
New software speed re
ords for
ryptographi
pairingsMi
hael Naehrig, Ruben Niederhagen, Peter S
hwabeEindhoven University of Te
hnologyJuly 8, 2010HGI-Colloquium, Ruhr-Universität Bo
hum

PairingsA proto
ol designer's point of view
◮ Let G1, G2, and G3 be �nite abelian groups.
◮ A pairing is a bilinear, nondegenerate map

e : G1 ×G2 → G3

New software speed re
ords for
ryptographi
 pairings 2

PairingsA proto
ol designer's point of view
◮ Let G1, G2, and G3 be �nite abelian groups.
◮ A pairing is a bilinear, nondegenerate map

e : G1 ×G2 → G3

◮ DLP should be hard in G1, G2, and G3

New software speed re
ords for
ryptographi
 pairings 2

PairingsA proto
ol designer's point of view
◮ Let G1, G2, and G3 be �nite abelian groups.
◮ A pairing is a bilinear, nondegenerate map

e : G1 ×G2 → G3

◮ DLP should be hard in G1, G2, and G3

◮ Sometimes required: G1 = G2 (type-1 pairing)
◮ Sometimes requires: E�
ient isomorphism G2 → G1 (type-2)
◮ Sometimes required: No e�
ient isomorphism G2 → G1 (type-3)

New software speed re
ords for
ryptographi
 pairings 2

The Tate PairingA mathemati
al/algorithmi
 point of view
◮ Let E be an ellipti

urve over Fq

◮ Let r ∈ N be prime with r | |E(Fq)| and r2 ∤ |E(Fq)|
◮ Let gcd(r, q) = 1 and r ∤ (q − 1)

◮ Let k be the smallest positive integer su
h that r | qk − 1

◮ k is
alled embedding degree of E with respe
t to rThe Tate pairing is a map
Tr : E[r]× E(Fqk)/rE(Fqk)→ F∗qk/(F

∗
qk)

r.

New software speed re
ords for
ryptographi
 pairings 3

The Tate PairingA mathemati
al/algorithmi
 point of viewRepresenting elements of E(Fqk)/rE(Fqk)

◮ Let's assume there is no element of order r2 in E(Fqk)

◮ Then it holds that E(Fqk)/rE(Fqk) ∼= E[r]

New software speed re
ords for
ryptographi
 pairings 4

The Tate PairingA mathemati
al/algorithmi
 point of viewRepresenting elements of E(Fqk)/rE(Fqk)

◮ Let's assume there is no element of order r2 in E(Fqk)

◮ Then it holds that E(Fqk)/rE(Fqk) ∼= E[r]Consider the Tate pairing as a map
Tr : E[r]× E[r]→ F∗qk/(F

∗
qk)

r.

New software speed re
ords for
ryptographi
 pairings 4

The redu
ed Tate PairingA mathemati
al/algorithmi
 point of viewFinding unique representatives in F∗

qk
/(F∗

qk
)r.

◮ Results of the Tate pairing are equivalen
e
lasses
◮ In order to
ompare: Need unique representative
◮ F∗

qk
/(F∗

qk
)r and µr := {x ∈ Fqk | xr = 1} are isomorphi

◮ Group isomorphism is given by exponentiation with qk−1

r

◮ Apply group isomorphism in the end, obtain unique representative
New software speed re
ords for
ryptographi
 pairings 5

The redu
ed Tate PairingA mathemati
al/algorithmi
 point of viewFinding unique representatives in F∗

qk
/(F∗

qk
)r.

◮ Results of the Tate pairing are equivalen
e
lasses
◮ In order to
ompare: Need unique representative
◮ F∗

qk
/(F∗

qk
)r and µr := {x ∈ Fqk | xr = 1} are isomorphi

◮ Group isomorphism is given by exponentiation with qk−1

r

◮ Apply group isomorphism in the end, obtain unique representativeRedu
ed Tate pairing:
er : E[r]× E[r]→ µr

(P,Q) 7→ Tr(P,Q)
qk−1

rNew software speed re
ords for
ryptographi
 pairings 5

The redu
ed Tate Pairing
. . . on prime-order subgroups of E[r]

