
Breaking and Fixing Speculative Load Hardening

Zhiyuan Zhang , Gilles Barthe , Chitchanok Chuengsatiansup ,
Peter Schwabe , Yuval Yarom

The University of Adelaide, Adelaide, Australia
MPI-SP, Bochum, Germany

IMDEA Software Institute, Madrid, Spain
Radboud University, Nijmegen, The Netherlands

Abstract
In this paper we revisit the Spectre v1 vulnerability and
software-only countermeasures. Specifically, we systemati-
cally investigate the performance penalty and security proper-
ties of multiple variants of speculative load hardening (SLH).
As part of this investigation we implement the “strong SLH”
variant by Patrignani and Guarnieri (CCS 2021) as a compiler
extension to LLVM. We show that none of the existing vari-
ants, including strong SLH, is able to protect against all Spec-
tre v1 attacks in practice. We do this by demonstrating, for the
first time, that variable-time arithmetic instructions leak secret
information even if they are executed only speculatively. We
extend strong SLH to include protections also against this
kind of leakage, implement the resulting full protection in
LLVM, and use the SPEC2017 benchmarks to compare its
performance to the existing variants of SLH and to code that
uses fencing instructions to completely prevent speculative
execution. We show that our proposed countermeasure is able
to offer full protection against Spectre v1 attacks at much
better performance than code using fences. In fact, for several
benchmarks our approach is more than twice as fast.

1 Introduction

The discovery of the Spectre attack [60] in early 2018 demon-
strated that speculative execution, hitherto considered a harm-
less performance improvement technique, can be exploited
for leaking sensitive information. Unlike many other microar-
chitectural attacks like Meltdown [21, 64, 91, 92, 101, 103,
105, 109, 113, 114], which were discovered concurrently and
subsequent to the discovery of Spectre, these Spectre attacks—
in particular so-called “Spectre v1” attacks—do not exploit
a CPU bug, but a CPU feature. As a consequence it seems
unlikely that the problems caused by Spectre will be solved
by CPU microcode updates or future hardware. As Carruth
phrased it in an RWC 2020 talk [24]:

“Spectre "v1" is here for decades...”

This means that at least for the foreseeable future, software
handling sensitive data will need to protect against Spectre
using software countermeasures. To understand such software
countermeasures, it is useful to describe a Spectre v1 attack1as
a four-stage process:

S1 The CPU’s branch predictor mispredicts a branch and
the CPU speculatively executes instructions following
this mispredicted branch;

S2 during this speculative execution, secret data is (made)
available in a register;

S3 still as part of speculative execution, this data is trans-
mitted from the register onto a covert channel; and

S4 outside speculative execution—possibly by another
process—the data is read from the covert channel.

As S4 is out of control of the program under attack, coun-
termeasures need to prevent the attack from progressing in
one of the first three stages. Clearly the easiest way to prevent
Spectre attacks is to prevent speculative execution to hap-
pen in the first place, i.e., to stop attacks already in S1. This
can be accomplished by inserting serializing or speculation-
blocking instructions—such as the lfence instruction on In-
tel and AMD CPUs—on the two outcomes of every branch.
This countermeasure has indeed been proposed already in the
original Spectre paper [60, Sec. VII], and has also been imple-
mented in mainstream compilers. Unfortunately it comes with
massive performance decline for typical software [47, 59].

As a cheaper alternative, in 2018 Carruth (following discus-
sions with “Paul Kocher, Thomas Pornin, and several other
individuals”, and based on a core idea by Horn) proposed
speculative load hardening (SLH) [23], a countermeasure that
targets S2. This countermeasure is based on the observation
that the most common way in which secret data becomes

1Spectre v1 attacks are often referred to as “bounds check bypass”, but
in this paper we consider v1 in a broader sense as any attack exploiting
speculative execution following a mispredicted conditional branch.

1

available in a register during speculative execution is through
a speculative load from an unintended and possibly attacker-
controlled location in memory. This is, for example, exactly
what happens if an array-bounds check is mispredicted and
data is speculatively loaded out of bounds. The idea of SLH is
to maintain a predicate indicating if the execution is currently
in a mispredicted branch or not. This predicate is then used
to “poison” either the outputs (i.e. values) or inputs (i.e. ad-
dresses) of load instructions. Both variants are implemented
in LLVM since version 8 and both variants prevent possibly
sensitive data from being speculatively loaded into a register
in a mispredicted branch. We will in the following refer to the
variant poisoning loaded values as LLVM-vSLH and the one
poisoning addresses in load instructions as LLVM-aSLH.

SLH never claimed to be a countermeasure against all Spec-
tre v1 attacks, at least not with the broad definition we use
in this paper. Specifically, Carruth [23] lists as one limita-
tion of the approach that it “does not defend against secret
data already loaded from memory and residing in registers”.
Recent work by Patrignani and Guarnieri [82] confirms this
limitation by revisiting the SLH countermeasure from a more
formal point of view. They introduce a formal model captur-
ing Spectre-v1-style leakage and show that poisoning values
loaded from memory is indeed insufficient to protect against
all Spectre v1 attacks. However, they also observe that poison-
ing addresses of loads has the additional effect of closing one
of the most commonly used covert channels, namely address-
dependent cache modifications through loads. In other words,
poisoning addresses also targets S3. They extend this idea and
use poisoning based on the misprediction predicate to also
close the additional covert channels captured by their model,
namely addresses of stores and branch conditions; they call
this variant “strong SLH”. We adopt this naming and will
refer to this variant as SSLH.

However, also Patrignani and Guarnieri [82] leave multiple
questions about SLH unanswered, in particular with regards
to the application of their formal model to the real world:
• Do the differences between the different variants of SLH—

LLVM-vSLH, LLVM-aSLH, and SSLH—actually matter
in practice?

• How much larger is the performance overhead incurred by
SSLH compared to LLVM-vSLH and LLVM-aSLH?

• Does any of the SLH variants indeed protect against all
Spectre v1 attacks in practice. That is, does the formal
model in [82] adequately capture all covert channels acces-
sible in speculative execution?

• If there are any additional covert channels, can we extend
SLH to also close these and if yes, at what cost?

Contributions of this paper. In this paper we set out to
answer these questions. Specifically, our contributions are the
following:
• We give a systematic overview of the different variants

of SLH. We discuss the gap between the theory and prac-
tice and describe how the intricacies of the ISA affect the

efficiency of the implementation of variants of SLH. We
further analyze the security implications of various design
and implementation choices.

• We extend the LLVM implementation of SLH to also sup-
port SSLH and evaluate the performance impact of all vari-
ants on the SPEC2017 benchmark. As expected, stronger
defenses incur larger overheads, but all variants are cheaper
than using the lfence-based countermeasure targeting S1.

• We present a proof-of-concept Spectre v1 gadget that is
not prevented by any of the existing variants of SLH. This
proof-of-concept is the first demonstration that variable-
time arithmetic instructions can also be used as a covert
channel to transmit sensitive data from speculatively exe-
cuted code.

• We present “ultimate SLH” (or USLH for short), an ex-
tension to SSLH that also poisons inputs to variable-time
arithmetic instructions. We claim that this countermeasure
indeed protects against all Spectre v1 attacks and back this
claim by a formal analysis and by highlighting a relation to
protections against classical (i.e., non-speculative) timing
attacks.

• Finally, we implement ultimate SLH in LLVM and evaluate
its performance compared to other variants of SLH and
lfence-protected code. We show that code protected with
USLH is consistently faster than code protected by lfence
and that in some benchmarks it is more than twice as fast.

Responsible disclosure. We disclosed the Spectre gadgets
demonstrated in this paper to Intel, AMD, and Arm. All ac-
knowledged the issue but did not consider that it exposes new
threats in their processors and did not require embargo.
Availability of our software. The LLVM patches for imple-
menting SSLH and USLH are available at https://github.
com/0xADE1A1DE/USLH. The repository also contains some
of our attack code.
Organization of the paper. Section 2 establishes the neces-
sary background on microarchitectural attacks with a focus
on transient-execution attacks and existing software counter-
measures. Section 3 describes the attacker model. Section 4
explains the differences between variants of SLH and our
approach to implementing SSLH. Section 5 presents our at-
tacks. Section 6 introduces ultimate SLH as a systematic
countermeasure against all Spectre v1 attacks and presents
comparative benchmarks. Finally, in Section 7 we draw some
conclusions.

2 Background

2.1 Microarchitectural Attacks

Modern processors consist of a large number of components,
collectively called the microarchitecture, that implement the
instruction set that the processor supports. Program execution
affects the state of the microarchitectural components. At the

2

https://github.com/0xADE1A1DE/USLH
https://github.com/0xADE1A1DE/USLH

same time, the microarchitectural state affects program execu-
tion speed. Consequently, when multiple programs execute on
the same processor, either concurrently or in a time-sharing
fashion, executing one program may affect the performance
of another.

Microarchitectural attacks [38] exploit these performance
effects to leak sensitive information. Specifically, by moni-
toring program execution speed, an attacker can determine
some of the microarchitectural state and from that infer infor-
mation on other programs executing on the same processor.
Attacks have been demonstrated, exploiting various compo-
nents, such as buses [81, 117, 122], execution ports [1, 17, 19],
data caches [65, 80, 83, 124, 125], instruction and microcode
caches [4, 89, 94], address translation [39, 63, 100], branch
prediction [2, 3, 36, 37, 128], and other components [49, 76].
Constant-time programming. Many of the published mi-
croarchitectural attacks target cryptographic implementa-
tions [2, 3, 4, 13, 30, 39, 41, 65, 66, 76, 80, 81, 83, 84, 117,
125, 126]. Consequently, the cryptographic community de-
veloped constant-time programming, a programming style
designed to curb microarchitectural attacks. The idea behind
constant time programming is to prevent flow of secret data
into variations in microarchitectural states. In practice, this
idea translates into three requirements:
1. No secret-dependent control flow;
2. No memory access to addresses that depend on secret

values; and
3. No variable-time arithmetic instructions with secret-

dependent arguments.
Constant-time coding is considered a de-facto standard re-
quirement for cryptographic code. Cryptographic software
and tools for developing it are often claimed to produce
constant-time code [12, 14, 15, 16, 35, 53, 88] and tools for
validating or enforcing constant-time coding have been devel-
oped [34, 93, 95]. The security of constant-time code has been
proven [9] and attempts to relax constant-time requirements
have been shown vulnerable [76, 96, 97, 126].

