
Verifying Curve25519 Software

Yu-Fang Chen1, Chang-Hong Hsu2, Hsin-Hung Lin3, Peter Schwabe4, Ming-Hsien Tsai1,
Bow-Yaw Wang1, Bo-Yin Yang1, and Shang-Yi Yang1 ?

1 Institute of Information Science
Academia Sinica

128 Section 2 Academia Road, Taipei 115-29, Taiwan
yfc@iis.sinica.edu.tw, mhtsai208@gmail.com, bywang@iis.sinica.edu.tw, by@crypto.tw,

ilway25@crypto.tw
2 University of Michigan, Ann Arbor, USA

hsuch@umich.edu
3 Faculty of Information Science and Electrical Engineering

Kyushu University
744, Motoka, Nishi-ku, Fukuoka-Shi, Fukuoka, 819-0395, Japan

h-lin@ait.kyushu-u.ac.jp
4 Radboud University Nijmegen

Digital Security Group
PO Box 9010, 6500GL Nijmegen, The Netherlands

peter@cryptojedi.org

Abstract. This paper presents results on formal verification of high-speed cryptographic soft-
ware. We consider speed-record-setting hand-optimized assembly software for Curve25519 elliptic-
curve key exchange in [11]. Two versions for different microarchitectures are available. We suc-
cessfully verify the core part of computation, and reproduce a bug in a previously published
edition. An SMT solver for the bit-vector theory is used to establish almost all properties. Re-
maining properties are verified in a proof assistant. We also exploit the compositionality of Hoare
logic to address the scalability issue. Essential differences between both versions of the software
are discussed from a formal-verification perspective.

1 Introduction

Cryptography is the backbone of modern information security. Implementations of crypto-
graphic primitives now form key software libraries which are run all the time, everywhere,
by all kind of computers big and small. It makes sense to optimize crypto software at the
assembly level because repetitive portions of programs are tiny (e.g., the inner loop of AES
or Advanced Encryption Standard which encodes terabytes every day has but a few lines).
Inefficiency may also translate directly into insecurity, by forcing a scale-down of the primi-
tive due to usability concerns [18, Sec. 9, p.5]. Finally, information leaks such as dependency
of execution time on secret data violates the model of security, and such leaks are easier to
avoid with hand-crafted assembly instructions. Keys in earlier Linux kernel disk encryption
can leak in 65ms [31,33] due to such timing attacks.

It is important that critical software components in any domain be correct, and the cost
of failure for crypto libraries is uniquely magnified further by users being adversarial – i.e.,
whereas bugs are stumbled upon accidentally in normal use for most software, attackers

? This work was supported by the National Science Foundation under grant 1018836 and by the Netherlands
Organisation for Scientific Research (NWO) through Veni 2013 project 13114. Permanent ID of this doc-
ument: 55ab8668ce87d857c02a5b2d56d7da38. Date: 2014.04.28.; it was supported by the Academia Sinica
Institute of Information Science under BY’s Specialty Project and Career Advancement Award.

routinely seek them out and exploit them to filch secrets [16]. Hand-crafted highly optimized
assembly makes thorough code auditing extremely tedious and time consuming. It would be
ideal if one could take such a cryptographic library and formally verify it to be correct (and
even free of instructions which might time differently depending on secret data).

In this paper, we report results on verifying the correctness of such an implementation
for the Curve25519 elliptic-curve Diffie-Hellman key-exchange protocol [10], which had ini-
tially set speed records for key exchange at the 128-bit security level for 32-bit Intel proces-
sors. Cryptography on this curve has since become something of a reference point for the
“high-speed-crypto” community, having seen highly optimized implementations for diverse
architectures, including the Cell Broadband Engine and the ARM Cortex-A8 [19,14].

Curve25519 has also seen wide adoption from the applied-security community, includ-
ing Tor [32] (switching from RSA-1024 for speed and security [27]!), Apple’s iOS operating
system [5], the Networking and Cryptography library (NaCl) [13], and the latest version of
OpenSSH [1]. In addition, it is being considered by an IETF draft [25] for inclusion into TLS
(https).

New record speeds for standard 64-bit Intel and AMD processors were set by Gaudry
and Thomé [22] and later by Bernstein, Duif, Lange, Schwabe, and Yang [11,12], currently
still the fastest Curve25519 implementation on 64-bit Intel and AMD processors. This speed
record holder (without conditional branches or secret-index table look-ups) is the target for
verification in this paper.

To achieve our goals, we propose a methodology that integrates compositional reasoning,
SMT solvers, and proof assistants. Elliptic-curve cryptography performs arithmetic operations
in large finite fields. Any verification has to analyze tens of non-linear arithmetic operations on
values with hundreds of bits. Despite significant developments in the past decade, such tasks
are still infeasible for SMT solvers to verify automatically. Proof assistants, on the other hand,
require significant human guidance. Analyzing thousands of low-level assembly instructions
is perhaps too inhumane for average enthusiasts.

We attempt to get the best out of these techniques in our integrated methodology. Ap-
plying the compositional proof rule in Hoare logic, we divide low-level implementations of
cryptographic software into parts. The SMT solver Boolector is used to establish low-level
properties of each part automatically. For instance, it is very feasible to verify automatically
that instructions are free of overflow, although it can be extremely difficult to prove that
the same instructions perform modular multiplication over a large finite field. After low-level
properties are established, we use the proof assistant Coq to verify high-level arithmetic
properties about cryptographic software. Thanks to SMT solvers, it is not needed to show
manually that low-level properties such as free-of-overflow do not occur. Proof assistants can
focus on algebraic properties such as modular congruence. Human efforts are thus significantly
reduced.

In short, we propose a hybrid methodology that is more scalable than pure SMT solving
and theorem proving. With our methodology, we have verified the Montgomery ladder step of
a speed-record-holding implementation of the widely used Curve25519 key exchange protocol.
The Montgomery ladder step consists of 1277 and 1383 low-level instructions in the radix-
264 and radix-251 implementations respectively. To the best of our knowledge, we believe this
work is the first on formal verification of the core computation of manually optimized low-level
implementations for a real-world cryptographic protocol.

2

Related work. In [3], a SmartMIPS (a superclass of MIPS32) implementation for a pseudorandom-
number generator is formally proved to be cryptographically secure with the proof assistant
Coq. The authors adopt the formalization of MIPS32 instructions in [2] and give a for-
mal reduction proof for their own implementation of the pseudorandom number generator.
We combine automatic SMT solvers and proof assistants to verify the core computation of
a record-holding implementation of a real-world security protocol. We do not address the
security issues in this work, but the scale and impact can be far more significant.

The project CryptVer aims to verify implementations of cryptographic algorithms written
in an efficient high-level language [23]. Their approach is to specify cryptographic algorithms
and implement them by formal deductive compilation. In contrast, we formally verify manu-
ally optimized low-level implementations for cryptographic software. Equivalence checking of
low-level code for digital signal processing is discussed in [20]. The authors compare imple-
mentations with golden models. We verify the correctness of low-level code directly.