◮ The Frobenius endomorphism
πq : E[r]→ E[r], (x, y) 7→ (xq , yq)has eigenvalues 1 and q

◮ Eigenspa
e
orresponding to eigenvalue 1 is ker(πq − [1]) = E(Fq)[r]

New software speed re
ords for
ryptographi
 pairings 6

The redu
ed Tate Pairing
. . . on prime-order subgroups of E[r]

◮ The Frobenius endomorphism
πq : E[r]→ E[r], (x, y) 7→ (xq , yq)has eigenvalues 1 and q

◮ Eigenspa
e
orresponding to eigenvalue 1 is ker(πq − [1]) = E(Fq)[r]

◮ Considering pairing on E(Fq)[r] × E(Fq)[r] always yields 1
◮ But: ker(πq − [q]) also has order r

New software speed re
ords for
ryptographi
 pairings 6

The redu
ed Tate Pairing
. . . on prime-order subgroups of E[r]

◮ The Frobenius endomorphism
πq : E[r]→ E[r], (x, y) 7→ (xq , yq)has eigenvalues 1 and q

◮ Eigenspa
e
orresponding to eigenvalue 1 is ker(πq − [1]) = E(Fq)[r]

◮ Considering pairing on E(Fq)[r] × E(Fq)[r] always yields 1
◮ But: ker(πq − [q]) also has order r
◮ Denote ker(πq − [1]) = E(Fq)[r] by G1

◮ Denote ker(πq − [q]) ⊂ E(Fqk) by G2Redu
ed Tate pairing for
ryptography:
G1 ×G2 → µrNew software speed re
ords for
ryptographi
 pairings 6

Towards
omputation of pairings
◮ I still have not said how the Tate pairing Tr is de�ned
◮ General de�nition requires a lot of ba
kground
◮ Mu
h easier for the spe
ial
ase we will
onsider
◮ For the whole story read, e.g., Mi
hael Naehrig's Ph.D. thesis

New software speed re
ords for
ryptographi
 pairings 7

Towards
omputation of pairings
◮ I still have not said how the Tate pairing Tr is de�ned
◮ General de�nition requires a lot of ba
kground
◮ Mu
h easier for the spe
ial
ase we will
onsider
◮ For the whole story read, e.g., Mi
hael Naehrig's Ph.D. thesis
◮ No big surprise: Computation involves arithmeti
 in F∗

qk
and in

E(Fq)

◮ Only feasible for �small enough� k
◮ DLP in F∗

qk
only hard for �large enough� qk

New software speed re
ords for
ryptographi
 pairings 7

Towards
omputation of pairings
◮ I still have not said how the Tate pairing Tr is de�ned
◮ General de�nition requires a lot of ba
kground
◮ Mu
h easier for the spe
ial
ase we will
onsider
◮ For the whole story read, e.g., Mi
hael Naehrig's Ph.D. thesis
◮ No big surprise: Computation involves arithmeti
 in F∗

qk
and in

E(Fq)

◮ Only feasible for �small enough� k
◮ DLP in F∗

qk
only hard for �large enough� qk

◮ Balan
e hardness of DLP in E(Fq) and F∗

qk

◮ But: Random
urves have huge k New software speed re
ords for
ryptographi
 pairings 7

Barreto-Naehrig
urves
◮ Let us
onsider pairings on the 128-bit se
urity level
◮ r should have 256 bits, ideally n = |E(Fq)| is prime and has 256bits, then take r = n

◮ Fqk should have about 3072 bits (NIST), or about 3248 bits(ECRYPT II)
◮ Embedding degree should be 12 or 13 (12× 256 = 3072)

New software speed re
ords for
ryptographi
 pairings 8

Barreto-Naehrig
urves
◮ Let us
onsider pairings on the 128-bit se
urity level
◮ r should have 256 bits, ideally n = |E(Fq)| is prime and has 256bits, then take r = n