2.2 Speculative and Out-of-Order Execution
To improve run-time performance, modern processors em-
ploy a complex execution pipeline. The pipeline consists of
two main stages. The frontend is responsible for fetching in-
structions from memory and decoding them, converting them
to a stream of micro-operations (µops).2 It then issues these
µops to the execution engine. The execution engine receives
the stream of issued µops and dispatches them to execution
units. To improve performance and to exploit instruction-level
parallelism, the order that the execution engine executes the
µops may differ from their order in the program. Instead, the
execution engine uses some variant of the Tomasulo algo-
rithm [110] to track dependencies between µops and dispatch

2The exact distinction between instructions and µops is largely irrelevant
for this work and so we mostly use the terms interchangeably.

1 if (index < arrayLen) {
2 x = array[index];
3 y = array2[x ⁎ 4096];
4 }

Listing 1: Example of a Spectre v1 Gadget.

them to available execution engines as soon as their depen-
dencies are satisfied. After the µops complete execution, the
execution engine retires them to the frontend. The frontend
ensures that µops retired in program order, maintaining the
semantics of the machine code.

When the frontend decodes a branch instruction, it often
does not know what the branch destination or outcome is, e.g.,
because the branch condition is yet to be computed. Rather
than stalling, the frontend predicts the branch outcome and
proceeds to fetch, decode, and execute instructions based on
the prediction. This is called speculative execution. Eventu-
ally, the execution unit executes the branch instruction and
determines the real destination. In the case that the destina-
tion was correctly predicted, execution can continue without
interruptions. However, in the case of a misprediction, all of
the µops that were incorrectly issued are squashed, any results
computed as part of their out-of-order execution are dropped,
and the execution engine instructs the frontend to resume
execution from the correct destination. Instructions may also
be squashed when abnormal conditions, such as traps and
exceptions occur.

2.3 Transient Execution Attacks
A common consequence of speculative execution is that some
µops get executed although they do not appear in the nominal
program order. While these µops are eventually squashed,
their transient execution may bypass software- and hardware-
based security checks. Because squashing drops the results
computed in transient execution, this was not considered a
security issue. However, transiently executed µops do change
the microarchitectural state and their execution can leak sen-
sitive information [20, 60, 64]. Specifically, Spectre-type at-
tacks exploit transient execution following a misprediction
of control or data flow [5, 11, 17, 28, 55, 57, 60, 62, 68,
75, 98, 102, 107]. Conversely, Meltdown-type attacks ex-
ploit transient execution following abnormal termination of
an instruction, for example, due to a trap or microcode as-
sist [21, 64, 91, 92, 101, 103, 105, 109, 113, 114].

In this paper we focus on the Spectre attack, and in par-
ticular on Spectre v1 [60]. In this variant, the adversary ex-
ploits misprediction of a conditional branch to leak secret
information. Listing 1 shows the classical case of a Spectre
gadget: the conditional statement at Line 1 nominally pre-
venting execution of the if body when index is beyond the
array bound. However, if the branch mispredicts, the if body
executes transiently, loading a value from outside the array

3

bound and accessing array2 at a position that depends on
the loaded value. After executing the gadget, the adversary
can check which offset in array2 has been accessed, e.g. us-
ing the Flush+Reload technique [125], and from that infer
the value of x, which has been loaded from an arbitrary loca-
tion. Due to the popularity of this example, Spectre v1 is also
known as “bounds check bypass”. However, the vulnerability
may exploit other security checks [57].

2.4 Countermeasures for Spectre v1
Execution barriers such as the x86 lfence instruction prevent
speculation. Inserting an lfence at each possible outcome of
conditional branches prevents Spectre v1 [48]. However, this
comes at a significant performance cost [48, 59]. The perfor-
mance can improve by only protecting vulnerable branches
and several approaches for identifying those have been pro-
posed [17, 52]. However, these have false negatives [59],
resulting in failures to protect vulnerable branches [52].

Oleksenko et al. [78] introduce false data dependencies
between arguments of leaking instructions and branch con-
ditions to delay the instructions until after the branch is re-
solved. Speculative Load Hardening (SLH) [23, 82] protects
against leaks by tracking the speculation state and masking
values during misspeculation. We discuss SLH in more de-
tail in Section 4. To protect against Spectre attacks from
JavaScript code, browsers reduced the resolution of timers and
disabled shared buffers in an effort of preventing the attacker
from observing the microarchitectural state [44, 87, 116].
However subsequent works showed that attackers do not
need high-resolution timers to carry out attacks [43, 98].
Additionally multiple works propose hardware-based de-
fenses [7, 8, 54, 56, 67, 73, 99, 106, 120, 123, 127]. As these
are not available in commercial processors and cannot be ap-
plied to existing hardware, these are outside the scope of this
work. We refer the reader to [22] for more information about
countermeasures.
Formal approaches. There exist many verification tools
for checking that programs are protected against Spectre
attacks. The overwhelming majority of these countermea-
sures and tools focus on Spectre v1; we refer to [26] for
a recent overview of formal approaches. Many verification
tools [10, 18, 25, 27, 31, 33, 40, 85, 86] are supported by
soundness claims. Informally, soundness is stated with re-
spect to a formal model of leakage, and a security policy
based on this formal model; a typical soundness claim states
that programs that pass verification satisfy the intended pol-
icy; in some cases, soundness only holds for bounded exe-
cutions. Broadly speaking, these policies fall into two dif-
ferent categories: relative policies, requiring that specula-
tive execution does not leak more than sequential execution,
and absolute policies, requiring that speculative execution
does not leak. Additionally, there are many other verification
tools [42, 58, 69, 70, 74, 79, 90, 118, 119, 121] that do not

aim for or are not (yet) supported by formal soundness claims.
In addition to verification tools, there exist many mitigation
tools that automatically transform programs so that they ad-
here to some intended policy; some of these tools come with
a soundness proof [72, 115] whereas others do not (yet) have
such proofs [50, 77, 108]. Finally, our work is most closely
related to [82]. We defer a precise comparison to this work to
the next sections.

3 Attacker Model

We assume a model where some data values is tagged as secret.
The attacker does not have direct access to secret data. The
only way they can access it is by invoking some trusted code
that can access this data. When the trusted code executes it can
leak some of the secret data it processes, e.g. by writing the
secret data to a public variable. Additionally, the victim code
may leak secret data through microarchitectural side channels,
for example, by accessing a memory address that depends
on secret data. We assume that the provider of the trusted
code is aware of the leakage potential and accepts the level
of leakage possible through nominal, in-order execution of
the trusted code. We note that our model covers multiple real-
world scenarios that enforce isolation. For example, the secret
data and the trusted code could reside in a different process
or virtual machine, they can be part of an SGX enclave [32]
or the system can use intra-process isolation [51, 104, 112].

For side channel leakage, we assume the typical leakage
model covered by constant-time programming. That is, we
assume that memory accesses leak their addresses, branches
leak their outcomes, and variable-time instructions leak their
arguments. This model is widely accepted for nominal ex-
ecution, i.e. when the program executes in-order with no
speculative execution. For transient instructions, past work
assumed and demonstrated leakage of addresses from mem-
ory access [60] and of branch conditions [17, 29, 128]. In
this work we further demonstrate leakage of information on
the arguments of variable-time instructions that are executed
transiently.

The attacker aims to use Spectre v1 to cause the trusted
code to leak more secret data than it would leak if it were
executed in order. For that, we assume that the attacker can
cause any conditional branch in the trusted code to mispre-
dict. We assume that the attacker cannot cause mispredic-
tions of indirect branches and return instructions—effective
countermeasures for those are available [46, 111]. We further
assume that the processor is not vulnerable to Meltdown-type
attacks [21, 64, 113].

4 Speculative Load Hardening

The main aim of Speculative Load Hardening (SLH) is to pre-
vent data disclosure via microarchitectural channels during

4

speculative execution of code. For that, SLH tracks a specu-
lation flag whose value depends on the state of speculation.
SLH then uses the speculation flag to “poison” (or “harden”)
sensitive values to ensure that they do not leak. For example,
in the LLVM implementation of SLH, the speculation flag is 0
during nominal execution and is 0xFF...FF while misspecu-
lating. To poison a value, LLVM ORs it with the speculation
flag, ensuring that during misspeculation the poisoned value
is constant and cannot leak.

4.1 SLH Variants Implemented in LLVM
SLH in LLVM is a compiler pass that aims to protect against
Spectre v1 [23]. In particular, LLVM SLH aims to protect
against speculative bypass of tests such as array bound checks.

JC taken
.
.
.
JMP out
taken:
.
.
out:

JC taken
CMOVC -1, %rcx
.
.
JMP out
taken:
CMOVNC -1 %rcx
.
out:

Listing 2: Speculative state tracking in LLVM SLH

Speculation flag. To track the speculative state of the pro-
gram, LLVM SLH uses register, usually %rcx, as a specula-
tion flag, setting the bits of the register to 0 during correct
execution and to 1 during misspeculation. To achieve that,
LLVM SLH instruments every conditional branch to include
a conditional move (CMOVcc) in each branch, setting the spec-
ulation flag. For the condition of the conditional move, LLVM
SLH uses the inverse of the branch condition for the taken
branch and the branch condition for the non-taken branch.
For example, the branch instruction JC label in the left part
of Listing 2 is taken if the carry is set. When instrumented
(Listing 2 right), LLVM SLH adds a CMOVC -1, %rcx, which
sets all of the bits of %rcx if the carry is set, to the non-taken
branch. This CMOVC is only expected to execute if the branch
is not taken, i.e. if the carry is clear. In the nominal execution,
when the branch is not taken the carry is clear, hence the value
of %rcx does not change. However, if the branch is misspecu-
lated, the CMOVC will execute speculatively even though the
carry is set. Because conditional moves are not speculated, the
value of %rcx reflects the status of misspeculation. Similarly,
for the taken branch, LLVM SLH adds a CMOVNC conditional
move instruction, that sets the speculation flag to all ones in
the case of a misspeculation.