Another approach to formally verified cryptographic software are special-domain compil-
ers. A recent example of this is [4], where Almeida et al. introduce security-aware compilation
of a subset of the C programming language.

As stated before, cryptographic software must be more than correct, it must avoid infor-
mation leaks against its security model, i.e. be “side-channel resistant”. As a consequence,
countermeasures against side-channel attacks have also been formalized. For example, Bayrak
et al. [7] use SAT solving for the automated verification of power-analysis countermeasures.
Molnar et al. [29] describe a tool for static analysis for control-flow vulnerabilities and their
automatic removal.

Organization of this paper. Section 2 gives the necessary background on Curve25519
elliptic-curve Diffie-Hellman key exchange. Section 3 reviews the two different approaches for
assembly implementations of arithmetic in the field F2255−19 used in [11]. Section 4 gives an
overview of the tools we use for verification. Section 5 details our methodology. Section 6
presents and discusses our results. We conclude the paper and point to future work in Sec-
tion 7.

2 Curve25519

Cryptography based on the arithmetic on elliptic curves was proposed independently by Miller
and Koblitz [26,28]. We only give a very brief introduction to elliptic-curve cryptography here;
please refer to (for example) [6,24] for more information.

Let Fq be the finite field with q elements. For a1, a2, a3, a4, a6 ∈ Fq, an equation of the form
E : y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6 defines an elliptic curve E over Fq (with certain
conditions, cf. [24, Chapter 3]). The set of points (x, y) ∈ Fq × Fq together with a “point at
infinity” form a group of size ` ≈ q, usually written additively. The group law is efficiently
computable through a few operations in the field Fq, so given a point P and a scalar k ∈ Z
it is easy to do a scalar multiplication k · P , which requires a number of addition operations
that is linear in the length of k (i.e., logarithmic in k).

In contrast, for a sufficiently large finite field Fq, a suitably chosen curve, and random
points P and Q, computing the discrete logarithm logP Q, i.e., to find k ∈ Z such that
Q = k · P , is hard. More specifically, for elliptic curves used in cryptography, the best known
algorithms takes time Θ(

√
`). Elliptic-curve cryptography is based on this difference in the

complexity for computing scalar multiplication and computing discrete logarithms. A user

3

who knows a secret k and a system parameter P computes and publishes Q = k · P . An
attacker who wants to break security of the scheme needs to obtain k, i.e., compute logP Q.

Curve25519 is an elliptic-curve Diffie-Hellman key exchange protocol proposed by Bern-
stein in 2006 [10]. It is based on arithmetic on the elliptic curve E : y2 = x3 + 486662x2 + x
defined over the field F2255−19.

2.1 The Montgomery ladder

Scalar multiplication in Curve25519 uses a so-called differential-addition chain proposed by
Montgomery in [30] that uses only the x-coordinate of points. It is highly regular, performs
one ladder step per scalar bit, and can be run in constant time; the whole loop is often
called Montgomery ladder. An overview of the structure of the Montgomery ladder and the
operations involved in one ladder-step are given respectively in Algs. 1 and 2. The inputs
and outputs xP , X1, X2, Z2, X3, Z3, and temporary values Ti are elements in F2255−19. The
performance of the computation is is largely determined by the performance of arithmetic
operations in this field.

Algorithm 1 Curve25519 Montgomery Ladder
Input: A 255-bit scalar k and the x-coordinate xP of a point P on E.
Output: (XkP , ZkP) fulfilling xkP = XkP /ZkP

t = dlog2 k + 1e
X1 = xP ; X2 = 1; Z2 = 0; X3 = xP ; Z3 = 1
for i← t− 1 downto 0 do

if bit i of k is 1 then
(X3, Z3, X2, Z2)← ladderstep(X1, X3, Z3, X2, Z2)

else
(X2, Z2, X3, Z3)← ladderstep(X1, X2, Z2, X3, Z3)

end if
end for
return (X2, Z2)

The biggest difference between the two Curve25519 implementations of Bernstein et al.
presented in [11,12] is the representation of elements of F2255−19. Both implementations have
the core parts, the Montgomery ladder step, in fully inlined, hand-optimized assembly. These
core portions are what we target for verification in this paper.

3 F2255−19 arithmetic in AMD64 assembly

Arithmetic in F2255−19 means addition, subtraction, multiplication and squaring of 255-bit
integers modulo the prime p = 2255 − 19. No mainstream computer architecture offers arith-
metic instructions for 255-bit integers directly, so operations on such large integers must be
constructed from instructions that work on smaller data types. The AMD64 architecture has
instructions to add and subtract (with and without carry/borrow) 64-bit integers, and the
MUL instruction returns the 128-bit product of two 64-bit integers, always in general-purpose
registers rdx (higher half) and rax (lower half).

Section 3 of [11] describes two different approaches to implement Fp arithmetic in AMD64
assembly. Both approaches use the 64-bit-integer machine instructions. They are different

4

Algorithm 2 One “step” of the Curve25519 Montgomery Ladder
function ladderstep(X1, X2, Z2, X3, Z3)

T1 ← X2 + Z2

T2 ← X2 − Z2

T7 ← T 2
2

T6 ← T 2
1

T5 ← T6 − T7

T3 ← X3 + Z3

T4 ← X3 − Z3

T9 ← T3 · T2

T8 ← T4 · T1

X3 ← (T8 + T9)

Z3 ← (T8 − T9)
X3 ← X2

3

Z3 ← Z2
3

Z3 ← Z3 ·X1

X2 ← T6 · T7

Z2 ← 121666 · T5

Z2 ← Z2 + T7

Z2 ← Z2 · T5

return (X2, Z2, X3, Z3)
end function

in the representation of elements of Fp, i.e., they decompose the 255-bit field elements into
smaller pieces which fit into 64-bit registers in different ways. We now review these approaches
and highlight the differences that are most relevant to verification.

3.1 Field arithmetic in radix-264 representation

The obvious representation of an element X ∈ Fp (or any 256-bit number) with 64 bit integers
is radix 264. A 256-bit integer X is represented by 4 64-bit unsigned integers (x0, x1, x2, x3),
where the limbs xi ∈ {0, . . . , 264 − 1} and

X =

3∑
i=0

xi2
64i = x0 + 264x1 + 2128x2 + 2192x3.

We will focus our description on the most complex Fp operation in the Montgomery ladder
step, which is multiplication. Squaring is like multiplying, except that some partial results
are known the be the same and computed only once. Addition and subtraction are straight
forward and multiplication by a small constant simply foregoes computation of results known
to be zero. Multiplication in Fp consists of two steps: multiplication of two 256-bit integers to
produce a 512-bit intermediate result S, and reduction modulo 2p to obtain a 256-bit result
R. Note that the software does not perform a full reduction modulo p, but only requires that
the result fits into 256 bits.