◮ Fqk should have about 3072 bits (NIST), or about 3248 bits(ECRYPT II)
◮ Embedding degree should be 12 or 13 (12× 256 = 3072)
◮ Barreto-Naehrig
urves (BN
urves) are
urves over Fp with prime

n = |E(Fp)| and k = 12.
◮ Polynomial parametrization, u ∈ Z:

p = p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1

n = n(u) = 36u4 + 36u3 + 18u2 + 6u+ 1New software speed re
ords for
ryptographi
 pairings 8

Computing pairings over BN
urvesThe redu
ed Tate pairingInput: P ∈ G1, Q ∈ G2, n = (1, nm−1, . . . , n0)2Output: er(P,Q)
R← P
f ← 1for (i← m− 1; i ≥ 0; i−−) doCompute tangent line l at R

R← [2]R
f ← f2l(Q)if (ni = 1) thenCompute line l through P and R

R← R+ P
f ← fl(Q)end ifend forreturn f

pk−1

r New software speed re
ords for
ryptographi
 pairings 9

Computing pairings over BN
urvesThe redu
ed Tate pairingInput: P ∈ G1, Q ∈ G2, n = (1, nm−1, . . . , n0)2Output: er(P,Q)
R← P
f ← 1for (i← m− 1; i ≥ 0; i−−) doCompute tangent line l at R,
ompute l(Q), R← [2]R

f ← f2l(Q)if (ni = 1) thenCompute line l through P and R,
ompute l(Q), R← R+ P
f ← fl(Q)end ifend forreturn f

pk−1

r New software speed re
ords for
ryptographi
 pairings 9

Loop shortening
◮ �Miller loop� goes over bits of n
◮ n has about 256 bits,
an we use shorter loop?

New software speed re
ords for
ryptographi
 pairings 10

Loop shortening
◮ �Miller loop� goes over bits of n
◮ n has about 256 bits,
an we use shorter loop?
◮ Many ideas, leading to eta, ate, r-ate, optimal ate pairing
◮ Shortest loop: optimal ate and r-ate pairing
◮ Looplength for BN-
urves: 6u+ 2, about 66 bits
◮ In the following:
onsider optimal ate aopt

New software speed re
ords for
ryptographi
 pairings 10

Loop shortening
◮ �Miller loop� goes over bits of n
◮ n has about 256 bits,
an we use shorter loop?
◮ Many ideas, leading to eta, ate, r-ate, optimal ate pairing
◮ Shortest loop: optimal ate and r-ate pairing
◮ Looplength for BN-
urves: 6u+ 2, about 66 bits
◮ In the following:
onsider optimal ate aopt
◮ Downside: Requires swapping arguments,
urve arithmeti
 in E(Fqk)

◮ Reason: Shortening based on Frobenius endomorphism, no e�e
t in
E(Fp)

◮ Two additional line-fun
tion
omputations after the loop
New software speed re
ords for
ryptographi
 pairings 10

Using twists
◮ Arithmeti
 in E(Fqk) is very mu
h e�ort (re
all: k = 12!)
◮ BN
urve E has twist E′ de�ned over Fp2

◮ E′(Fp2) has a subgroup of order n,
all it G′

2

◮ There is an e�
ient isomorphism from G′

2
to G2

◮ Idea: Perform
urve arithmeti
 on G′

2

◮ Compute line-fun
tion
oe�
ients from points on G′

2

◮ Requires arithmeti
 only on Fp2

New software speed re
ords for
ryptographi
 pairings 11

Resulting algorithmInput: Q′ ∈ G′

2, P ∈ G1, l = 6u+ 2 = (1, lm−1, . . . , l0)2Output: aopt(Q,P)
R′ ← Q′

f ← 1for (i← m− 1; i ≥ 0; i−−) doCompute tangent line l at R,
ompute l(P), R′ ← [2]R′

f ← f2l(P)if (li = 1) thenCompute line l through Q and R,
ompute l(P), R′ ← R′ +Q′

f ← fl(P)end ifend forTwo �nal linefun
tion additions modifying freturn f
pk−1

r New software speed re
ords for
ryptographi
 pairings 12

Computing the �nal exponentiationThe easy part
◮ De
ompose exponent p12

−1

n
in (p6 − 1)(p2 + 1)((p4 − p2 + 1)/n)