To transfer the speculation flag across function boundaries,
LLVM SLH uses the high bits of the stack pointer. Valid
user-space pointers in the x86-64 architecture have their 16
most significant bits all 0. Before a function call, LLVM

SLH sets these bits from the speculation flag. That is, in
the case of misspeculation, the most significant bits of the
stack pointer are set to 1, invalidating the stack pointer. In
the function prologue, LLVM SLH further adds code that
checks the most significant bits of the stack pointer and sets
the speculation flag accordingly. The same mechanism is used
to communicate the speculation flag on function return.
Poisoning loaded value. Spectre v1 attacks exploit misspec-
ulation to speculatively bypass data validation tests, such as
array bounds checks, and leak the accessed values. LLVM
protects against such bypasses by poisoning values loaded
from memory during misspeculation. Conceptually, the idea
is simple—when a value is loaded from memory, LLVM-
vSLH ORs it with the speculation flag. This, effectively, sets
the value bits to all-one during misspeculation while leaving
the value unchanged during nominal execution.
Poisoning load addresses. Instead of poisoning loaded val-
ues, SLH supports an option to poison all load addresses. With
this option, LLVM-aSLH poisons the values of the base and
index registers of addresses that are not considered fixed (see
below). This provides the protection level that SLH promises,
i.e. a protection against Spectre v1, because the attacker can-
not load data from arbitrary addresses.

Poisoning addresses provides some additional protection
against leakage of secret values that the program has nominal
access to, e.g. values in registers and those loaded from fixed
addresses. Most Spectre attacks use a cache-based covert
channel to communicate the leaked value to the attacker. That
is, the Spectre gadget accesses a memory location that de-
pends on the secret value in order to communicate the value.
Poisoning load addresses ensures that loads in misspecula-
tion use fixed addresses (up to the LLVM SLH definition
of a fixed address; see below) thus these addresses are not
data-dependent.

4.2 Strong SLH
Patrignani and Guarnieri [82] formalize variants of SLH; most
notably they introduce strong SLH (SSLH) and provide a
proof that SSLH indeed protects against all Spectre v1 attacks.
The model used for this proof divides the address space into a
private and a public heap. The attacker can write code that has
unfettered access to the public heap. However, to access the
private heap, the attacker uses a code library that is not under
direct attacker control. This code library can be invoked by
the attacker code and can call attacker provided subroutines.

While the attacker cannot access the private heap, the execu-
tion of the code library can leak the information it processes,
either directly by writing it into the public heap, or indirectly,
through address-based side channels that leak branch condi-
tions and the addresses of memory accesses. A program is
considered speculatively secure if any values that leaks un-
der speculation also leaks in the nominal execution of the
program.

5

In order to compare SSLH to LLVM-vSLH and LLVM-
aSLH in terms of security and performance impact, we set
out to implement this variant. The starting point for this im-
plementation is LLVM-aSLH, but it turns out that in order to
match all the assumptions made by the formal model of [82],
the protections need to go considerably further.
Load address hardening. While both SSLH and LLVM-
aSLH work by hardening addresses of loads, there is a differ-
ence in what loads are protected. SSLH assumes that all ad-
dresses of loads are protected, whereas LLVM-aSLH abstains
from protecting “fixed” addresses. Specifically, an address
is considered fixed by LLVM if both of the memory base
and memory index are values known at compile time. Most
notably this includes addresses that add a fixed offset to the
stack pointer or to the instruction pointer. As the stack pointer
may speculatively store sensitive values, we extend LLVM-
aSLH to also harden those addresses in our implementation
of SSLH. We do not implement hardening of addresses that
add fixed offsets to the instruction pointer. We note that the
security proof of Patrignani and Guarnieri [82] holds even
when fixed addresses are not hardened.
Store address hardening. LLVM-aSLH does not harden ad-
dresses of store instructions. This makes sense when thinking
of SSLH as a countermeasure targeting S2; however, as the
proof of SSLH requires protection at S3, addresses of store
instructions also require protection. We thus add this in our
implementation of SSLH. Store address are hardened with
the same logic that we also use for load addresses.
Branch hardening. As an additional covert channel that can
be used to leak secrets in speculative execution, SSLH also
assumes that the conditions of branches are hardened. In our
implementation of SSLH we ensure that branch conditions
depend on the speculation predicate.

The x86 architecture only supports a limited number of
instructions for manipulating the flags. Hence, poisoning the
flags, while possible, is inefficient. Instead of poisoning the
condition flag used by a branch instruction, we look for the
instruction that sets the flag and poison the arguments of this
instruction.

Specifically, if the arguments are loaded from memory, we
poison the load address, just as we do for any memory access.
For register arguments we poison the register value. As with
other instructions, we do not poison immediate values or fixed
addresses.

A summary of the differences between LLVM-vSLH,
LLVM-aSLH, and SSLH is given in Table 1; this table also
includes Ultimate SLH (USLH), which we introduce in Sec-
tion 6.

5 SLH Security

In this section we set out to answer two questions. First, do
the more extensive protections of SSLH compared to LLVM-
aSLH matter in practice? Second, are the extensive protec-

tions offered by SSLH sufficient to stop all Spectre v1 attacks?
We answer these questions by presenting two Spectre gad-
gets. The first, which exploits secret-dependent control flow,
is basically an adaptation of SMoTherSpectre [17] to Spectre
v1. It shows that unprotected branch conditions can indeed
be used as a covert channel and that hardening them in SSLH
thus really matters. The second gadget we demonstrate uses
arithmetic instructions whose execution time depends on their
arguments to build a covert channel. This gadget shows that
even the protections implemented by SSLH are not sufficient
to protect against all Spectre v1 attacks.

1 victim(int value, int isPublic) {
2 if (isPublic) {
3 //Leaky code
4 }
5 }

Listing 3: Pseudo code of victim functions.

Listing 3 shows the general structure of the proof-of-
concept code we use. The victim function emulates the case
of code that processes values, which can be secret or pub-
lic. The code takes different execution paths depending on
whether the value is secret or public. For example, the code
may choose a more secure constant-time implementation for
secret values and a faster albeit leaky implementation for pub-
lic values [84]. The attacker wants to obtain a secret value by
training the branch that chooses the execution path, causing
the leaky code to execute speculatively with a secret value.
The aim of SLH is to prevent the leak.

5.1 Exploiting Secret-Dependent Control
Flow

Our first proof-of-concept shows that branches that execute
speculatively can leak their condition. Consequently, poison-
ing the branch conditions, as done in SSLH, is essential. We
note that Spectre leakage through branch prediction has al-
ready been demonstrated [17, 29, 128].

Listing 4 shows the code of the victim. (While the example
shows C code, in practice, to avoid some of the intricacies of
the C compiler, we use equivalent LLVM intermediate code
for this and for the other PoCs we present in this section.)
To facilitate branch training, we use the technique of Röttger
and Janc [98], who observe that branch prediction depends
on branch history. The loop in Line 3 sets a fixed history for
the authorization branch in Line 6. The attacker then invokes
the function twice, each time with value=0 and isPublic=1.
This sets the prediction that the bodies of the if statements
in Lines 6 and 7 should be executed.

The attacker then arranges for the victim function to be
called with a secret value. It further arranges for the if in
Line 7 to be resolved slowly, e.g. by flushing the value of

6

Table 1: Features of different variants of SLH: value is the output (value) of loads masked; addr is the address of load instructions
masked; ind. branch are addresses of indirect branches masked; cond are conditionals used by branch instructions masked;
store are addresses of store instructions masked; SP+imm: are “fixed” addresses of the form stack-pointer plus fixed offset in
load/store instructions masked; IP+imm are “fixed” addresses of the form instruction-pointer plus fixed offset in load/store
instructions masked; rep is the length of rep instructions masked; arith are inputs to variable-time arithmetic instructions
masked.

SLH variant value addr ind. branch cond store SP+imm IP+imm rep arith
LLVM-vSLH 3 7 3 7 7 7 7 7 7
LLVM-aSLH 7 3 3 7 7 7 7 7 7

SSLH 7 3 3 3 3 3 7 7 7
USLH 7 3 3 3 3 3 7 3 3

1 victim(int value, int isPublic) {
2 // Branch training
3 for (volatile int i = 0; i < 200; i++);
4

5 // Boundary Check
6 if (isPublic) {
7 if (value == 0) {
8 a2 = a1 | a2;
9 a3 = a2 | a3;

10 ...
11 } else {
12 a1 = crc32(a1, a1);
13 a2 = crc32(a2, a2);
14 ...
15 }
16 }
17 }

Listing 4: Victim function for SMoTher attack

isPublic out of the cache. When the function executes, the
branch training loop sets the branch history to the same state
as in the training. Consequently, the processor mispredicts that
the body of the if in Line 6 will be executed and proceeds
to speculatively execute it. The if is initially predicted to
execute the then block, but because value is available, the if
is evaluated quickly, and in the case that value is 1, execution
proceeds speculatively to the else part of the if statement.
Eventually, the processor evaluates isPublic and detects the
misprediction. It then squashes all mispredicted instruction
and proceeds execution along the correct path.
Attack. The attacker’s aim is to distinguish whether the secret
value is 0 or 1. To achieve that, we rely on the observation
that when value=1, the processor speculatively executes dif-
ferent instructions than in the case that value=0. Specifically,
for value=0 we use a sequence of 48 or instructions, whereas
for value=1 we use a sequence of 48 crc32 instructions.

Port contention spy. To distinguish the execution paths, we
rely on port contention [19]. Specifically, the execution unit
of the processor contains multiple ports, each can execute
some instructions but not others. In particular, or uses ports
0, 1, 5, 6, whereas crc32 uses port 1. Hyperthreads of the
same execution core compete on the ports. Consequently, if
both hyperthreads issue instructions for the same port, port
contention will cause execution delays. Bhattacharyya et al.
[17] show that speculatively executed instructions can also
produce measurable delays. To exploit port contention, our
spy program executes a sequence of 42 crc32 instructions
and measures the execution time of the sequence.