Multiplication of 256-bit integers. The approach for multiplication in radix-264 chosen
by [11] is a simple schoolbook approach. Multiplication of two 256-bit integers X and Y can
be seen as a 4-step computation which in each step involves one limb of Y and all limbs of X
as follows:

A0 = Xy0, A1 = 264Xy1 +A0, A2 = 2128Xy2 +A1, S = A3 = 2192Xy2 +A2. (1)

5

Each step essentially computes and accumulates the 5-limb partial product Xyi with 4
64 × 64-bit multiplications and several additions as (x0yi + 264x1yi + 2128x2yi + 2192x3yi).
Note that “multiplications by 264” are free and only determine where to add when summing
128-bit products. For example, the result of x0yi is in two 64-bit registers t0 and t1 with
x0yi = 264t0 + t1, therefore t1 needs to be added to the lower result register of x1yi which
in turn produces a carry bit which must go into the register holding the higher half of x1yi.
Instructions adding Ai−1 into Ai also produce carry bits that need to be propagated through
the higher limbs.

Handling the carry bits, which occur inside the radix-264 multiplication, incurs significant
performance penalties on some microarchitectures as detailed in [11, Section 3]. In Sec. 6 we
will explain why integrated multiplication and handling of carry bits also constitutes a major
obstacle for formal verification.

Modular reduction. The multiplication of the two 256-bit integers X and Y produced a
512-bit result in S = (s0, . . . , s7). Now S must be reduced modulo 2p = 2256 − 38. We will
use repeatedly that 2256 ≡ 38 (mod p). The initial step of reduction is to compute

S′ = (s0 + 264s1 + 2128s2 + 2192s3) + 38 · (s4 + 264s5 + 2128s6 + 2192s7)

with a 5-limb result S′ = (s′0 + 264s′1 + 2128s′2 + 2192s′3 + 2256s′4). Note that the highest limb
s′4 of S′ has at most 6 bits. A subsequent step computes

S′′ = (s′0 + 264s′1 + 2128s′2 + 2192s′3) + 38s′4

The value S′′ = (s′′0 + 264s′′1 + 2128s′′2 + 2192s′′3 + 2256s′′4) may still have 257 bits, i.e., s′′4 is either
zero or one. The final 4-limb result R is obtained as

R = (s′′0 + 264s′′1 + 2128s′′2 + 2192s′′3) + 38s′′4.

3.2 Field arithmetic in radix-251 representation

Due to the performance penalties in handling carries, [11] proposes to represent elements of
Fp in radix 251, i.e., X ∈ Fp is represented by 5 limbs (x0, . . . , x4) as

X =
4∑

i=0

xi2
51i = x0 + 251x1 + 2102x2 + 2153x3 + 2204x4.

Every element of Fp can be represented with all xi ∈ [0, 251−1]; however, inputs, outputs,
and intermediate results inside the ladder step have relaxed limb-size restrictions. For example,
inputs and outputs of the ladder step have limbs in [0, 251+215]. Additions are done limbwise,
e.g., after the first operation T1 ← X2 +Z2, the limbs of T1 have at most 53 bits. Subtractions
are done by first adding a multiple of p guaranteed to exceed the subtrahend limbwise. For
example, the subtraction T2 ← X2 − Z2 is done by first adding 0xFFFFFFFFFFFDA to the
lowest limb of X2 and 0xFFFFFFFFFFFFE to the four higher limbs of X2, and then subtracting
corresponding limbs of Z2. The value added is 2p, which does not change the result (as element
of Fp), yet ensures that all limbs of the result T2 are positive and have at most 53 bits.

The most complex operation—multiplication—is split in two parts, but these now differ
from those of Sec. 3.1. The first step performs multiplication and modular reduction; the
second step performs the delayed carries.

6

Multiply-and-Reduce in radix-251. To multiply X = x0+251x1+2102x2+2153x3+2204x4
and Y = y0 + 251y1 + 2102y2 + 2153y3 + 2204y4, start by precomputing 19y1, 19y2, 19y3 and
19y4, then compute 5 intermediate values s0, . . . , s4, each in two 64-bit registers, as

s0 := x0y0 + x1(19y4) + x2(19y3) + x3(19y2) + x4(19y1),

s1 := x0y1 + x1y0 + x2(19y4) + x3(19y3) + x4(19y2),

s2 := x0y2 + x1y1 + x2y0 + x3(19y4) + x4(19y3),

s3 := x0y3 + x1y2 + x2y1 + x3y0 + x4(19y4),

s4 := x0y4 + x1y3 + x2y2 + x3y1 + x4y0. (2)

Note that all partial results in this computation are significantly smaller than 128 bits. For
example, when 0 ≤ xi, yi < 254 (input limbs are at most 54-bits), 0 ≤ s0, s1, s2, s3, 19s4 <
95 · 2108 < 2115. Thus, adding of multiplication results can be achieved by two 64-bit addition
instructions (one with carry); carry bits from these additions are collected by the “free” bits
of the higher register of si.

Now X ·Y = S = s0+251s1+2102s2+2153s3+2204s4, but the limbs si are still two-register
values, much too large to be used in subsequent operations.

Delayed carry. For a 2-register value si, let s
(l)
i denote the lower register and s

(h)
i the higher

register, i.e., si = s
(l)
i + 264s

(h)
i . Carrying from si to si+1 is done as follows: Shift s

(h)
i to the

left by 13 and shift the 13 high bits of s
(l)
i into the 13 low bits of the result. This operation is

just one SHLD instruction. Now set the high 13 bits of s
(l)
i to zero (logical AND with 251 − 1).

Now do the same shift-by-13 operation on s
(h)
i+1 and s

(l)
i+1, set the high 13 bits of s

(l)
i+1 to zero,

add s
(h)
i to s

(l)
i+1 and discard s

(h)
i . This carry chain is performed from s0 through s4; then s

(h)
4

is multiplied by 19 (using a single-word MUL) and added to s
(l)
0 .

Note: We need s
(h)
i < 251 to begin this operation so as not to lose bits from s

(h)
i in the

shift-by-13. Due to the multiply by 19 at the end, s
(h)
4 must be even smaller, but the expression

for s4 does not already have a multiply by 19 in Eq. 2, so we can guarantee no overflows if
limbs of X and Y are at most 54 bits.

This first step of carrying yields XY = s
(l)
0 + 251s

(l)
1 + 2102s

(l)
2 + 2153s

(l)
3 + 2204s

(l)
4 , but the

values in s
(l)
i may still be too big as subsequent operands.

A second carry copies s
(l)
0 to a register t, shifts t to the right by 51, adds t to s

(l)
1 and

discards the upper 13 bits of s
(l)
0 . Carrying continues this way from s

(l)
1 to s

(l)
2 , from s

(l)
2 to s

(l)
3 ,

and from from s
(l)
3 to s

(l)
4 . Finally s

(l)
4 is reduced in the same way; except that 19t is added to

s
(l)
0 . This produces the final result

R = (s
(l)
0 + 251s

(l)
1 + 2102s

(l)
2 + 2153s

(l)
3 + 2204s

(l)
4).