◮ Exponentiation with p6 − 1 is p6 Frobenius and one inversion
◮ Exponentiation with p2 + 1 is p2 Frobenius and one multipli
ation
◮ (p6 − 1)(p2 + 1) is
alled the �easy part�
◮ After the easy part: Inversion is
onjugation, squaring also faster

New software speed re
ords for
ryptographi
 pairings 13

Computing the �nal exponentiationThe hard part
◮ Remaining part: (p4 − p2 + 1)/n

◮ Algorithm by S
ott, Benger, Charlemagne, Perez and Ka
hisa
◮ Idea: Exploit polynomial parametrization of p
◮ Requires 3 exponentiations with u

◮ Some more work: 13 multipli
ations, 4 squarings in Fpk

New software speed re
ords for
ryptographi
 pairings 14

The Hamming-weight of u
◮ In the Miller loop, number of additions depends on Hamming-weightof 6u+ 2

◮ We
an use NAF representation for the exponent
New software speed re
ords for
ryptographi
 pairings 15

The Hamming-weight of u
◮ In the Miller loop, number of additions depends on Hamming-weightof 6u+ 2

◮ We
an use NAF representation for the exponent
◮ Hard part of �nal exponentiation: 3 exponentiations with u

◮ Can use addition-subtra
tion
hain
New software speed re
ords for
ryptographi
 pairings 15

The Hamming-weight of u
◮ In the Miller loop, number of additions depends on Hamming-weightof 6u+ 2

◮ We
an use NAF representation for the exponent
◮ Hard part of �nal exponentiation: 3 exponentiations with u

◮ Can use addition-subtra
tion
hain
=⇒ Choi
e of u has huge impa
t on performan
e

New software speed re
ords for
ryptographi
 pairings 15

An implementor's view
◮ All ellipti
-
urve arithmeti
 is on E′(Fp2)

◮ Evaluating line fun
tions at P yields elements of Fp12

◮ Evaluation means multipli
ation Fp2 × Fp

◮ Fp12 is extension of Fp2

New software speed re
ords for
ryptographi
 pairings 16

An implementor's view
◮ All ellipti
-
urve arithmeti
 is on E′(Fp2)

◮ Evaluating line fun
tions at P yields elements of Fp12

◮ Evaluation means multipli
ation Fp2 × Fp

◮ Fp12 is extension of Fp2

=⇒ We
an see the whole
omputation as sequen
e of operations in Fp2Let's make Fp2 arithmeti
 as fast as possible
New software speed re
ords for
ryptographi
 pairings 16

Modular arithmeti
 in Fp

◮ Re
all that p has a spe
ial shape
p = p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1

◮ Can we exploit this spe
ial shape for e�
ient modular arithmeti
?
◮ Fan, Ver
auteren, Verbauwhede (2009) demonstrate that the answeris �yes� for hardware implementations
◮ More e�
ient be
ause it uses spe
ially sized multipliers
◮ How about software implementations?

New software speed re
ords for
ryptographi
 pairings 17

Polynomial representation(Inspired by Bernstein's
urve25519 paper)Consider the ring R = Z[x] ∩ Z[
√
6ux] and the element

P = 36u4x4 + 36u3x3 + 24u2x2 + 6ux+ 1

= (
√
6ux)4 +

√
6(
√
6ux)3 + 4(

√
6ux)2 +

√
6(
√
6ux) + 1.Then P (1) = p.

New software speed re
ords for
ryptographi
 pairings 18

Polynomial representation(Inspired by Bernstein's
urve25519 paper)Consider the ring R = Z[x] ∩ Z[
√
6ux] and the element

P = 36u4x4 + 36u3x3 + 24u2x2 + 6ux+ 1

= (
√
6ux)4 +

√
6(
√
6ux)3 + 4(

√
6ux)2 +

√
6(
√
6ux) + 1.Then P (1) = p. Represent f ∈ Fp by a polynomial F ∈ R as

F = f0 + f1 ·
√
6(
√
6ux) + f2 · (

√
6ux)2 + f3 ·

√
6(
√
6ux)3

= f0 + f1 · (6u)x+ f2 · (6u2)x2 + f3 · (36u3)x3su
h that F (1) = f , or
f = f0 + 6uf1 + 6u2f2 + 36u3f3, fi ∈ Z