Synchronization. To achieve port contention, we need to
ensure that the spy executes the measurement code at the
same time that the victim executes the distinguishing code.
For rough synchronization, we fork the spy and then the victim
and migrate both to hyperthreads of the same core. However,
forks are not instantaneous and migration takes time. To better
synchronize the processes, we use a shared pointer chasing
approach. Specifically, we create a linked list of 50 cache lines
that is shared between the victim and the spy. Before forking
creating the processes, we flush all of the cache lines of the
linked list from the cache. Upon initialization, both processes
start following the shared linked list from its head to its tail.
Because the linked list is initially out of the cache, following it
requires bringing all of the elements from memory. Moreover,
because the processor must read a list element to determine
the location of the following element, reading the elements
from the memory cannot be parallelized.

The first process to follow the list has to wait for each
element to be read from memory. When it follows the list,
the processor caches the elements. Hence, when the second
process starts following the list, it can advance much faster,
until reaching the first non-cached element. From this point,
both processes progress together, waiting for an element be-
fore advancing to the next. We find that after following 50
elements, both processes reach the tail of the list within 5–10
cycles of each other.

7

75 80 85 90 95 100
Execution Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y

value = 0
value = 1

Figure 1: Spy measurement of port contention on Intel Core
i7-6700K.

Results. We test the code on Intel Core i7-6700K and Core
i5-8265U, both running Ubuntu 20.04. We build the victim
with LLVM-vSLH, the default implementation of clang 13
We collect 20,000 samples, each consisting of the average spy
measurement over 100 runs of the spy and the victim. Figure 1
shows the distribution of the average measurement for the
cases that the secret value is 0 and 1, when running on the
Core i7-6700K processor. As we can see, when value=1 the
measurements are about 7 cycles longer than when value=0,
and the two distributions are easily distinguishable, allowing
the attacker to determine the secret value.

5.2 Time-Variable Gadget Design
We now turn our attention to exploiting instructions whose
execution time depends on their arguments. Passing secret
information as arguments to such instructions can lead to mea-
surable execution time differences, which leak the secret in-
formation [6, 61]. Thus it would appear that such instructions
could be used to leak information from speculative execution.
Measuring execution time of misspeculated instructions.
To extract leaked secrets from variable-time instructions, past
attacks measure the execution time of some code that con-
tain the instructions. However, this approach cannot work for
measuring the execution speed of misspeculated code. Typi-
cal techniques for accurate time measurement include fence
instructions that ensure that the measured code completed exe-
cution before the measurement is taken [125], but fences also
terminate misspeculation. Consequently, it is impossible to
use time measurements in misspeculation. At the same time,
the execution speed of misspeculated code does not affect the
program’s execution time. Misspeculation terminates when
the processor detects that it misspeculated and the timing of
this detection does not depend on the execution speed of the
misspeculated code.
Branch racing. Instead of directly measuring the execu-
tion time of misspeculated code, our gadget creates a race
condition between the misspeculated code and the branch
condition. Listing 5 shows an example of the Spectre gadget
we use as a proof-of-concept. The argument value can hold

1 victim(double value, int isPublic) {
2 // Branch training
3 for (volatile int i = 0; i < 200; i++);
4

5 // Boundary Check
6 if (isPublic) {
7 value = sqrtsd(value);
8 value = mulsd(value, value);
9 ...

10 value = sqrtsd(value);
11 value = mulsd(value, value);
12 memory_access(adrs);
13 }
14 }

Listing 5: Victim function for variable-time instructions

on of two values, which we call fast and slow. Specifically,
we use 65536 for fast and 2.34e-308 for slow [91].

In the misspeculated branch, the code performs a sequence
of SQRTSD and MULSD instructions on value, which we call the
leak sequence. This sequence is followed by a memory access
(Line 12). The leak sequence is designed so that it repeatedly
computes the square root of the original value of value. On
our i7-6700K machine, executing a single block of SQRTSD
and MULSD on fast takes 17.4 cycles on average, compared
with 22.8 for slow. In our experiments, misprediction lasts
around 240 cycles. Thus, with 10 repetition of the SQRTSD
and MULSD we expect that the leak sequence will complete
before the misspeculation ends when executed with the fast
value, but not when executed with the slow value. Hence, if
the memory access at Line 12 executes after the leak sequence
completes, the memory access will only happen when value
is fast.
Out-of-order execution. Unfortunately, ensuring that the
memory access in Line 12 only executes after the leak se-
quence completes is not trivial. As discussed, the processor
uses out-of-order execution, and will execute an instruction if
all of its arguments are available and there is an available exe-
cution port. The adrs argument of the memory access does
not depend on the computation in the leak sequence. More-
over, load instructions use ports 2 and 3, whereas the SQRTSD
uses port 0 and MULSD uses ports 0 and 1. Consequently, there
is no conflict between the leak sequence and the memory
access, and the processor executes the memory access as soon
as speculation starts.
False dependency solution. We first start with a straw-man
approach for ensuring that the memory access is only exe-
cuted after the leak sequence. The idea is to create a false-
dependency between the result of the leaky sequence and the
address of the memory access. Specifically, before Line 12
of Listing 5 we add: addr += ((int) value & 0xff) >>

8

12. Because the added value is always 0, this does not change
addr. However, due to its dependency on value, which is the
output of the leak sequence, the processor waits for the leak
sequence to compute before performing the memory access.
Experiment design. To test the gadget, we observe that we
expect the memory access to only happen when the value is
fast. We use a Flush+Reload covert channel [41, 125]. That
is, before calling the victim we flush the memory location
addr from the cache. After the victim executes, we measure
the access time to the location. A short access time indicates
that addr is in the cache, i.e. that the value is fast.
Testing the false dependency solution. We test the gadget
on two processors. An Intel Core i7-6700K and a Core i7-
10710U, both running Ubuntu 20.04. On each machine we
run the attack 100,000 times, each time selecting at random
whether value is fast or slow and check whether the spy
correctly guesses the value. We find that the spy correctly
detects the choice of value with a probability of 93.9% on
the i7-6700K, and 92.2% on the i7-10710U.
False dependency and SLH. While none of the existing
SLH variants is designed to protect against leaking instruc-
tion timing, it turns out that LLVM-aSLH and SSLH protect
against leakage. The false dependency that forces the memory
access to evaluate after the leak sequence also affects SLH’s
detection of fixed addresses. Both LLVM-aSLH and SSLH
poison non-fixed addresses, including the read from addr.
Poisoning affects the gadget in two ways. First, it create a
dependency between the branch condition and the memory ac-
cess. Consequently, the memory access cannot happen before
the branch condition is evaluated. This creates a race between
resolving the branch and accessing the memory, which the
branch is likely to win both because it is older and because
poisoning needs to execute at least two more instructions:
the conditional move that sets the speculation flag and the
actual poisoning. Moreover, even if the memory access starts
executing before the branch resolves, the location it accesses
is likely to be invalid, blocking the Flush+Reload channel.
We note however that poisoning the address only masks the
access not the fact that the access happens. Thus, it may be
possible to create a gadget that relies on false dependency that
remains exploitable in the presence of address poisoning. We
leave investigating this possibility to future work.

5.3 Exploiting Resource Contention
In the previous section we saw how to exploit variable-timing
instructions together with a false dependency to create a covert
channel for a Spectre gadget. However, due to the false depen-
dency, SLH does not identify that the address used is constant.
Hence, SLH poisons it, and “unintentionally” protects against
the attack.

In this section we demonstrate a Spectre gadget that ex-
ploits variable-timing instructions without creating a false
dependency between these instructions and the subsequent

memory access. Our gadget relies on creating contention on
internal resources required for scheduling µops execution. We
first describe the relevant steps that the execution engine takes
while running a program. We then explain how our gadget
operates.
Reservation stations. Recall that the execution engine of
the processor receives a stream of µops, which it executes.
To exploit instruction-level parallelism, the execution engine
does not execute µops in program order. Instead µops can be
executed in any order that satisfies the data dependencies in
the program. To track the data dependencies of a µop, the pro-
cessor uses reservation stations [45], also known as scheduler
entries in the Intel nomenclature [71]. Thus, µop execution
consists of allocating a reservation station and other resources
required for its execution. The reservation station waits until
all inputs for the µop are available, at which time the scheduler
queues the µop to one of the appropriate execution units.

When µops’ execution takes a long time, the processor may
run out of reservation stations and other resources required
for their execution. When these resources are required for
tracking data dependencies, as is the case with reservation
stations, younger instructions cannot be safely scheduled, and
their execution is stalled even if they do not depend on older
instructions which are pending.
Gadget evaluation. We test the gadget in Listing 5 on an
Intel Core i5-8265U, microcode 0xEA, and on an Intel Core
i7-10710U, microcode 0xE8, both running Ubuntu 20.04 and
both with the CPU governor set to performance. To use the
gadget, we first execute the victim twice with public values,
training the branch. We then flush adrs from the cache and
execute the victim with a ‘secret’ value, which can be either
fast or slow. For this attack execution we delay the evaluation
of isPublic so that the branch in Line 6 mispredicts. Finally,
when the function returns we check whether adrs is cached.
We collect 100,000 samples on each processors, where in
each sample value is randomly chosen as either fast or slow.
Results. The results depend on the number of pairs of SQRTSD
and MULSD instructions we use. With 40 such pairs, the mem-
ory access always executes and we observe that with a high
probability, adrs is cached (99.9% for slow value). When
SQRTSD and MULSD are repeated 55 times, we observe that,
with a low probability, adrs is cached (4.3% for fast value).
However, when the number of SQRTSD and MULSD instructions
is between these values, we find that whether adrs is cached
depends on the chosen value.

Specifically, for 45 repetitions of SQRTSD and MULSD we
find that when value is fast, with a high probability (92.5%
on the i5-8625U and 96.6% on the i7-10710U) adrs is cached.
Conversely, when value is slow, the probability that adrs is
cached is 5.2% and 4.5% for the i5-8625U and the i7-10710U,
respectively. Moreover, building the proof-of-concept with
any of the SLH variants in Section 4 does not prevent the
leak.
Discussion. In the gadget in Listing 5, the memory access
in Line 12 does not depend on any of the prior instructions.

9

Moreover, load instructions use ports 2 and 3, whereas the
SQRTSD and MULSD instructions use ports 0 and 1. Conse-
quently, data dependency and execution unit availability do
not explain the stall of the memory access.