4 Tools Used to Verify Curve25519

4.1 Portable assembly: qhasm

The software we are verifying has not been written directly in AMD64 assembly, but in the
portable assembly language qhasm developed by Bernstein [8]. The aim of qhasm is to reduce

7

development time of assembly software by offering a unified syntax across different architec-
tures and by assisting the assembly programmer with register allocation. Most importantly
for us, one line in qhasm translates to exactly one assembly instruction. Also, qhasm guaran-
tees that “register variables” are indeed kept in registers. Spilling to memory has to be done
explicitely by the programmer.

Verifying qhasm code. The Curve25519 software we verified is publicly available as part of
the SUPERCOP benchmarking framework [9], but does not include the qhasm source files,
which we obtained from the authors. Our verification works on qhasm level. The obvious
disadvantage is that we rely on the correctness of qhasm translation. The advantage of this
approach is that we can easily adapt our approach to assembly software for other architectures.

4.2 The Boolector SMT solver

Boolector is an efficient SMT solver supporting the bit vector and array theory [17]. In
cryptographic software, arithmetic in large finite fields requires hundreds of significant bits.
Standard algorithms for linear (integer) arithmetic do not apply. Boolector reduces queries
to instances of the Boolean satisfiability problem by bit blasting and is hence more suitable
for our purposes.

Theory of arrays is also essential to the formalization of qhasm programs. In low-level
programming langauges such as qhasm, memory and pointers are indispensable. On the other
hand, qhasm programs are finite. Sizes of program variables (including pointers) must be
declared. Subsequently, each variable is of finite domain and, more importantly, the memory
is finite. Since formal models of qhasm programs are necessarily finite, they are expressible in
theories of bit vectors and arrays. Boolector therefore fits perfectly in this application.

4.3 The Coq proof assistant

The Coq proof assistant has been developed in INRIA for more than twenty years [15]. The
tool is based on a higher-order logic called the Calculus of Inductive Construction and has
lots of libraries for various theories. In contrast to model-theoretic tools such as Boolector,
proof assistants are optimized for symbolic reasoning. For instance, the algebraic equation
(x+ y)2 = x2 + 2xy + y2 can be verified by the Coq tactic ring instantaneously.

In this work, we use the Coq standard library ZArith to formalize the congruence relation
modulo 2255− 19. For non-linear modulo relations in F2255−19, Boolector may fail to verify
in a handful of cases. We verify them with our formalization and simple rewrite tactics in
Coq.

5 Methodology

We aim to verify the Montgomery ladder step of the record-holding implementation of Curve25519
in [11,12]. A ladder step (Alg. 2) consists of 18 field arithmetic operations. Considering the
complexity of a Fp multiplication (Sec. 3), the correctness of manually optimized qhasm im-
plementation for the Montgomery ladder step is by no mean clear. Due to space limit, we
only detail the verification of Fp multiplication. Other field arithmetic and the Montgomery
ladder step (Alg. 2) itself are handled similarly.

We will use Hoare triples to specify properties about qhasm implementations. Let Q,Q′

be predicate logic formulae, and P a qhasm program fragment. Informally, a Hoare triple

8

(|Q|)P (|Q′|) specifies that the qhasm fragment P ends in a state satisfying Q′ provided that P
starts in a state satisfying Q. The formula Q and Q′ are called pre- and post-conditions respec-
tively. We only use quantifier-free pre- and post-conditions. The typewriter and Frankfurt
fonts are used to denote program and logical variables respectively in pre- and post-conditions.

Let P be a qhasm implementation for Fp multiplication. Note that P is loop-free. When
the pre- and post-conditions are quantifier-free, it is straightforward to translate a Hoare
triple (|Q|)P (|Q′|) to a Boolector specification. We first convert the qhasm fragment P
into static single assignment form PSSA, and then check whether the quantifier-free formula
Q∧PSSA∧¬Q′ in the bit-vector theory is satisfiable. If not, we have established |= (|Q|)P (|Q′|).
In order to automate this process, we have defined a simple assertion language to specify pre-
and post-conditions in qhasm. Moreover, we have build a converter that translates annotated
qhasm fragments into Boolector specifications.

5.1 Fp multiplication in the radix-264 representation

Let P64 denote the qhasm program for Fp multiplication in the radix-264 representation. The
inputs X = x0 + 264x1 + 2128x2 + 2192x3 and Y = y0 + 264y1 + 2128y2 + 2192y3 are stored in
memory pointed to by the qhasm variables xp and yp respectively. qhasm uses a C-like syntax.
Pointer dereferences, pointer arithmetic, and type coercion are allowed in qhasm expressions.
Thus, the limbs xi and yi correspond to the qhasm expressions *(uint64 *)(xp + 8i) and
*(uint64 *)(yp + 8i) respectively for every i ∈ [0, 3]. We introduce logical variables xi and
yi to record the limbs xi and yi respectively. Consider

Q64xy eqns :=
3∧

i=0
xi

64
= *(uint64 *)(xp + 8i) ∧

3∧
i=0

yi
64
= *(uint64 *)(yp + 8i)

The operator
n
= denotes the n-bit equality in the theory of bit-vectors. The formula Q64xy eqns

states that the values of the logical variables xi and yi are equal to the limbs xi and yi of the
initial inputs respectively.

In P64, the outcome is stored in memory pointed to by the qhasm variable rp. That
is, the limb ri of R = r0 + 264r1 + 2128r2 + 2192r3 corresponds to the qhasm expressions
*(uint64 *)(rp + 8i) for every i ∈ [0, 3]. Define

Q64r eqns :=
3∧

i=0
ri

64
= *(uint64 *)(rp + 8i)

Q64prod := (
3∑

i=0
xi2

64i)× (
3∑

i=0
yi2

64i)
512≡

3∑
i=0

ri2
64i (mod p)

The operator
n≡ denotes the n-bit signed modulo operator in the bit-vector theory. The formula

Q64r eqns introduces the logical variable ri equal to the coefficient ri for 0 ≤ i ≤ 3. The formula
Q64prod specifies that the outcome R is indeed the product of X and Y in field arithmetic.

Consider the top-level Hoare triple (|Q64xy eqns |)P64(|Q64r eqns ∧Q64prod |). We are con-
cerned about the outcomes of the qhasm fragment P64 from states where logical variables xi
and yi are equal to limbs of the inputs pointed to by the program variables xp and yp respec-
tively. During the execution of the qhasm program P64, program variables may change their
values. Logical variables, on the other hand, remain unchanged. The logical variables xi, yi
in the pre-condition Q64xy eqns effectively memorize the input limbs before the execution of
P64. The post-condition Q64r eqns ∧Q64prod furthermore specifies that the outcome pointed

9

to by the program variable rp is the product of the inputs stored in xi and yi. In other words,
the top-level Hoare triple specifies that the qhasm fragment P64 is Fp multiplication in the
radix-264 representation.

