
Exponentiating in Pairing Groups

Michael Naehrig

Microsoft Research
mnaehrig@microsoft.com

joint work with

Joppe W. Bos and Craig Costello

SIAM AG13, Fort Collins
MS5 - Cryptography and Number Theory

1 August 2013

Pairings

e : G1 × G2 → GT

I G1 and G2 are groups (of points on an elliptic curve),

I GT is a (multiplicative) group (of finite field elements),

I all groups have prime order r ,

I e is bilinear, non-degenerate, efficiently computable

Pairing groups

e : G1 × G2 → GT

I G1 = E (Fp)[r], G2 ⊆ E (Fpk)[r],

I E/Fp: elliptic curve, e.g. in short Weierstrass form

E : y2 = x3 + ax + b,

I r prime, r | #E (Fp), char(Fp) > 3,

I with small (even) embedding degree k > 1,

r | pk − 1, r - pi − 1 for i < k,

I GT = µr ⊆ F∗
pk

group of r -th roots of unity,

Optimal ate pairings

Typical setting at higher security levels:

e : G ′2 × G1 → GT , (Q ′,P) 7→ gQ′(P)
pk−1

r

I G1 = E (Fp)[r], G ′2 = E ′(Fpe)[r], GT = µr ⊆ F∗
pk

,

I E ′/Fpe : twist of E of degree d | k , e = k/d , r | #E ′(Fpe),

I gQ′ : function depending on Q ′ with coefficients in F∗
pk

.

The pairing explosion

I The big bilinear bang: [Jou00], [SOK00], [BF01] . . .
. . .

PBC universe still expanding: . . . [2013/413],[2013/414] . . .

I Secure bilinear maps would have been welcomed by
cryptographers regardless of where they came from

Ben Lynn 2007:

“. . . that pairings come from the realm of algebraic geometry (on
curves) is a happy coincidence”

I Why so happy?
I Already received a huge amount of optimization
I Much more fun than traditional crypto primitives
I Discrete log problem on curves already under the microscope

ECC and PBC: a symbiotic relationship

Many ECC optimisations quickly transferred to pairings, e.g.

I avoiding inversions

I projective space

I fast primes (supersingular curves)

I . . .

Pairings helped ECC too, e.g.

I Galbraith-Scott 2008: fast exponentiation on pairing groups
using efficiently computable endomorphisms

I i.e. Frobenius useful over extension fields

I Galbraith-Lin-Scott (GLS) 2008: fast ECC over extension
fields using eff. comp. endomorph.

Non-Weierstrass models for pairings. . . not so much

I A very successful ECC optimization: non-Weierstrass curves

e.g. Montgomery, Hessian, Jacobi quartics, Jacobi
intersections, Edwards, twisted Edwards, . . . (see EFD)

I Not so successful in PBC . . . why?

P + Q = R , div(f) = (P) + (Q)− (R)− (O)

In ECC computations we only need points

get R as fast as possible

In pairing computations we need points and functions

get R and f as fast as possible

Non-Weierstrass faster for ECC. . . not for PBC

Getting R from P and Q: much faster on Edwards (and others)
Getting R, f from P and Q: Weierstrass preferable

This work: focus only on the scalar multiplications

Alternative models not faster for pairing, but can they be used to
enhance scalar multiplications in pairing groups???

I maybe even bigger speedups for pairing exponentiations

I high dimensional GLV/GLS (# doublings < # additions)

I for additions, Weierstrass coordinates suck most,
e.g. y2 = x3 + b - Weierstrass add. ≈ 17m, Edwards ≈ 9m !!!

I curve models in pairings very minor improvement at best, but
in scalar mulplications big savings possible!

Pairing-based protocols in practice

I pairing computation involves three groups e : G1 ×G2 → GT

I often many more standalone operations in any or all of G1,
G2, GT than pairing(s) . . . can be orders of magnitude more!

Utilizing non-Weierstrass models

I J = Jacobi quartic H = Hessian E = twisted Edwards

I We always have j = 0 in this work (e.g. H has d = 0)

Pairing on Scalar mults on iff

J : y 2 = dx4 + 2ax2 + 1

τ−1

ss

2 | #W

W : y 2 = x3 + b

τ

33

τ ..

τ

''

H : x3 + y 3 + c = 0
τ−1nn 3 | #W

E : ax2 + y 2 = 1 + dx2y 2

τ−1

gg

4 | #W∗

I Note ∗: field K has #K ≡ 1 mod 4, then 4 | E is enough,
otherwise need point of order 4 for E (cheers anon. reviewer)

The power of the sextic twist for G2

I Elements in G2 are points over the extension field ⊂ E (Fpk)
I k times larger to store
I m times more costly to work over Fpk , where k � m ≤ k2 !!!