New software speed re
ords for
ryptographi
 pairings 18

Multipli
ation and degree redu
tion
Polynomial multipli
ation of f and g yields 7
oe�
ients t0, . . . , t6Redu
tion mod p to r0, . . . , r3:
r0 ← t0 − t4 + 6t5 − 2t6
r1 ← t1 − t4 + 5t5 − t6
r2 ← t2 − 4t4 + 18t5 − 3t6
r3 ← t2 − t4 + 2t5 + 3t6

New software speed re
ords for
ryptographi
 pairings 19

Four
oe�
ients are not enough
◮ 256-bit numbers in 4
oe�
ients: Ea
h
oe�
ient 64 bits
◮ Coe�
ients do not have exa
tly the same size
◮ Small multiples in the redu
tion are larger than 128 bits
◮ Easy to realize in hardware, not in software
◮ For software we need more
oe�
ients

New software speed re
ords for
ryptographi
 pairings 20

Four
oe�
ients are not enough
◮ 256-bit numbers in 4
oe�
ients: Ea
h
oe�
ient 64 bits
◮ Coe�
ients do not have exa
tly the same size
◮ Small multiples in the redu
tion are larger than 128 bits
◮ Easy to realize in hardware, not in software
◮ For software we need more
oe�
ients
◮ Idea: Consider u = v3, use 12
oe�
ients f0, . . . , f11

f =f0 + 6vf1 + 6v2f2 + 6v3f3 + 6v4f4 + 6v5f5 + 6v6f6+

36v7f7 + 36v8f8 + 36v9f9 + 36v10f10 + 36v11f11

◮ v has about 21 bits, produ
ts have about 42 bits
◮ Double-pre
ision �oats have 53-bit mantissa
◮ Use double-pre
ision �oats, still some spa
e to add up
oe�
ientsand
ompute small multiples New software speed re
ords for
ryptographi
 pairings 20

Redu
ing
oe�
ients
◮ At some point the
oe�
ients will over�ow (be
ome larger than 53bits)
◮ Need to do
oe�
ient redu
tion (
arry)
◮ Carry from f0 to f1

c← round(f0/6v)
f0 ← f0 − c · 6v
f1 ← f1 + c

◮ Carry from f1 to f2

c← round(f1/v)
f1 ← f1 − c · v
f2 ← f2 + c

◮ f0 ∈ [−3v, 3v], f1 ∈ [−v/2, v/2]
◮ Carry from f11 goes to f0, f3, f6, and f9New software speed re
ords for
ryptographi
 pairings 21

Implementation on a Core 2 pro
essor
◮ Use fast SIMD instru
tions mulpd and addpd
◮ 2 multipli
ations/ 2 additions in one instru
tion
◮ 1 mulpd and 1 addpd (and one mov) per
y
le

New software speed re
ords for
ryptographi
 pairings 22

Implementation on a Core 2 pro
essor
◮ Use fast SIMD instru
tions mulpd and addpd
◮ 2 multipli
ations/ 2 additions in one instru
tion
◮ 1 mulpd and 1 addpd (and one mov) per
y
le
◮ Problem: Fp arithmeti
 requires a lot of shu�eling,
ombining et
.

New software speed re
ords for
ryptographi
 pairings 22

Implementation on a Core 2 pro
essor
◮ Use fast SIMD instru
tions mulpd and addpd
◮ 2 multipli
ations/ 2 additions in one instru
tion
◮ 1 mulpd and 1 addpd (and one mov) per
y
le
◮ Problem: Fp arithmeti
 requires a lot of shu�eling,
ombining et
.
◮ Solution: Implement arithmeti
 in Fp2

◮ Use s
hoolbook multipli
ation in Fp2 yielding 4 multipli
ations in Fp

◮ Perform 2 multipli
ations in parallel using SIMD instru
tions
New software speed re
ords for
ryptographi
 pairings 22