The top-level Hoare triple contains complicated arithmetic operations over hundreds of
64-bit vectors. It is perhaps not unexpected that naive verification fails. In order to verify
the qhasm implementation of Fp multiplication, we exploit the compositionality of proofs for
sequential programs. Recall the proof rule for compositions in Hoare logic, where Q′ is a
mid-condition:

` (|Q|)P0(|Q′|) ` (|Q′|)P1(|Q′′|)
` (|Q|)P0;P1(|Q′′|)

Composition

Applying the proof rule, it suffices to find a mid-condition for the top-level Hoare triple. Recall
that Fp multiplication can be divided into two phases: multiply and reduce (Sec. 3.1). It is
but natural to verify each phase separately. More precisely, we introduce logical variables to
memorize values of program variables at start and end of each phase. The computation of
each phase is thus specified by arithmetic relations between logical variables.

Multiply in the radix-264 representation Let P64M and P64R denote the qhasm frag-
ments for multiply and reduce respectively. The multiply fragment P64M computes the 512-bit
value S = (s0, . . . , s7) in (1) stored in the memory pointed to by the qhasm variable sp. Thus
each 64-bit value si corresponds to the qhasm expression *(uint 64 *)(sp + 8i) for every
i ∈ [0, 3]. Define

Q64s eqns :=
7∧

i=0
si

64
= *(uint 64 *)(sp + 8i)

Q64mult := A0
512
= Xy0 ∧ A1

512
= 264Xy1 + A0 ∧ A2

512
= 2128Xy2 + A1∧

A3
512
= 2192Xy3 + A2 ∧ X

512
=

3∑
i=0

xi2
64i ∧

7∑
i=0

si2
64i 512

= A3

For clarity, we introduce the logical variable X for the input X = x0+264x1+2128x2+2192x3 in
Q64mult . Consider the Hoare triple (|Q64xy eqns |)P64M (|Q64s eqns∧Q64mult |) The pre-condition
Q64xy eqns memorizes the limbs of the inputs X and Y in logical variables xi’s and yi’s. The
formula Q64s eqns records the limbs si’s after the qhasm fragment P64M in logical variables
si’s. Q64mult ensures that the limbs si’s are computed according to (1). In other words, the
Hoare triple specifies the multiply phase of Fp multiplication in the radix-264 representation.

Reduce in the radix-264 representation Following the reduction phase in Sec. 3.1, we
introduce logical variables s′i and s′′i for the limbs s′i and s′′i respectively for every i ∈ [0, 4].
The formulae Q64s′ red , Q64s′′ red , Q64r red are defined for the three reduction steps. The
formulae Q64s′ bds , Q64s′′ bds , and Q64r bds moreover give upper bounds.

10

Q64s′ red :=
4∑

i=0
s′i2

64i 320
= s0 + 264s1 + 2128s2 + 2192s3 + 38(s4 + 264s5 + 2128s6 + 2192s7)

Q64s′ bds :=
4∧

i=0
0 ≤ s′i < 264

Q64s′′ red :=
4∑

i=0
s′′i 264i

320
= 38s′4 +

3∑
i=0

s′i2
64i Q64s′′ bds :=

3∧
i=0

0 ≤ s′′i < 2 ∧ 0 ≤ s′′4 < 2

Q64r red :=
3∑

i=0
ri2

64i 256
= 38s′′4 +

3∑
i=0

s′′i 264i Q64r bds :=
3∧

i=0
0 ≤ ri < 264

Consider the following Hoare triple

(|Q64mult |)P64R(|Q64s′ red ∧Q64s′ bds ∧Q64s′′ red ∧Q64s′′ bds∧
Q64r red ∧Q64r bds ∧Q64r eqns

|).

The pre-condition Q64mult assumes that variables si’s are obtained from the multiply phase.
Recall the formula Q64r eqns defined at the beginning of this subsection. The post-condition
states that outcome ri’s are obtained by the reduce phase. Note that the logical variable s′′4
for the limb s′′4 is at most 1. We are using Boolector to verify this fact in the reduction
phase.

Proposition 1. Assume

1. |= (|Q64xy eqns |)P64M (|Q64s eqns ∧Q64mult |);

2. |= (|Q64mult |)P64R(|Q64s′ red ∧Q64s′ bds ∧Q64s′′ red ∧Q64s′′ bds∧
Q64r red ∧Q64r bds ∧Q64r eqns

|).

Then |= (|Q64xy eqns |)P64M ;P64R(|Q64prod ∧Q64r bds|).

Note that the Hoare triples in the proposition do not establish Q64prod directly. Indeed, we
need to show

Q64mult ∧Q64s′ red ∧Q64s′ bds∧
Q64s′′ red ∧Q64s′′ bds ∧Q64r red ∧Q64r bds

=⇒ Q64prod

in the proof of Proposition 1. Observe that the statement involves modular operations in
the bit-vector theory. Although the statement is expressible in a quantifier-free formula in
the theory of bit-vectors, the SMT solver Boolector could not verify it. We therefore use
the proof assistant Coq to formally prove the statement. With simple facts about modular
arithmetic such as 38 ≡ 2256 (mod p), our formal Coq proof needs less than 800 lines.

5.2 Fp multiplication in the radix-251 representation

Let P51 denote the qhasm fragment for Fp multiplication in radix-251 representation. The in-
puts X = x0 + 251x1 + 2102x2 + 2153x3 + 2204x4, Y = y0 + 251y1 + 2102y2 + 2153y3 + 2204y4, and
outcome R = r0+251r1+2102r2+2153r3+2204r4 are stored in memory pointed to by the qhasm
variables xp, yp, and rp respectively. We thus introduce logical variables xi, yi, and ri to memo-
rize the values of the qhasm expressions *(uint64 *)(xp + 8i), *(uint64 *)(yp + 8i), and
*(uint64 *)(rp + 8i) respectively for every i ∈ [0, 4].

The formulae Q51xy eqns , Q51r eqns , Q51prod are defined similarly as in the radix-264 repre-
sentation. Observe that each limb in the radix-251 representation has only 51 significant bits.

11

The formulae Q51xy bds and Q51r bds specify that the inputs and outcome are in the radix-251

representation.

Q51xy bds :=
4∧

i=0
0 ≤ xi < 251 ∧

4∧
i=0

0 ≤ yi < 251 Q51r bds :=
4∧

i=0
0 ≤ ri < 251

In the top-level Hoare triple (|Q51xy eqns ∧Q51xy bds |)P51(|Q51r eqns ∧Q51r bds ∧Q51prod |),
the pre-condition Q51xy eqns ∧Q51xy bds assumes that the inputs X and Y are in the radix-251

representation. The post-condition Q51r eqns ∧Q51r bds ∧Q51prod specifies that the outcome
is the product of X and Y in the radix-251 representation. The top-level Hoare triple hence
specifies that the qhasm fragment P51 is Fp multiplication in the radix-251 representation.

Similar to the case in the radix-264 representation, the top-level Hoare triple should be
decomposed before verification. Recall that Fp multiplication in the radix-251 representation
has two phases: multiply-and-reduce and delayed carry (Sec. 3.2). We therefore verify each
phase separately.

