
>
S
>
>

Code is completely branch-free

Can even write down branch-free Montgomery ladder (unrolling)

No dynamic memory allocations

No function calls

No side effects (except for flags)

“abnormally straight line code” —Adam Langley

Verifying crypto

22

Ladderstep observations

Ladderstep

» Two versions, fully inlined sequence of Fy255 _19 operations:

» One using radix-25* representation
» One using radix-2°! representation

not so nice

> Only very high-level and very low-level description

» Pseudocode — sequence of operations in Fy255_1g
> Hand-optimized assembly (2 versions with different radices)

Verifying crypto

22

Ladderstep observations

Ladderstep

» Two versions, fully inlined sequence of Fa2s5_14 operations:

» One using radix-25* representation
» One using radix-2°! representation

not so nice

> Only very high-level and very low-level description

» Pseudocode — sequence of operations in Fy255_1g
> Hand-optimized assembly (2 versions with different radices)

» Non-linear operations on non-native data types

Verifying crypto

22

Ladderstep observations

Ladderstep

» Two versions, fully inlined sequence of Fa2s5_14 operations:

» One using radix-25* representation
» One using radix-2°! representation

not so nice
> Only very high-level and very low-level description
» Pseudocode — sequence of operations in Fy255_1g
> Hand-optimized assembly (2 versions with different radices)
» Non-linear operations on non-native data types
» 1419 LOC in radix 264
» 1533 LOC in radix 25!

Verifying crypto

22

Assembly?

» The code | showed you is not native assembly

> It's ghasm code:

High-level (“portable”) assembler by Bernstein
Unified syntax across architectures

Efficient register allocation (linear-scan like)

All freedom of assembly but faster development time

v

vvyy

Verifying crypto

23

Annotated ghasm

Idea for proof of correctness

» Annotate ghasm code with pre- and post-conditions
» Automatically translate to boolector

> Use boolector -minisat to prove correctness

Verifying crypto

24

Annotated ghasm

Idea for proof of correctness

» Annotate ghasm code with pre- and post-conditions
» Automatically translate to boolector

> Use boolector -minisat to prove correctness

Experience so far

» Don't verify ladderstep “en bloc”, chop in pieces, use composition of

Hoare logic

Verifying crypto

Annotated ghasm

Idea for proof of correctness

» Annotate ghasm code with pre- and post-conditions
» Automatically translate to boolector

> Use boolector -minisat to prove correctness

Experience so far

» Don't verify ladderstep “en bloc”, chop in pieces, use composition of
Hoare logic

» Extensive annotation needed, in particular for multiplication

Verifying crypto

Annotated ghasm

Idea for proof of correctness

» Annotate ghasm code with pre- and post-conditions
» Automatically translate to boolector

> Use boolector -minisat to prove correctness

Experience so far

» Don't verify ladderstep “en bloc”, chop in pieces, use composition of
Hoare logic

» Extensive annotation needed, in particular for multiplication

» Carries cause trouble (verification of radix-2%! implementation is
easier)

Verifying crypto

Annotated ghasm

Idea for proof of correctness

» Annotate ghasm code with pre- and post-conditions
» Automatically translate to boolector

> Use boolector -minisat to prove correctness

Experience so far

» Don't verify ladderstep “en bloc”, chop in pieces, use composition of
Hoare logic

» Extensive annotation needed, in particular for multiplication

» Carries cause trouble (verification of radix-2%! implementation is
easier)

» Cannot prove everything with boolector, need 2 proofs in Coq (not
automated)

Verifying crypto

24

Results

» Fully verified ladderstep (code matches annotations)

Verifying crypto

Results

» Fully verified ladderstep (code matches annotations)
» Most costly to verify: radix-2° multiplication:

> 27 intermediate conditions/annotations
5658 minutes, = 4 days
Out of this, 2723 minutes for delayed carry
Two-phase carry is only 264 minutes

vvYyy

Verifying crypto

Results

» Fully verified ladderstep (code matches annotations)

» Most costly to verify: radix-2° multiplication:
> 27 intermediate conditions/annotations

5658 minutes, = 4 days

vvYyy

» Finding a known bug in early radix-
seconds

264

Out of this, 2723 minutes for delayed carry
Two-phase carry is only 264 minutes

multiplication is fast: < 9

Verifying crypto

Questions

» Is annotated assembly/ghasm the right approach?