Implementation on a Core 2 pro
essor
◮ Use fast SIMD instru
tions mulpd and addpd
◮ 2 multipli
ations/ 2 additions in one instru
tion
◮ 1 mulpd and 1 addpd (and one mov) per
y
le
◮ Problem: Fp arithmeti
 requires a lot of shu�eling,
ombining et
.
◮ Solution: Implement arithmeti
 in Fp2

◮ Use s
hoolbook multipli
ation in Fp2 yielding 4 multipli
ations in Fp

◮ Perform 2 multipli
ations in parallel using SIMD instru
tions
◮ Fp polynomial redu
tion after Fp2 polynomial redu
tion
◮ Only two Fp polynomial redu
tion and two
oe�
ient redu
tion permultipli
ation in Fp2

◮ Those redu
tions also done in SIMD wayNew software speed re
ords for
ryptographi
 pairings 22

Dete
ting and avoiding over�ows
◮ After ea
h multipli
ation we need to redu
e
oe�
ients
◮ Sometimes also before a multipli
ation after several additions
◮ Problem: How to dete
t where?
◮ Need to dete
t over�ow in the worst
ase

New software speed re
ords for
ryptographi
 pairings 23

Dete
ting and avoiding over�ows
◮ After ea
h multipli
ation we need to redu
e
oe�
ients
◮ Sometimes also before a multipli
ation after several additions
◮ Problem: How to dete
t where?
◮ Need to dete
t over�ow in the worst
ase
◮ Implement software in C
◮ Repla
e double with C++
lass Che
kDouble
◮ Perform arithmeti
 on values and in parallel on worst-
ase values
◮ Abort at over�ow (allows ba
ktra
e in debugger)

New software speed re
ords for
ryptographi
 pairings 23

Dete
ting and avoiding over�ows
◮ After ea
h multipli
ation we need to redu
e
oe�
ients
◮ Sometimes also before a multipli
ation after several additions
◮ Problem: How to dete
t where?
◮ Need to dete
t over�ow in the worst
ase
◮ Implement software in C
◮ Repla
e double with C++
lass Che
kDouble
◮ Perform arithmeti
 on values and in parallel on worst-
ase values
◮ Abort at over�ow (allows ba
ktra
e in debugger)
◮ Re-implement algorithms in assembly (qhasm)
◮ Would be good to have over�ow
he
ks in assemblyNew software speed re
ords for
ryptographi
 pairings 23

Parameters of our implementation
◮ We use v = 1868033, u = v3 = 6518589491078791937

◮ 18 addition/subtra
tion steps in the Miller loop
◮ 12 multipli
ations for exponentiation with u

◮ p is
ongruent 3 mod 4,
onstru
t Fp2 as Fp[X]/(X2 + 1)

New software speed re
ords for
ryptographi
 pairings 24

ResultsPerforman
e of d
lxvi software
◮ Cy
les on an Intel Core 2 Quad Q6600 (65 nm): 4,387,491
y
les
◮ Cy
les on an Intel Core 2 Quad Q9550 (45 nm): 4,390,004
y
les

New software speed re
ords for
ryptographi
 pairings 25

ResultsPerforman
e of d
lxvi software
◮ Cy
les on an Intel Core 2 Quad Q6600 (65 nm): 4,387,491
y
les
◮ Cy
les on an Intel Core 2 Quad Q9550 (45 nm): 4,390,004
y
les
◮ Cy
les on an Intel Xeon E5504: 4,448,504
y
les
◮ Cy
les on an AMD Phenom II X4 955: 4,774,059
y
les

New software speed re
ords for
ryptographi
 pairings 25

ResultsPerforman
e of d
lxvi software
◮ Cy
les on an Intel Core 2 Quad Q6600 (65 nm): 4,387,491
y
les
◮ Cy
les on an Intel Core 2 Quad Q9550 (45 nm): 4,390,004
y
les
◮ Cy
les on an Intel Xeon E5504: 4,448,504
y
les
◮ Cy
les on an AMD Phenom II X4 955: 4,774,059
y
les
◮ Comparison: Fastest published pairing ben
hmark before:10,000,000
y
les on a Core 2 by Hankerson, Menezes, S
ott, 2008
◮ Unpublished: 7,850,000
y
les on a Core 2 T5500 (S
ott 2010)