We believe that the cause of the stall is resource exhaustion.
The long sequence of SQRTSD and MULSD instructions con-
sume resources required for scheduling further instructions,
possibly reservation stations. As the execution of the SQRTSD
and MULSD instructions completes speculatively, the processor
frees the resource they consume, gradually releasing younger
instructions to be scheduled. Given sufficient time, enough
SQRTSD and MULSD instructions will complete execution to al-
low the memory access to execute. However, misspeculation
only lasts until the processor computes the branch condition.
Hence, we have a race between detecting the misspecula-
tion and performing the memory access. When the number
of SQRTSD and MULSD instructions is small, the memory ac-
cess always wins the race. When the number of SQRTSD and
MULSD instructions is sufficiently high, detecting the misspec-
ulation always wins. However, when the number is between
these extremes, the winner is determined by the rate at which
the SQRTSD and MULSD instructions are executed—with fast
value, the memory access wins and gets executed, whereas
with slow value, the misspeculation detection wins and the
memory access is not executed.

6 Ultimate Speculative Load Hardening

The attacks we presented in Section 5 demonstrate that—short
of preventing speculative execution with fences—currently
there are no software-based countermeasures that block all
forms of Spectre v1 attacks. The presented gadgets are some-
what specific, and are unlikely to be found in real software.
Nonetheless, the risk they present is twofold. First, the gad-
gets show that assumptions made in prior security proofs do
not hold in practice. For example, past works assume that
analyzing the case of maximum misspeculation results in a
worst-case leakage [40, 82]. However these ignore the impact
of instruction timing on the speculation window, as demon-
strated in Section 5.3. Second, the history of side-channel
attacks shows that in many cases there are non-obvious ex-
ploits to weaknesses. For example, both Bernstein [13] and
Osvik et al. [80] identify cache banks as a potential security
weakness, but the first practical attack that exploits them was
only published a decade later [126]. Hence, while the pre-
sented gadgets are artificial, it is impossible to preclude the
presence of gadgets that exploit similar effects in real-world
software.

In this section we extend our implementation of SSLH to
also harden variable-time arithmetic; we call the resulting
variant ultimate SLH (USLH). We show that USLH protects
against all of the gadgets we present in Section 5. Moreover,
because USLH poisons all instructions that may conflict with
constant-time programming [14], we believe that USLH also

protects against future variants of Spectre. We first describe
how we implement hardening of variable-time arithmetic. We
then evaluate how USLH blocks leakage from our gadgets.
Last, we evaluate the performance impact of USLH.

6.1 USLH Implementation
USLH is basically SSLH with added protection for variable-
time instructions. We now describe how we add this protec-
tion.
Hardening repeat instructions. One of the oddities of the
x86 instruction set is repeat instructions. Originally added
to simplify string and memory operations, these instructions
perform one or more memory access and automatically in-
crement or decrement the addresses they use, so repeated
use of the instructions will perform the operation on suc-
cessive addresses. Moreover, the instructions support several
repeat prefixes that, when present causes the operations to
execute in a loop controlled by the %rcx register and possi-
bly an additional condition on the data processed. LLVM’s
implementations of SLH poison the addresses used by these
instructions, but not the repeat counter. As executing repeat
instructions may leak the number of times they execute, we
also poison %rcx.
Hardening floating-point instructions. For floating point
instructions, we harden SSE2, vector and X87 floating point
instructions. For vector and SSE2 instructions, we poison
all arguments. X87 instructions use an internal value stack
for operations. Because we cannot poison the values in the
internal stack, we insert an lfence speculation barrier in every
basic block that uses X87 floating point instructions.

6.2 Testing USLH Security

Hardening branches. Branch-condition hardening is part
of our implementations of both SSLH and USLH. To demon-
strate the effectiveness of the defense against our control flow
attack (Section 5.1), we compile the victim function with
USLH and repeat experiment. We run tests 20,000 times and
each time we take average of 100 samples. The result, shown
in Figure 2, demonstrate that the distributions of execution
times for the cases of a secret value 0 and 1 are indistinguish-
able. This is in stark contrast with the unprotected case in
Figure 1.
Hardening variable-time instructions. We test the two
gadgets that exploit variable time instructions with USLH.
Because USLH poisons the arguments of the floating point
instructions, during misspeculation their timings are constant
and do not depend on the value of the secret. Consequently,
we no longer can distinguish between the values of the secret.

Interestingly, for the false-dependency variant (Section 5.2),
we never observe that the memory access executes, even when
we reduce the length of the leak sequence. We suspect that
due to the false dependency, the dependencies of the memory

10

80 85 90 95 100 105
Execution Time

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Pr
ob

ab
ilit

y

value = 0
value = 1

Figure 2: Mitigating V1 SMoTher Attack

access are only satisfied when the branch condition is evalu-
ated. At this time the branch gets executed and squashes the
transient execution of the memory access before the latter has
the opportunity to execute.

For the resource contention variant (Section 5.3), we ob-
serve that when the number of repetitions of the SQRTSD and
MULSD instructions drops below 26, we always observe the
memory access, and above that threshold we never observe the
memory access. Either way, we cannot distinguish between
secret values.

6.3 Security Analysis
It is possible to prove that USLH achieves its intended goal,
i.e. prevents speculative leakage. This claim is established
w.r.t. a formal model of execution, featuring an attacker with
full control over control-flow, and based on the leakage model
used in the constant-time literature. More specifically, the
formal model of execution is described by a transition relation
in the style of [10, 25]. The relation is of the form 〈C,b〉 o−−→

d
〈C′,b′〉, where C and C′ are configurations, d is an adversarial
directive taken from the set

d ∈D ::= step | force

and o is an observation taken from the set:

o ∈ O ::= • | read a | write a | branch t | op v v

Informally, 〈C,b〉 o−−→
d
〈C′,b′〉 says that one step execution

under directive d transitions from configuration 〈C,b〉 to con-
figuration 〈C′,b′〉, leading to observation o.

Directives determine the control-flow of the program; the
directive step is used for all non-branching instructions and to
force execution along the correct path for branching instruc-
tions (we consider instructions with only two successors),

whereas the directive force is only used for branching instruc-
tions and to force execution along the incorrect path.

Observations respectively correspond to execution perform-
ing a memory read or write, entering a branch, or carrying out
a variable-time arithmetic operation, and respectively leak the
address a of the memory accesses, the value t of the guard,
and the values v1 and v2 of the operands (for binary time-
variable operators). For convenience, the transition relation
also considers booleans b and b′ that track misspeculation;
these flags are set to true when execution is speculating, and
remain true afterwards.

This semantics forms the basis to reason about the correct-
ness of the countermeasure. Specifically, we use the semantics
to define relative constant-time, or RCT, stating that specula-
tive execution of programs does not leak more than sequential
execution of programs. This style of policy is used in several
works, including [40] and discussed in [26].

Next, we formalize the countermeasure as a program-to-
program transformation, and prove that for every program c
its transform under USLH satisfies RCT. The main technical
lemma states that speculative execution does not leak, i.e.

〈C,>〉 o−−→
d
〈C′,>〉⇒ o ∈ O

where O is given by the following grammar:

o ::= • | read a | write a | branch t | op v v

where a, t and v are default values.
We provide a formal proof of our claim, in the setting of

a core language, in Appendix A. The proof proceeds along
similar lines as prior works, with some key differences, sum-
marized below:

• the countermeasure also masks guards and operands
from variable-time instructions;

• the leakage model is extended to account for variable-
time instructions, whereas other models consider that
arithmetic instructions do not leak;

• the operational semantics is extended to unsafe specula-
tive accesses, which are not considered in prior works.

6.4 SLH Performance Overhead
In this section we report on our performance evaluation of
the different variants of SLH. For this evaluation we use the
SPEC2017 benchmark, compiled with clang and clang++ at
optimization level O3. All experiments were run on a machine
with an Intel i7-10710U CPU at microcode 0xE8 running
Ubuntu 20.04. We set the performance governor to perfor-
mance and we only test the performance of single-thread
execution. The results are displayed in Figures 3 to 5.

As a baseline we benchmark unprotected code and as an
alternative to SLH we also include code protected with the

11

lfence countermeasure. This countermeasure prevents spec-
ulative execution at each branch and thus systematically pre-
vents Spectre v1 attacks. It is thus a minimum requirement
for any other Spectre v1 countermeasure to achieve better
performance—we see that this is the case for all SLH variants,
and by quite a margin.

Aside from benchmarking the four variants of SLH dis-
cussed in the paper, i.e. LLVM-vSLH, LLVM-aSLH, SSLH,
and USLH, we also benchmark the cost of only computing
the misprediction predicate, but not using it to poison any
values (“Trace Only”). We run this additional benchmark to
obtain a better understanding of what causes most of the slow-
down in SLH: the tracing, which also requires one register,
or the poisoning. We see that both contribute significantly
to the slowdown, but to varying degrees in different bench-
marks. This makes sense, as tracing alone is expected to be
quite costly in branch-heavy code and in scenarios with high
register pressure.

We see that all SLH variants incur a significant overhead,
slowing down some of the benchmarks by a factor of three.
However the difference between the four variants is relatively
small. Not surprisingly, USLH incurs notable additional over-
head compared to SSLH only in the floating-point bench-
marks. Both SSLH and USLH have a somewhat increased
cost compared to the two implementations in LLVM, but this
cost is not dramatic in any of the benchmarks and it is close
to zero in some. The conclusion we draw from this is that
applications that can afford the slowdown incurred by SLH
are very likely to also tolerate the small additional cost of
USLH. This will give them protection not only against the
exploitation of some common Spectre v1 gadgets, but a sys-
tematic protection against all Spectre v1 attacks at a cheaper
price than using lfence.

7 Conclusion

In this paper we revisited speculative load hardening, the
most promising Spectre v1 software-only countermeasure.
We analyzed the differences between three different existing
variants of SLH from a performance and security point of
view. We presented a novel proof-of-concept attack exploit-
ing non-constant-time arithmetic instructions in speculatively
executed code. This novel attack is not prevented by any of the
previously proposed variants of SLH, including the “strong
SLH” variant that had been proven secure. The reason is not
a mistake in the proof, but the underlying model that incor-
rectly assumes that variable-time arithmetic does not leak in
speculative execution. We showed that SLH can be extended
to also protect against the novel attack and claimed that this
variant of SLH indeed protects against all Spectre v1 attacks—
this claim is motivated by the fact that all known sources
of leakage in the non-speculative domain are eliminated in
the speculative domain. This is proven in a formal model
capturing all these sources of leakage.