Let P51MR and P51D denote the qhasm fragment for multiply-and-reduce and delayed
carry respectively. In the multiply-and-reduce phase, the qhasm fragment P51MR computes
si’s in (2). Since each si has 128 significant bits, P51MR actually stores each si in a pair of
64-bit qhasm variables sil and sih. We will use the qhasm expression u.v to denote u×264+v.
Define

Q51s eqns :=
4∧

i=0
si

128
= sih.sil

Q51mult red := s0
128
= (x0y0 + 19(x1y4 + x2y3 + x3y2 + x4y1))∧

s1
128
= (x0y1 + x1y0 + 19(x2y4 + x3y3 + x4y2))∧

s2
128
= (x0y2 + x1y1 + x2y0 + 19(x3y4 + x4y3))∧

s3
128
= (x0y3 + x1y2 + x2y1 + x3y0 + 19x4y4)∧

s4
128
= (x0y4 + x1y3 + x2y2 + x3y1 + x4y0) .

Q51s eqns states that the logical variable si is equal to the qhasm expression sih.sil for every
i ∈ [0, 4]. Q51mult red specifies that si are computed correctly for every i ∈ [0, 4]. Nonetheless,
we find the condition Q51mult red is too weak to prove the correctness of the multiply-and-
reduce phase. If sih.sil indeed had 128 significant bits, overflow could occur during bitwise
operations in multiply-and-reduce. To verify multiplication, we estimate tighter upper bounds
for si’s.

Recall that si’s are sums of products of xi’s and yj ’s which are bounded by 251. A simple
computation gives us better upper bounds for si’s. Define

Q51s bds := 0 ≤ s0 ≤ 2102 + 4 · 19 · 2102 ∧ 0 ≤ s1 ≤ 2 · 2102 + 3 · 19 · 2102∧
0 ≤ s2 ≤ 3 · 2102 + 2 · 19 · 2102 ∧ 0 ≤ s3 ≤ 4 · 2102 + 19 · 2102∧
0 ≤ s4 ≤ 5 · 2102

Consider the Hoare triple (|Q51xy eqns ∧Q51xy bds |)P51MR(|Q51s eqns ∧Q51s bds ∧Q51mult red |),
in addition to checking whether qhasm variables sih’s and sil’s are computed correctly, the
qhasm fragment P51MR for multiply-reduce is required to meet the upper bounds in Q51s bds .
The mid-condition Q51s bds ∧Q51mult red enables the verification of the qhasm fragment P51D
for the delayed carry phase.

12

The qhasm fragment P51D for delayed carry performs carrying on 128-bit expressions
sih.sil’s to obtain the product of the inputs X and Y . The product must also be in the
radix-251 representation. Define

Q51delayed carry :=
4∑

i=0
si2

51i 512≡
4∑

i=0
ri2

51i (mod p).

The Hoare triple (|Q51s eqns ∧Q51s bds ∧Q51mult red |)P51D(|Q51delayed carry∧Q51r bds |) verifies

that the qhasm fragment P51D computes a number
4∑

i=0
ri2

51i in the radix-251 representation,

and it is congruent to
4∑

i=0
si2

51i modulo p.

Proposition 2. Assume

1. |= (|Q51xy eqns ∧Q51xy bds |)P51MR(|Q51s eqns ∧Q51s bds ∧Q51mult red |);
2. |= (|Q51s eqns ∧Q51s bds ∧Q51mult red |)P51D(|Q51delayed carry ∧Q51r bds |).

Then |= (|Q51xy eqns ∧Q51xy bds |)P51MR;P51D(|Q51prod ∧Q51r bds|).

The Hoare triples in the proposition do not establish Q51prod directly. Again, we formally
show ` [Q51xy bds ∧ Q51mult red ∧ Q51delayed carry] =⇒ Q51prod in the proof assistant Coq.
Our Coq proof contains less than 600 lines.

The verification of the Montgomery ladder step (Alg. 2) is carried out after all field
arithmetic operations are verified separately. We replace fragments for field arithmetic by
their corresponding pre- and post-conditions. Alg. 2 is then converted to the static single
assignment form. We then assert the static single assignments as the post-condition of Alg. 2.
Using Boolector, we verify that the post-condition holds, and that the post-condition of
every field operation implies the pre-condition of the following field operation in Alg. 2. The
record-holding implementation for the Montgomery ladder step in the radix-251 and radix-264

representations are formally verified.

6 Results and Discussion

In this section, we present results and findings during the verification process. A summary
of the experimental results is in Table 1. The columns are the number of limbs, the number
of mid-conditions used, and the verification time used in Boolector. We run Boolector
1.6.0 on a Linux machine with 3.07-GHz CPU and 32-GB memory. We did not set a timeout
and thus a verification task can run until it is killed by the operating system.

We formally verified the ladder step in Algorithm 2 in both radix-264 and radix-251. The
pre and postconditions of each operators are obtained from the verification of the corre-
sponding qhasm code fe25519r64 */fe25519 *. We are able to reproduce a known bug in an
old version of F2255−19 multiplication (fe25519r64 mul-1). A counterexample can be found
in seconds with a pair of precondition and postcondition for the reduction phase. The rows
mul25519-p2-1 and mul25519-p2-2 are the results of verifying the delayed carry phase of
mul25519, a 3-phase implementation of a multiplication. The result shows that if we add an
additional mid-condition to the delayed carry phase of mul25519, the verification time of the
delayed carry phase can be reduced from 2723 minutes to 263 minutes.

13

Table 1. Verification of the qhasm code.

File Name Description # of limb # of MC Time

radix-264 representation

fe25519r64 mul-1 r = x ∗ y (mod 2255 − 19), a buggy version 4 1 0m8.733s

fe25519r64 add r = x + y (mod 2255 − 19)
Operations of
Algorithm 2

4 0 0m3.154s
fe25519r64 sub r = x− y (mod 2255 − 19) 4 0 0m16.236s

fe25519r64 mul-2
r = x ∗ y (mod 2255 − 19), a fixed version of
fe25519r64 mul-1

4 19 73m55.159s

fe25519r64 mul121666 r = x ∗ 121666 (mod 2255 − 19) 4 2 0m2.034s
fe25519r64 sq r = x ∗ x (mod 2255 − 19) 4 15 3m16.669s

ladderstepr64 The implementation of Algorithm 2 4 14 0m3.227s

fe19119 mul r = x ∗ y (mod 2191 − 19) 3 12 8m43.071s

mul1271 r = x ∗ y (mod 2127 − 1) 2 1 141m22.062s

radix-251 representation

fe25519 add r = x + y (mod 2255 − 19)
Operations of
Algorithm 2

5 0 0m16.349s
fe25519 sub r = x− y (mod 2255 − 19) 5 0 3m38.621s
fe25519 mul r = x ∗ y (mod 2255 − 19) 5 27 5658m2.148s

fe25519 mul121666 r = x ∗ 121666 (mod 2255 − 19) 5 5 0m12.753s
fe25519 sq r = x ∗ x (mod 2255 − 19) 5 17 463m59.503s

ladderstep The implementation of Algorithm 2 5 14 1m29.051s

mul25519 r = x ∗ y (mod 2255 − 19), a 3-phase implementation 5 3 286m52.751s

mul25519-p2-1 The delayed carry phase of r = x ∗ y (mod 2255 − 19) 5 1 2723m16.556s

mul25519-p2-2
The delayed carry phase of r = x ∗ y (mod 2255 − 19) with two
subphases

5 2 263m35.461s

muladd25519 r = x ∗ y + z (mod 2255 − 19) 5 7 1569m11.057s

re15319 r = x ∗ y (mod 2153 − 19) 3 3 2409m16.890s

Note that all post-conditions for the radix-264 are equalities. Since Boolector can not
verify modular congruence relations in the radix-264 representation, we have to establish them
in Coq. On the other hand, Boolector successfully verifies the modular congruence relation
Q51delay carry for the radix-251 representation. Our Coq proof for the radix-251 representation
is thus simplified. The reason why some congruence relations is verified in the radix-251

representation is because we are able to divide P51D further into smaller fragments. A few
extra carry bits can not only reduce the time for execution but also verification.