I Can use group isomorphic to G2, which is on a different curve:

G′2 ⊆ E ′(Fpk/d)

I E ′ is called the twisted curve
I elements compressed by factor d
I m times faster to work with, where d � m ≤ d2

Sextic twists: d = 6 is biggest possible for elliptic curves

I only possible if 6 | k and j = 0 (i.e. y2 = x3 + b)
I luckily all the best families with 6 | k have y2 = x3 + b
I E ′/Fpk/d : y2 = x3 + b′, and Ψ: E ′ → E to map G′2 ↔ G2

GLV/GLS

Galbraith-Scott 2008

I G1 ⊆ E (Fp) : y2 = x3 + b

- φ : (x , y) 7→ (ζx , y), ζ3 = 1 ∈ Fp

- φ(P) = [λφ]P for λ2φ + λφ + 1 ≡ 0 mod r
- gives 2-dimensional (GLV) decomposition on G1

I G′2 ⊆ E ′(Fpe) : y2 = x3 + b′

- ψ = Ψ · πp ·Ψ−1
- ψ(P) = [λψ]P for Φk(λψ) ≡ 0 mod r
- gives ϕ(k)-dimensional (GLS) decomposition on G′2

GLV/GLS

I [s]P starts by computing φ(P) or ψi (P) for 1 ≤ i ≤ ϕ(k)− 1

I decompose [s]P =
∑ϕ(k)−1

i=0 [si]Pi by finding a vector close to
(s, 0) or (s, 0, . . . , 0) in the GLV/GLS lattices

Bφ =

(
r 0

−λφ 1

)
; Bψ =


r 0 . . . 0
−λψ 1 . . . 0

...
...

. . .
...

−λϕ(k)−1ψ 0 . . . 1

 .

I all si are much shorter than s

I compute [s]P =
∑ϕ(k)−1

i=0 [si]Pi by multi-exponentiation

Mapping back and forth to W

I ideally we’d define (elements of) G1 or G′2 on fastest model

I requires endomorphisms to transfer favorably to other model,
but only GLV morphism φ on H : x3 + y3 + c = 0 does /

The general strategy

We apply φ or ψ (repeatedly) on W, map across to J , H or E for
the rest of the routine, and come back to W at the end

Our goal

sec. level family-k pairing e exp. in G1 exp. in G2 exp. in GT

128-bit BN-12 ? ?? ?? ?

192-bit
BLS-12 ? ?? ?? ?
KSS-18 ? ?? ?? ?

256-bit BLS-24 ? ?? ?? ?

I fill in the above table using state-of-the-art techniques for
exponentiations and pairings

I give protocol designers a good idea of the ratios of
exponentiation costs in

G1 : G2 : GT : e

I no speed records (no assembly)

I find optimal curve models in all ?? cases

Points of small order

Prop 1. BN (k = 12): E (Fp) and E ′(Fp2) do not contain points
of order 2, 3 or 4.

Prop 2. BLS (k = 12): If p ≡ 3 mod 4, E (Fp) contains a point of
order 3 and can contain a point of order 2, but not 4.
E ′(Fp2) does not contain a point of order 2, 3 or 4.

Prop 3. KSS (k = 18): E (Fp) does not contain a point of order
2, 3 or 4.
E ′(Fp3) contains a point of order 3 but none of order 2 or 4.

Prop 4. BLS (k = 24): If p ≡ 3 mod 4, E (Fp) can contain points
of order 2 or 3 (although not simultaneously), but not 4.
E ′(Fp4) can contain a point of order 2, but none of order 3 or 4.

Available models

G1 G2

family-k algorithm models avail. algorithm models avail.

BN-12 2-GLV W 4-GLS W
BLS-12 2-GLV H,J ,W 4-GLS W
KSS-18 2-GLV W 6-GLS H,W
BLS-24 2-GLV H,J ,W 8-GLS E ,J ,W

model/ DBL ADD MIX AFF

coords cost cost cost cost

W / Jac. 72,5,0,14 1611,5,0,13 117,4,0,14 64,2,0,12

J / ext. 91,7,1,12 137,3,3,19 126,3,3,18 115,3,3,18

H / proj. 76,1,0,11 1212,0,0,3 1010,0,0,3 88,0,0,3

E / ext. 94,4,1,7 109,0,1,7 98,1,0,7 87,0,1,7

I operation counts don’t/can’t assume small constants like ECC

Best models. . .

G1 G′2
family-k algorithm models avail. algorithm models avail.

BN-12 2-GLV W 4-GLS W
BLS-12 2-GLV Hessian (1.23x) 4-GLS W
KSS-18 2-GLV W 6-GLS Hessian (1.11x)
BLS-24 2-GLV Hessian (1.19x) 8-GLS twisted Edwards (1.16x)

model/ DBL ADD MIX AFF

coords cost cost cost cost

W / Jac. 72,5,0,14 1611,5,0,13 117,4,0,14 64,2,0,12

J / ext. 91,7,1,12 137,3,3,19 126,3,3,18 115,3,3,18

H / proj. 76,1,0,11 1212,0,0,3 1010,0,0,3 88,0,0,3

E / ext. 94,4,1,7 109,0,1,7 98,1,0,7 87,0,1,7

I for BLS k = 12 and BLS k = 24, define G1 ⊂ H/Fp

(modify pairing to include initial conversion to W)

I for KSS k = 18 and BLS k = 24, G2 ⊂ W/Fp, but τ to H, E
after ψ’s are computed, and τ−1 to come back to W at end

Results

Benchmark results (in millions (M) of clock cycles Intel Core i7-3520M).

sec. level family-k pairing e exp. in G1 exp. in G2 exp. in GT

128-bit BN-12 7.0 0.9 1.8 3.1

192-bit
BLS-12 47.2 4.4 10.9 17.5
KSS-18 63.3 3.5 9.8 15.7

256-bit BLS-24 115.0 5.2 27.6 47.1

I state-of-the-art algorithms
(optimal ate, lazy reduction, cyclotomic squarings, etc.)

I not rivaling speed records, but hope that G1 : G2 : GT : e
ratios stay similar

I should give protocol designers a good idea of ratios

I what’s best for 192-bit security (match protocol to family)