Acknowledgments

This work has been supported by an ARC Discovery Early
Career Researcher Award DE200101577; an ARC Discovery
Project number DP210102670; the Blavatnik ICRC at Tel-
Aviv University; the European Commission through the ERC
Starting Grant 805031 (EPOQUE); by Deutsche Forschungs-
gemeinschaft (DFG, German research Foundation) as part
of the Excellence Strategy of the German Federal and State
Governments – EXC 2092 CASA - 390781972; and a gift by
Google.

References

[1] Onur Acıiçmez and Jean-Pierre Seifert. Cheap hard-
ware parallelism implies cheap security. In FDTC,
pages 80–91, 2007. 3

[2] Onur Acıiçmez, Shay Gueron, and Jean-Pierre Seifert.
New branch prediction vulnerabilities in OpenSSL and
necessary software countermeasures. In IMACC, pages
185–203, 2007. 3

[3] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre
Seifert. Predicting secret keys via branch prediction.
In CT-RSA, pages 225–242, 2007. 3

[4] Onur Acıiçmez, Billy Bob Brumley, and Philipp Grab-
her. New results on instruction cache attacks. In CHES,
pages 110–124, 2010. 3

[5] Ayush Agarwal, Sioli O’Connell, Jason Kim, Shaked
Yehezkel, Daniel Genkin, Eyal Ronen, and Yuval
Yarom. Spook.js: Attacking Chrome strict site iso-
lation via speculative execution. In IEEE SP, 2022.
3

[6] Marc Andrysco, David Kohlbrenner, Keaton Mowery,
Ranjit Jhala, Sorin Lerner, and Hovav Shacham. On
subnormal floating point and abnormal timing. In IEEE
SP, pages 623–639, 2015. 8

[7] Kristin Barber, Anys Bacha, Li Zhou, Yinqian Zhang,
and Radu Teodorescu. SpecShield: Shielding specula-
tive data from microarchitectural covert channels. In
PACT, pages 151–164, 2019. 4

[8] Kristin Barber, Anys Bacha, Li Zhou, Yinqian Zhang,
and Radu Teodorescu. Isolating speculative data to
prevent transient execution attacks. IEEE Comput.
Archit. Lett., 18(2):178–181, 2019. 4

[9] Gilles Barthe, Gustavo Betarte, Juan Diego Campo,
Carlos Daniel Luna, and David Pichardie. System-
level non-interference for constant-time cryptography.
In CCS, pages 1267–1279, 2014. 3

12

500.perlbench_r 502.gcc_r 505.mcf_r 520.omnetpp_r 523.xalancbmk_r 525.x264_r 531.deepsjeng_r 541.leela_r 557.xz_r intrate_base
0

1

2

3

4

5

6

7

8

Ba
se

 R
at

e
N

or
m

al
iz

at
io

n
(H

ig
he

r i
s

sl
ow

er
)

No Mitigation
Trace Only
LLVM-vSLH
LLVM-aSLH
SSLH
USLH
LFENCE

Figure 3: SPEC2017 Int(rate) Benchmark

600.perlbench_s 602.gcc_s 605.mcf_s 620.omnetpp_s 623.xalancbmk_s 625.x264_s 631.deepsjeng_s 641.leela_s 657.xz_s intspeed_base
0

1

2

3

4

5

6

7

8

Ba
se

 R
at

e
N

or
m

al
iz

at
io

n
(H

ig
he

r i
s

sl
ow

er
)

No Mitigation
Trace Only
LLVM-vSLH
LLVM-aSLH
SSLH
USLH
LFENCE

Figure 4: SPEC2017 Int(speed) Benchmark

508.namd_r 510.parest_r 511.povray_r 519.lbm_r 526.blender_r 538.imagick_r 544.nab_r fprate_base
0

1

2

3

4

5

6

7

8

Ba
se

 R
at

e
N

or
m

al
iz

at
io

n
(H

ig
he

r i
s

sl
ow

er
)

No Mitigation
Trace Only
LLVM-vSLH
LLVM-aSLH
SSLH
USLH
LFENCE

Figure 5: SPEC2017 Floating Point(rate) Benchmark

619.lbm_s 638.imagick_s 644.nab_s fpspeed_base
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Ba
se

 R
at

e
N

or
m

al
iz

at
io

n
(H

ig
he

r i
s

sl
ow

er
)

No Mitigation
Trace Only
LLVM-vSLH
LLVM-aSLH
SSLH
USLH
LFENCE

Figure 6: SPEC2017 Floating Point(speed) Benchmark

13

508.namd_r 510.parest_r 511.povray_r 519.lbm_r 526.blender_r 538.imagick_r 544.nab_r fprate_base
0

1

2

3

4

5

6

7

8

Ba
se

 R
at

e
N

or
m

al
iz

at
io

n
(H

ig
he

r i
s

sl
ow

er
)

No Mitigation
Trace Only
LLVM-vSLH
LLVM-aSLH
SSLH
USLH
LFENCE

Figure 7: SPEC2017 Floating Point 4-thread Benchmark

500.perlbench_r 502.gcc_r 505.mcf_r 520.omnetpp_r 523.xalancbmk_r 525.x264_r 531.deepsjeng_r 541.leela_r 557.xz_r intrate_base
0

1

2

3

4

5

6

7

Ba
se

 R
at

e
N

or
m

al
iz

at
io

n
(H

ig
he

r i
s

sl
ow

er
)

No Mitigation
Trace Only
LLVM-vSLH
LLVM-aSLH
SSLH
USLH
LFENCE

Figure 8: SPEC2017 Int 4-thread Benchmark

[10] Gilles Barthe, Sunjay Cauligi, Benjamin Gregoire,
Adrien Koutsos, Kevin Liao, Tiago Oliveira, Swarn
Priya, Tamara Rezk, and Peter Schwabe. High-
assurance cryptography in the Spectre era. In IEEE
S&P, 2021. 4, 11, 19, 20

[11] Mohammad Behnia, Prateek Sahu, Riccardo
Paccagnella, Jiyong Yu, Zirui Neil Zhao, Xiang
Zou, Thomas Unterluggauer, Josep Torrellas, Carlos
Rozas, Adam Morrison, Frank McKeen, Fangfei
Liu, Ron Gabor, Christopher W. Fletcher, Abhishek
Basak, and Alaa R. Alameldeen. Speculative
interference attacks: breaking invisible speculation
schemes. In ASPLOS, pages 1046–1060, 2021. doi:
10.1145/3445814.3446708. 3

[12] Dmitry Belyavsky, Billy Bob Brumley, Jesús-Javier
Chi-Domínguez, Luis Rivera-Zamarripa, and Igor Usti-
nov. Set it and forget it! turnkey ECC for instant inte-
gration. In ACSAC, pages 760–771, 2020. 3

[13] Daniel J. Bernstein. Cache-timing attacks on AES.
https://cr.yp.to/antiforgery/cachetiming-
20050414.pdf, 2005. 3, 10

[14] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe.
The security impact of a new cryptographic library. In
Latincrypt, pages 159–176, 2012. 3, 10

[15] Daniel J. Bernstein, Chitchanok Chuengsatiansup, and
Tanja Lange. Curve41417: Karatsuba revisited. In
CHES, pages 316–334, 2014. 3

[16] Daniel J. Bernstein, Chitchanok Chuengsatiansup,
Tanja Lange, and Christine van Vredendaal. NTRU
prime: Reducing attack surface at low cost. In SAC,
pages 235–260, 2017. 3

[17] Atri Bhattacharyya, Alexandra Sandulescu, Matthias
Neugschwandtner, Alessandro Sorniotti, Babak Fal-
safi, Mathias Payer, and Anil Kurmus. SMoTherSpec-
tre: Exploiting speculative execution through port con-
tention. In CCS, pages 785–800, 2019. 3, 4, 6, 7

[18] Robert Brotzman, Danfeng Zhang, Mahmut Taylan
Kandemir, and Gang Tan. SpecSafe: detecting cache
side channels in a speculative world. Proc. ACM Pro-
gram. Lang., 5(OOPSLA):1–28, 2021. 4

[19] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib
ul Hassan, Cesar Pereida García, and Nicola Tuveri.
Port contention for fun and profit. In IEEE S&P, pages
870–887, 2019. 3, 7

[20] Claudio Canella, Jo Van Bulck, Michael Schwarz,
Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank
Piessens, Dmitry Evtyushkin, and Daniel Gruss. A sys-
tematic evaluation of transient execution attacks and
defenses. In USENIX Security Symposium, pages 249–
266, 2019. 3

[21] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel
Gruss, Moritz Lipp, Marina Minkin, Daniel Moghimi,
Frank Piessens, Michael Schwarz, Berk Sunar, Jo Van

14

https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf

Bulck, and Yuval Yarom. Fallout: Leaking data on
meltdown-resistant CPUs. In CCS, pages 769–784,
2019. 1, 3, 4

[22] Claudio Canella, Sai Manoj Pudukotai Dinakarrao,
Daniel Gruss, and Khaled N. Khasawneh. Evolution of
defenses against transient-execution attacks. In ACM
Great Lakes Symposium on VLSI, pages 169–174, 2020.
4

[23] Chandler Carruth. Speculative load hardening. https:
//llvm.org/docs/SpeculativeLoadHardening.
html, 2018. Visited: 2021-12-18. 1, 2, 4, 5

[24] Chandler Carruth. Cryptographic soft-
ware in a post-Spectre world. Talk at
the Real World Crypto Symposium, 2020.
https://chandlerc.blog/talks/2020_post_
spectre_crypto/post_spectre_crypto.html
Visited: 2022-01-13. 1

[25] Sunjay Cauligi, Craig Disselkoen, Klaus von Gleis-
senthall, Dean M. Tullsen, Deian Stefan, Tamara Rezk,
and Gilles Barthe. Constant-time foundations for the
new Spectre era. In PLDI, pages 913–926, 2020. 4, 11,
19

[26] Sunjay Cauligi, Craig Disselkoen, Daniel Moghimi,
Gilles Barthe, and Deian Stefan. SoK: Practical foun-
dations for software Spectre defenses. In IEEE SP,
2022. 4, 11