We found the following heuristics are quite useful to accelerate verification. We cannot
verify many of the cases without them. First, we split conjuncted postconditions, i.e., translate
(|Q0|)P (|Q1 ∧Q2|) to (|Q0|)P (|Q1|) and (|Q0|)P (|Q2|). This reduces the verification time of the
multiply phase of mul25519 from one day to one minute. Second, we delay bit-width extension.

For example, consider a formula a
256
= b ∗ c where a has 256 bits and b, c have 64 bits.

Instead of extending b and c to 256 bits before the multiplication, we first extend b and c
to 128 bits, compute the multiplication, and then extend the result to 256 bits. Third, we
over-approximate Boolector specifications automatically by reducing logical variables and
weakening preconditions. The validity of an over-approximated specification guaranteed the
validity of the original one, but not vice versa. To be more specific, given a specification
(|Q1

0 ∧Q2
0 ∧ · · · ∧Qn

0 |)P (|Q1|), our translator automatically removes logical variables that do
not appear in Q1; it removes Qi

0 if some variable in Qi
0 neither appears in Q1 nor gets updated

in P . We cannot verify fe25519r64 sq and fe25519 sq without this heuristic.

7 Future work

There are several avenues for future work. One interesting topic could be to develop ver-
ification approaches for ensuring that the an assembly implementation is resistant against
side-channel attacks. Formal techniques in measuring worst case execution time (WCET)
might be a starting point for this line of research.

Currently, we need to manually provide mid-conditions for verifications. Although the
verification steps between preconditions and postconditions are done automatically, it would
be even better if we can increase the degree of automation further by investigating techniques

14

for automatic insertion of mid-conditions. We think the tools for automatic assertion insertion
could be relevant [21]. The tool obtain assertions based on given templates of assertions and
by synthesizing them dynamically from observed executions traces.

Our translator currently can produce Boolector specifications from annotated qhasm

files. Recall that some properties that cannot be proved in Boolector are proved in Coq. It
would be good if the translator can produce both Boolector specifications and Coq proof
obligations from an annotated qhasm file, which makes the qhasm file more self-contained.
Moreover, tactics of Coq may be developed to solve some specific problems, for example,
modular congruence, to reduce human work.

References

1. Aris Adamantiadis. curve25519-sha256@libssh.org.txt, 2013. http://git.libssh.org/projects/libssh.
git/tree/doc/curve25519-sha256@libssh.org.txt. 2

2. R. Affeldt and N. Marti. An approach to formal verification of arithmetic functions in assembly. In
M. Okada and I. Satoh, editors, Asian Computing Science Conference – (ASIAN 2006), volume 4435 of
Lecture Notes in Computer Science, pages 346–360. Springer, 2006. 3

3. Reynald Affeldt, David Nowak, and Kiyoshi Yamada. Certifying assembly with formal security proofs:
The case of BBS. Science of Computer Programming, 77(10–11):1058–1074, September 2012. http:

//www.sciencedirect.com/science/article/pii/S0167642311001493. 3
4. José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, and François Dupressoir. Certified computer-aided

cryptography: efficient provably secure machine code from high-level implementations. In Virgil Gligor and
Moti Yung, editors, Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security, pages 1217–1230. ACM New York, 2013. http://eprint.iacr.org/2013/316/. 3

5. Apple. iPhone end user licence agreement, 2011. Copy distributed in-
side each iPhone 4; transcribed at http://rxt3ch.wordpress.com/2011/09/27/

iphone-end-user-liscence-agreement-quick-refrence/. 2
6. Roberto Avanzi, Henri Cohen, Christophe Doche, Gerhard Frey, Tanja Lange, Kim Nguyen, and Frederik

Vercauteren. Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman & Hall/CRC, 2006. 3
7. Ali Galip Bayrak, Francesco Regazzoni, David Novo, and Paolo Ienne. Sleuth: Automated verification

of software power analysis countermeasures. In Guido Bertoni and Jean-Sbastien Coron, editors, Cryp-
tographic Hardware and Embedded Systems – CHES 2013, volume 8086 of Lecture Notes in Computer
Science, pages 293–310. Springer-Verlag Berlin Heidelberg, 2013. 3

8. Daniel J. Bernstein. qhasm. http://cr.yp.to/qhasm.html. 7
9. Daniel J. Bernstein. Supercop: System for unified performance evaluation related to cryptographic op-

erations and primitives. http://bench.cr.yp.to/supercop.html. Published as part of ECRYPT II
VAMPIRE Lab. 8

10. Daniel J. Bernstein. Curve25519: new Diffie-Hellman speed records. In Moti Yung, Yevgeniy Dodis,
Aggelos Kiayias, and Tal Malkin, editors, Public Key Cryptography – PKC 2006, volume 3958 of Lecture
Notes in Computer Science, pages 207–228. Springer-Verlag Berlin Heidelberg, 2006. http://cr.yp.to/

papers.html#curve25519. 2, 4
11. Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed high-security

signatures. In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic Hardware and Embedded Systems
– CHES 2011, volume 6917 of Lecture Notes in Computer Science, pages 124–142. Springer-Verlag Berlin
Heidelberg, 2011. see also full version [12]. 1, 2, 3, 4, 5, 6, 8, 15

12. Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed high-security
signatures. Journal of Cryptographic Engineering, 2(2):77–89, 2012. http://cryptojedi.org/papers/

#ed25519, see also short version [11]. 2, 4, 8, 15
13. Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. The security impact of a new cryptographic

library. In Alejandro Hevia and Gregory Neven, editors, Progress in Cryptology – LATINCRYPT 2012,
volume 7533 of Lecture Notes in Computer Science, pages 159–176. Springer-Verlag Berlin Heidelberg,
2012. Document ID: 5f6fc69cc5a319aecba43760c56fab04, http://cryptojedi.org/papers/#coolnacl. 2