New software speed re
ords for
ryptographi
 pairings 25

Even faster pairingsNew paper by Jean-Lu
 Beu
hat, Jorge Enrique González Díaz, ShigeoMitsunari, Eiji Okamoto, Fran
is
o Rodríguez-Henríquez, and TadanoriTeruya:�High-Speed Software Implementation of the Optimal Ate Pairing overBarreto-Naehrig Curves�Claims: 2,630,000
y
les on a Core i7, 3,320,000
y
les on a Core 2
New software speed re
ords for
ryptographi
 pairings 26

Even faster pairingsNew paper by Jean-Lu
 Beu
hat, Jorge Enrique González Díaz, ShigeoMitsunari, Eiji Okamoto, Fran
is
o Rodríguez-Henríquez, and TadanoriTeruya:�High-Speed Software Implementation of the Optimal Ate Pairing overBarreto-Naehrig Curves�Claims: 2,630,000
y
les on a Core i7, 3,320,000
y
les on a Core 2Cy
le
ounts on a Core 2 Q6600 d
lxvi [BGM+10℄multipli
ation in Fp2 ∼ 656 ∼ 590squaring in Fp2 ∼ 386 ∼ 481optimal ate pairing ∼ 4, 390, 000 ∼ 3512000

New software speed re
ords for
ryptographi
 pairings 26

Why is our software slower?
[BGM+10℄ uses Montgomery arithmeti
 in Fp and fast 64× 64-bitinteger multiplier.

New software speed re
ords for
ryptographi
 pairings 27

Why is our software slower?
[BGM+10℄ uses Montgomery arithmeti
 in Fp and fast 64× 64-bitinteger multiplier.Three reasons why we are slower1. Restri
ted
hoi
e of u: More addition steps in Miller loop andexponentiation with u more expensive

New software speed re
ords for
ryptographi
 pairings 27

Why is our software slower?
[BGM+10℄ uses Montgomery arithmeti
 in Fp and fast 64× 64-bitinteger multiplier.Three reasons why we are slower1. Restri
ted
hoi
e of u: More addition steps in Miller loop andexponentiation with u more expensive2. Coe�
ient redu
tions take quite a bit of time (∼ 450, 000
y
les)

New software speed re
ords for
ryptographi
 pairings 27

Why is our software slower?
[BGM+10℄ uses Montgomery arithmeti
 in Fp and fast 64× 64-bitinteger multiplier.Three reasons why we are slower1. Restri
ted
hoi
e of u: More addition steps in Miller loop andexponentiation with u more expensive2. Coe�
ient redu
tions take quite a bit of time (∼ 450, 000
y
les)3. Multipli
ation in F22 is slower (squaring is faster)

New software speed re
ords for
ryptographi
 pairings 27

Whi
h approa
h is better?Highly depends on the ar
hite
ture
◮ On the Core i7: Very
learly Montgomery arithmeti
 [BGM+10℄
◮ On the AMD K11: again [BGM+10℄
◮ On the Core 2:
urrently [BGM+10℄, but . . . let's see

New software speed re
ords for
ryptographi
 pairings 28

Whi
h approa
h is better?Highly depends on the ar
hite
ture
◮ On the Core i7: Very
learly Montgomery arithmeti
 [BGM+10℄
◮ On the AMD K11: again [BGM+10℄
◮ On the Core 2:
urrently [BGM+10℄, but . . . let's see
◮ Other mi
roar
hite
tures or ar
hite
tures?Mainly depends on performan
e of double-pre
ision �oating-pointmultipli
ation/addition vs. integer multipli
ation/addition
◮ Our approa
h is the fastest approa
h using double-pre
ision�oating-point arithmeti

New software speed re
ords for
ryptographi
 pairings 28

Referen
es
Paper: http://
ryptojedi.org/users/peter/#d
lxvi(has an error, will be updated soon)Software: http://
ryptojedi.org/
rypto/#d
lxvi(publi
 domain)

New software speed re
ords for
ryptographi
 pairings 29

http://cryptojedi.org/users/peter/#dclxvi
http://cryptojedi.org/crypto/#dclxvi