[27] Kevin Cheang, Cameron Rasmussen, Sanjit Seshia, and
Pramod Subramanyan. A formal approach to secure
speculation. In CSF, 2019. doi: 10.1109/CSF.2019.
00027. 4

[28] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian
Zhang, Zhiqiang Lin, and Ten-Hwang Lai. SgxPectre:
Stealing intel secrets from SGX enclaves via specu-
lative execution. In IEEE EuroS&P, pages 142–157,
2019. 3

[29] Md Hafizul Islam Chowdhuryy, Hang Liu, and Fan Yao.
BranchSpec: Information leakage attacks exploiting
speculative branch instruction executions. In ICCD,
pages 529–536, 2020. 4, 6

[30] Chitchanok Chuengsatiansup, Daniel Genkin, Yuval
Yarom, and Zhiyuan Zhang. Side-channeling the Ka-
lyna key expansion. In CT-RSA, 2022. 3

[31] Robert J Colvin and Kirsten Winter. An abstract se-
mantics of speculative execution for reasoning about
security vulnerabilities. In FM, 2019. 4

[32] Victor Costan and Srinivas Devadas. Intel SGX ex-
plained. Cryptology ePrint Archive Report 2016/86,
2016. 4

[33] Lesly-Ann Daniel, Sebastian Bardin, and Tamara Rezk.
Hunting the haunter — efficient relational symbolic
execution for Spectre with Haunted RelSE. In NDSS,
2021. 4

[34] Sushant Dinesh, Grant Garrett-Grossman, and Christo-
pher W. Fletcher. SynthCT: Towards portable constant-
time code. In NDSS, 2022. 3

[35] Andres Erbsen, Jade Philipoom, Jason Gross, Robert
Sloan, and Adam Chlipala. Simple high-level code for
cryptographic arithmetic - with proofs, without com-
promises. In IEEE SP, pages 1202–1219, 2019. 3

[36] Dmitry Evtyushkin, Dmitry V. Ponomarev, and Nael B.
Abu-Ghazaleh. Jump over ASLR: attacking branch
predictors to bypass ASLR. In MICRO, pages 40:1–
40:13, 2016. 3

[37] Dmitry Evtyushkin, Ryan Riley, Nael B. Abu-
Ghazaleh, and Dmitry Ponomarev. BranchScope: A
new side-channel attack on directional branch predictor.
In ASPLOS, pages 693–707, 2018. 3

[38] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser.
A survey of microarchitectural timing attacks and coun-
termeasures on contemporary hardware. J. Cryptogr.
Eng., 8(1):1–27, 2018. 3

[39] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Translation leak-aside buffer: Defeating
cache side-channel protections with TLB attacks. In
USENIX Security Symposium, pages 955–972, 2018. 3

[40] Marco Guarnieri, Boris Köpf, José F. Morales, Jan
Reineke, and Andrés Sánchez. Spectector: Principled
detection of speculative information flows. In IEEE
SP, pages 1–19, 2020. 4, 10, 11

[41] David Gullasch, Endre Bangerter, and Stephan Krenn.
Cache games - bringing access-based cache attacks on
AES to practice. In IEEE S&P, pages 490–505, 2011.
3, 9

[42] Shengjian Guo, Yueqi Chen, Peng Li, Yueqiang Cheng,
Huibo Wang, Meng Wu, and Zhiqiang Zuo. SpecuSym:
speculative symbolic execution for cache timing leak
detection. In ICSE, pages 1235–1247, 2020. 4

[43] Noam Hadad and Jonathan Afek. Overcoming
(some) Spectre browser mitigations. https:
//alephsecurity.com/2018/06/26/spectre-
browser-query-cache/, 2018. Accessed: 2022-01-
25. 4

[44] John Hazen. Mitigating speculative execution
side-channel attacks in Microsoft Edge and
Internet Explorer. https://blogs.windows.

15

https://llvm.org/docs/SpeculativeLoadHardening.html
https://llvm.org/docs/SpeculativeLoadHardening.html
https://llvm.org/docs/SpeculativeLoadHardening.html
https://chandlerc.blog/talks/2020_post_spectre_crypto/post_spectre_crypto.html
https://chandlerc.blog/talks/2020_post_spectre_crypto/post_spectre_crypto.html
https://alephsecurity.com/2018/06/26/spectre-browser-query-cache/
https://alephsecurity.com/2018/06/26/spectre-browser-query-cache/
https://alephsecurity.com/2018/06/26/spectre-browser-query-cache/
https://blogs.windows.com/msedgedev/2018/01/03/speculative-execution-mitigations-microsoft-edge-internet-explorer/

com/msedgedev/2018/01/03/speculative-
execution-mitigations-microsoft-edge-
internet-explorer/, 2018. Accessed: 2022-01-25.
4

[45] John L. Hennessy and David A. Patterson. Computer
Architecture A Quantitative Approach. Morgan Kauf-
mann, 5th edition, 2012. ISBN 978-0-12-383872-8.
9

[46] Intel. Retpoline: A branch target injection miti-
gation. https://www.intel.com/content/dam/
develop/external/us/en/documents/retpoline-
a-branch-target-injection-mitigation.pdf,
2018. 4

[47] Intel. Intel analysis of speculative execution side chan-
nels. https://newsroom.intel.com/wp-content/
uploads/sites/11/2018/01/Intel-Analysis-
of-Speculative-Execution-Side-Channels.pdf,
2018. Visited: 2022-01-15. 1

[48] Intel. Intel analysis of speculative execution side chan-
nels. https://newsroom.intel.com/wp-content/
uploads/sites/11/2018/01/Intel-Analysis-
of-Speculative-Execution-Side-Channels.pdf,
2018. 4

[49] Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz
Krebbel, Berk Gülmezoglu, Thomas Eisenbarth, and
Berk Sunar. Spoiler: speculative load hazards boost
Rowhammer and cache attacks. In USENIX Security
Symposium, pages 621–637, 2019. 3

[50] Ira Ray Jenkins, Prashant Anantharaman, Rebecca
Shapiro, J Peter Brady, Sergey Bratus, and Sean W
Smith. Ghostbusting: Mitigating Spectre with intrapro-
cess memory isolation. In HotSos, 2020. 4

[51] Xuancheng Jin, Xuangan Xiao, Songlin Jia, Wang Gao,
Hang Zhang, Dawu Gu, Siqi Ma, Zhiyun Qian, and
Juanru Li. Annotating, tracking, and protecting crypto-
graphic secrets with CryptoMPK. In IEEE S&P, 2022.
4

[52] Brian Johannesmeyer, Jakob Koschel, Kaveh Razavi,
Herbert Bos, and Cristiano Giuffrida. Kasper: Scan-
ning for generalized transient execution gadgets in the
Linux kernel. In NDSS, 2022. 4

[53] Angshuman Karmakar, Sujoy Sinha Roy, Oscar
Reparaz, Frederik Vercauteren, and Ingrid Ver-
bauwhede. Constant-time discrete gaussian sampling.
IEEE Trans. Computers, 67(11):1561–1571, 2018. 3

[54] Khaled N. Khasawneh, Esmaeil Mohammadian Ko-
ruyeh, Chengyu Song, Dmitry Evtyushkin, Dmitry
Ponomarev, and Nael B. Abu-Ghazaleh. SafeSpec:

Banishing the Spectre of a Meltdown with leakage-
free speculation. In DAC, page 60, 2019. 4

[55] Vladimir Kiriansky and Carl A. Waldspurger. Spec-
ulative buffer overflows: Attacks and defenses. arX-
iv/1807.03757, 2018. 3

[56] Vladimir Kiriansky, Ilia A. Lebedev, Saman P. Amaras-
inghe, Srinivas Devadas, and Joel S. Emer. DAWG: a
defense against cache timing attacks in speculative ex-
ecution processors. In MICRO, pages 974–987, 2018.
4

[57] Ofek Kirzner and Adam Morrison. An analysis of
speculative type confusion vulnerabilities in the wild.
In USENIX Security Symposium, pages 2399–2416,
2021. 3, 4

[58] Ofek Kirzner and Adam Morrison. An analysis of
speculative type confusion vulnerabilities in the wild.
In USENIX SEC, 2021. 4

[59] Paul Kocher. Spectre mitigations in Microsoft’s C/C++
compiler. https://www.paulkocher.com/doc/
MicrosoftCompilerSpectreMitigation.html,
2018. Accessed: 2022-01-25. 1, 4

[60] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In IEEE S&P, pages 1–19,
2019. 1, 3, 4

[61] David Kohlbrenner and Hovav Shacham. On the ef-
fectiveness of mitigations against floating-point timing
channels. In USENIX Security, pages 69–81, 2017. 8

[62] Esmaeil Mohammadian Koruyeh, Khaled N. Kha-
sawneh, Chengyu Song, and Nael B. Abu-Ghazaleh.
Spectre returns! speculation attacks using the return
stack buffer. In WOOT, 2018. 3

[63] Jakob Koschel, Cristiano Giuffrida, Herbert Bos, and
Kaveh Razavi. TagBleed: Breaking KASLR on the
isolated kernel address space using tagged TLBs. In
EuroS&P, pages 309–321, 2020. 3

[64] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Ste-
fan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. Meltdown: Reading kernel
memory from user space. In USENIX Security, pages
973–990, 2018. 1, 3, 4

[65] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B. Lee. Last-level cache side-channel attacks are
practical. In IEEE SP, pages 605–622, 2015. 3

16

https://blogs.windows.com/msedgedev/2018/01/03/speculative-execution-mitigations-microsoft-edge-internet-explorer/
https://blogs.windows.com/msedgedev/2018/01/03/speculative-execution-mitigations-microsoft-edge-internet-explorer/
https://blogs.windows.com/msedgedev/2018/01/03/speculative-execution-mitigations-microsoft-edge-internet-explorer/
https://www.intel.com/content/dam/develop/external/us/en/documents/retpoline-a-branch-target-injection-mitigation.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/retpoline-a-branch-target-injection-mitigation.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/retpoline-a-branch-target-injection-mitigation.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