14. Daniel J. Bernstein and Peter Schwabe. Neon crypto. In Emmanuel Prouff and Patrick Schaumont,
editors, Cryptographic Hardware and Embedded Systems – CHES 2012, volume 7428 of Lecture Notes in
Computer Science, pages 320–339. Springer-Verlag Berlin Heidelberg, 2012. http://cryptojedi.org/

papers/#neoncrypto. 2

15

http://git.libssh.org/projects/libssh.git/tree/doc/curve25519-sha256@libssh.org.txt
http://git.libssh.org/projects/libssh.git/tree/doc/curve25519-sha256@libssh.org.txt
http://www.sciencedirect.com/science/article/pii/S0167642311001493
http://www.sciencedirect.com/science/article/pii/S0167642311001493
http://eprint.iacr.org/2013/316/
http://rxt3ch.wordpress.com/2011/09/27/iphone-end-user-liscence-agreement-quick-refrence/
http://rxt3ch.wordpress.com/2011/09/27/iphone-end-user-liscence-agreement-quick-refrence/
http://cr.yp.to/qhasm.html
http://bench.cr.yp.to/supercop.html
http://cr.yp.to/papers.html#curve25519
http://cr.yp.to/papers.html#curve25519
http://cryptojedi.org/papers/#ed25519
http://cryptojedi.org/papers/#ed25519
http://cryptojedi.org/papers/#coolnacl
http://cryptojedi.org/papers/#neoncrypto
http://cryptojedi.org/papers/#neoncrypto

15. Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development Coq’Art: The
Calculus of Inductive Constructions. EATCS. Springer, 2004. 8

16. Billy B. Brumley, Manuel Barbosa, Dan Page, and Frederik Vercauteren. Practical realisation and elimi-
nation of an ECC-related software bug attack. In Orr Dunkelman, editor, Topics in Cryptology – CT-RSA
2012, volume 7178 of Lecture Notes in Computer Science, pages 171–186. Springer-Verlag Berlin Heidel-
berg, 2012. http://eprint.iacr.org/2011/633. 2

17. R. Brummayer and A. Biere. Boolector: An efficient SMT solver for bit-vectors and arrays. In
S. Kowalewski and A. Philippou, editors, Tools and Algorithms for the Construction and Analysis of
Systems – (TACAS 2009), volume 5505 of Lecture Notes in Computer Science, pages 174–177. Springer,
2009. 8

18. Ramaswamy Chandramouli and Scott Rose. Secure domain name system (DNS) deployment guide. Tech-
nical report, NIST (National Institute of Standards and Technology), April 2010. http://csrc.nist.gov/
publications/nistpubs/800-81r1/sp-800-81r1.pdf. 1

19. Neil Costigan and Peter Schwabe. Fast elliptic-curve cryptography on the Cell Broadband Engine. In
Bart Preneel, editor, Progress in Cryptology – AFRICACRYPT 2009, volume 5580 of Lecture Notes in
Computer Science, pages 368–385. Springer-Verlag Berlin Heidelberg, 2009. http://cryptojedi.org/

papers/#celldh. 2
20. David W. Currie, Alan J. Hu, and Sreeranga Rajan. Automatic formal verification of DSP software. In

Giovanni De Micheli, editor, Design Automation Conference – (DAC ’00), pages 130–135. ACM, 2000. 3
21. Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco, Matthew S.

Tschantz, and Chen Xiao. The daikon system for dynamic detection of likely invariants. Sci. Comput.
Program., 69(1–3):35–45, 2007. 15

22. Pierrick Gaudry and Emmanuel Thomé. The mpFq library and implementing curve-based key exchanges.
In Workshop Record of SPEED 2007: Software Performance Enhancement for Encryption and Decryption,
pages 49–64, 2007. http://www.hyperelliptic.org/SPEED/record.pdf. 2

23. Mike Gordon. CryptVer project. http://www.cl.cam.ac.uk/~mjcg/proposals/CryptVer/. 3
24. Darrel Hankerson, Alfred Menezes, and Scott A. Vanstone. Guide to Elliptic Curve Cryptography. Springer-

Verlag New York, 2004. 3
25. Simon Josefsson and Manuel Pégourié-Gonnard. Additional elliptic curves for transport layer security

(TLS) elliptic curve diffie-hellman key agreement. IETF Internet Draft, 2014. http://tools.ietf.org/

html/draft-josefsson-tls-curve25519-03. 2
26. Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):203–

209, 1987. http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866109-5/

S0025-5718-1987-0866109-5.pdf. 3
27. “Lunar”. Tor weekly news – december 4th, 2013, 2013. https://blog.torproject.org/blog/

tor-weekly-news--december-4th-2013. 2
28. Victor S. Miller. Use of elliptic curves in cryptography. In Hugh C. Williams, editor, Advances in Cryptology

– CRYPTO ’85: Proceedings, volume 218 of Lecture Notes in Computer Science, pages 417–426. Springer-
Verlag Berlin Heidelberg, 1986. 3

29. David Molnar, Matt Piotrowski, David Schultz, and David Wagner. The program counter security model:
Automatic detection and removal of control-flow side channel attacks. In Dong Ho Won and Seungjoo Kim,
editors, Information Security and Cryptology – ICISC 2005, volume 3935 of Lecture Notes in Computer
Science, pages 156–168. Springer-Verlag Berlin Heidelberg, 2005. Full version at http://eprint.iacr.

org/2005/368/. 3
30. Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization. Math-

ematics of Computation, 48(177):243–264, 1987. http://www.ams.org/journals/mcom/1987-48-177/

S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf. 4
31. Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures: the case of AES.

In David Pointcheval, editor, Topics in Cryptology – CT-RSA 2006, volume 3860 of Lecture Notes in
Computer Science, pages 1–20. Springer-Verlag Berlin Heidelberg, 2006. http://eprint.iacr.org/2005/
271/. 1

32. Tor project: Anonymity online. https://www.torproject.org/. 2
33. Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient cache attacks on AES, and counter-

measures. Journal of Cryptology, 23(1):37–71, 2010. http://people.csail.mit.edu/tromer/papers/

cache-joc-official.pdf. 1

16

http://eprint.iacr.org/2011/633
http://csrc.nist.gov/publications/nistpubs/800-81r1/sp-800-81r1.pdf
http://csrc.nist.gov/publications/nistpubs/800-81r1/sp-800-81r1.pdf
http://cryptojedi.org/papers/#celldh
http://cryptojedi.org/papers/#celldh
http://www.hyperelliptic.org/SPEED/record.pdf
http://www.cl.cam.ac.uk/~mjcg/proposals/CryptVer/
http://tools.ietf.org/html/draft-josefsson-tls-curve25519-03
http://tools.ietf.org/html/draft-josefsson-tls-curve25519-03
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf
https://blog.torproject.org/blog/tor-weekly-news-—-december-4th-2013
https://blog.torproject.org/blog/tor-weekly-news-—-december-4th-2013
http://eprint.iacr.org/2005/368/
http://eprint.iacr.org/2005/368/
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf
http://eprint.iacr.org/2005/271/
http://eprint.iacr.org/2005/271/
https://www.torproject.org/
http://people.csail.mit.edu/tromer/papers/cache-joc-official.pdf
http://people.csail.mit.edu/tromer/papers/cache-joc-official.pdf

	Verifying Curve25519 Software