Verifying crypto

Questions

» Is annotated assembly/ghasm the right approach?

» Is translation to boolector the right approach?

Verifying crypto

Questions

» Is annotated assembly/ghasm the right approach?
» Is translation to boolector the right approach?

» How can we reduce the amount of annotations?
| 4

How can we automate the whole process (incl. Coq)?

Verifying crypto

26

Questions

Is annotated assembly/ghasm the right approach?

Is translation to boolector the right approach?

How can we reduce the amount of annotations?

How can we automate the whole process (incl. Coq)?

Will this scale to less friendly cases
> Highly interleaved operations
> Arithmetic using floats
> Vector instructions

vV v v v Y

Verifying crypto

26

Questions

Is annotated assembly/ghasm the right approach?
Is translation to boolector the right approach?
How can we reduce the amount of annotations?

How can we automate the whole process (incl. Coq)?

vV v v v Y

Will this scale to less friendly cases
> Highly interleaved operations
> Arithmetic using floats
> Vector instructions

v

How about proofs of timing-attack resistance?

Verifying crypto

26

Questions

vV v v v Y

Is annotated assembly/ghasm the right approach?

Is translation to boolector the right approach?

How can we reduce the amount of annotations?

How can we automate the whole process (incl. Coq)?

Will this scale to less friendly cases

> Highly interleaved operations
> Arithmetic using floats
> Vector instructions

How about proofs of timing-attack resistance?

Can we prove equivalence with a reference implementation?

Verifying crypto

26

An equivalent(?) Curve25519 implementation

TweetNaCl

Joint work with Bernstein, Janssen, and Lange
Re-implementation of NaCl in just 100 Tweets
Aims at auditability

Contains Curve25519, Ed25519 signatures, Salsa20 stream cipher,
Poly1305 authenticator, SHA-512 hash

All written in portable ISO C

>
>
>
>

v

Verifying crypto

http://tweetnacl.cr.yp.to

An equivalent(?) Curve25519 implementation

TweetNaCl

vV v vv

Joint work with Bernstein, Janssen, and Lange
Re-implementation of NaCl in just 100 Tweets
Aims at auditability

Contains Curve25519, Ed25519 signatures, Salsa20 stream cipher,
Poly1305 authenticator, SHA-512 hash

» All written in portable ISO C
> Curve25519 is > 10x slower on Ivy Bridge than speed-optimized

software

Verifying crypto

27

http://tweetnacl.cr.yp.to

An equivalent(?) Curve25519 implementation

TweetNaCl

vV v vv

Joint work with Bernstein, Janssen, and Lange
Re-implementation of NaCl in just 100 Tweets
Aims at auditability

Contains Curve25519, Ed25519 signatures, Salsa20 stream cipher,
Poly1305 authenticator, SHA-512 hash

» All written in portable ISO C

> Curve25519 is > 10x slower on Ivy Bridge than speed-optimized

software

Code available at http://tweetnacl.cr.yp.to

Verifying crypto

27

http://tweetnacl.cr.yp.to

Resources online

» Paper:

http://cryptojedi.org/papers/#verify25519

» Translator, proofs:

http://cryptojedi.org/crypto/#verify25519

» ghasm:

http://cr.yp.to/ghasm.html

Verifying crypto 28

http://cryptojedi.org/papers/#verify25519
http://cryptojedi.org/crypto/#verify25519
http://cr.yp.to/qhasm.html