[66] Xiaoxuan Lou, Tianwei Zhang, Jun Jiang, and Yinqian
Zhang. A survey of microarchitectural side-channel
vulnerabilities, attacks, and defenses in cryptography.
ACM Comput. Surv., 54(6):122:1–122:37, 2021. 3

[67] Kevin Loughlin, Ian Neal, Jiacheng Ma, Elisa Tsai,
Ofir Weisse, Satish Narayanasamy, and Baris Kasikci.
DOLMA: securing speculation with the principle of
transient non-observability. In USENIX Security Sym-
posium, pages 1397–1414, 2021. 4

[68] Giorgi Maisuradze and Christian Rossow. ret2spec:
Speculative execution using return stack buffers. In
CCS, pages 2109–2122, 2018. 3

[69] Andrea Mambretti, Matthias Neugschwandtner,
Alessandro Sorniotti, Engin Kirda, William K.
Robertson, and Anil Kurmus. Speculator: a tool to
analyze speculative execution attacks and mitigations.
In ACSAC, pages 747–761, 2019. 4

[70] Andrea Mambretti, Pasquale Convertini, Alessandro
Sorniotti, Alexandra Sandulescu, Engin Kirda, and
Anil Kurmus. GhostBuster: Understanding and over-
coming the pitfalls of transient execution vulnerability
checkers. In SANER, pages 307–317, 2021. 4

[71] Julius Mandelblat. Technology insight: Intel’s next
generation microarchitecture code name Skylake. In
Intel Developers Forum, 2015. Available: https:
//en.wikichip.org/w/images/8/8f/Technology_
Insight_Intel%E2%80%99s_Next_Generation_
Microarchitecture_Code_Name_Skylake.pdf. 9

[72] Ross McIlroy, Jaroslav Sevcík, Tobias Tebbi, Ben L.
Titzer, and Toon Verwaest. Spectre is here to stay: An
analysis of side-channels and speculative execution.
arXiv/1902.05178, 2019. 4

[73] Avi Mendelson. Secure speculative core. In SoCC,
pages 426–431, 2019. 4

[74] Alyssa Milburn, Erik van der Kouwe, and Cristiano
Giuffrida. Mitigating information leakage vulnera-
bilities with type-based data isolation. In IEEE S&P,
2022. https://download.vusec.net/papers/tdi_
sp22.pdf. 4

[75] Matt Miller. Analysis and mitigation of speculative
store bypass (CVE-2018-3639). https://msrc-
blog.microsoft.com/2018/05/21/analysis-and-
mitigation-of-speculative-store-bypass-
cve-2018-3639/, 2018. Accessed: 2022-01-26. 3

[76] Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar.
MemJam: A false dependency attack against constant-
time crypto implementations in SGX. In CT-RSA,
pages 21–44, 2018. 3

[77] Shravan Narayan, Craig Disselkoen, Daniel Moghimi,
Sunjay Cauligi, Evan Johnson, Zhao Gang, Anjo
Vahldiek-Oberwagner, Ravi Sahita, Hovav Shacham,
Dean M. Tullsen, and Deian Stefan. Swivel: Hardening
WebAssembly against Spectre. In USENIX Security,
pages 1433–1450, 2021. 4

[78] Oleksii Oleksenko, Bohdan Trach, Tobias Reiher, Mark
Silberstein, and Christof Fetzer. You shall not bypass:
Employing data dependencies to prevent bounds check
bypass. arXiv/1805.08506, 2018. 4

[79] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein,
and Christof Fetzer. SpecFuzz: Bringing Spectre-type
vulnerabilities to the surface. In USENIX Security
Symposium, pages 1481–1498, 2020. 4

[80] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
attacks and countermeasures: The case of AES. In
CT-RSA, pages 1–20, 2006. 3, 10

[81] Riccardo Paccagnella, Licheng Luo, and Christo-
pher W. Fletcher. Lord of the ring(s): Side channel
attacks on the CPU on-chip ring interconnect are prac-
tical. In USENIX Security Symposium, pages 645–662,
2021. 3

[82] Marco Patrignani and Marco Guarnieri. Exorcising
Spectres with secure compilers. In CCS, pages 445–
461, 2021. 2, 4, 5, 6, 10

[83] Colin Percival. Cache missing for fun and profit. In
Proceedings of BSDCan, 2005. URL https://www.
daemonology.net/papers/htt.pdf. 3

[84] Cesar Pereida García, Billy Bob Brumley, and Yuval
Yarom. “make sure DSA signing exponentiations really
are constant-time”. In CCS, pages 1639–1650, 2016.
3, 6

[85] Emmanuel Pescosta, Georg Weissenbacher, and Flo-
rian Zuleger. Bounded model checking of speculative
non-interference. In ICCAD, pages 1–9, 2021. 4

[86] Hernán Ponce de León and Johannes Kinder. Cats vs.
Spectre: An axiomatic approach to modeling specula-
tive execution attacks. arXiv/2108.13818, 2021. 4

[87] Chromium Project. Mitigating side-channel attacks.
https://www.chromium.org/Home/chromium-
security/ssca/, 2018. Accessed: 2022-01-25. 4

[88] Jonathan Protzenko, Bryan Parno, Aymeric Fromherz,
Chris Hawblitzel, Marina Polubelova, Karthikeyan
Bhargavan, Benjamin Beurdouche, Joonwon Choi,
Antoine Delignat-Lavaud, Cédric Fournet, Natalia
Kulatova, Tahina Ramananandro, Aseem Rastogi,

17

https://en.wikichip.org/w/images/8/8f/Technology_Insight_Intel%E2%80%99s_Next_Generation_Microarchitecture_Code_Name_Skylake.pdf
https://en.wikichip.org/w/images/8/8f/Technology_Insight_Intel%E2%80%99s_Next_Generation_Microarchitecture_Code_Name_Skylake.pdf
https://en.wikichip.org/w/images/8/8f/Technology_Insight_Intel%E2%80%99s_Next_Generation_Microarchitecture_Code_Name_Skylake.pdf
https://en.wikichip.org/w/images/8/8f/Technology_Insight_Intel%E2%80%99s_Next_Generation_Microarchitecture_Code_Name_Skylake.pdf
https://download.vusec.net/papers/tdi_sp22.pdf
https://download.vusec.net/papers/tdi_sp22.pdf
https://msrc-blog.microsoft.com/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
https://msrc-blog.microsoft.com/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
https://msrc-blog.microsoft.com/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
https://msrc-blog.microsoft.com/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
https://www.daemonology.net/papers/htt.pdf
https://www.daemonology.net/papers/htt.pdf
https://www.chromium.org/Home/chromium-security/ssca/
https://www.chromium.org/Home/chromium-security/ssca/

Nikhil Swamy, Christoph M. Wintersteiger, and San-
tiago Zanella Béguelin. EverCrypt: A fast, verified,
cross-platform cryptographic provider. In IEEE SP,
pages 983–1002, 2020. 3

[89] Ivan Puddu, Moritz Schneider, Miro Haller, and Srdjan
Capkun. Frontal attack: Leaking control-flow in SGX
via the CPU frontend. In USENIX Security Symposium,
pages 663–680, 2021. 3

[90] Zhenxiao Qi, Qian Feng, Yueqiang Cheng, Mengjia
Yan, Peng Li, Heng Yin, and Tao Wei. SpecTaint: Spec-
ulative taint analysis for discovering Spectre gadgets.
In NDSS, 2021. 4

[91] Hany Ragab, Enrico Barberis, Herbert Bos, and Cris-
tiano Giuffrida. Rage against the machine clear: A
systematic analysis of machine clears and their impli-
cations for transient execution attacks. In USENIX
Security, pages 1451–1468, 2021. 1, 3, 8

[92] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert
Bos, and Cristiano Giuffrida. CrossTalk: Speculative
data leaks across cores are real. In IEEE S&P, pages
1852–1867, 2021. 1, 3

[93] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon:
Closing digital side-channels through obfuscated ex-
ecution. In USENIX Security Symposium, pages 431–
446, 2015. 3

[94] Xida Ren, Logan Moody, Mohammadkazem Taram,
Matthew Jordan, Dean M. Tullsen, and Ashish Venkat.
I see dead µops: Leaking secrets via Intel/AMD micro-
op caches. In ISCA, pages 361–374, 2021. 3

[95] Oscar Reparaz, Josep Balasch, and Ingrid Ver-
bauwhede. Dude, is my code constant time? In DATE,
pages 1697–1702, 2017. 3

[96] Eyal Ronen, Kenneth G. Paterson, and Adi Shamir.
Pseudo constant time implementations of TLS are only
pseudo secure. In CCS, pages 1397–1414, 2018. 3

[97] Eyal Ronen, Robert Gillham, Daniel Genkin, Adi
Shamir, David Wong, and Yuval Yarom. The 9 lives
of Bleichenbacher’s CAT: new cache attacks on TLS
implementations. In IEEE SP, pages 435–452, 2019. 3

[98] Stephen Röttger and Artur Janc. A Spec-
tre proof-of-concept for a Spectre-proof web.
https://security.googleblog.com/2021/03/a-
spectre-proof-of-concept-for-spectre.html,
2021. 3, 4, 6

[99] Christos Sakalis, Stefanos Kaxiras, Alberto Ros,
Alexandra Jimborean, and Magnus Själander. Effi-
cient invisible speculative execution through selective

delay and value prediction. In ISCA, pages 723–735,
2019. 4

[100] Stephan van Schaik, Cristiano Giuffrida, Herbert Bos,
and Kaveh Razavi. Malicious management unit: Why
stopping cache attacks in software is harder than you
think. In USENIX Security Symposium, pages 937–954,
2018. 3

[101] Stephan van Schaik, Alyssa Milburn, Sebastian Öster-
lund, Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi,
Herbert Bos, and Cristiano Giuffrida. RIDL: rogue
in-flight data load. In IEEE S&P, pages 88–105, 2019.
1, 3

[102] Stephan van Schaik, Andrew Kwong, Daniel Genkin,
and Yuval Yarom. SGAxe: How SGX fails in practice.
https://sgaxeattack.com/, 2020. 3

[103] Stephan van Schaik, Marina Minkin, Andrew Kwong,
Daniel Genkin, and Yuval Yarom. CacheOut: Leaking
data on Intel CPUs via cache evictions. In IEEE S&P,
pages 339–354, 2021. 1, 3

[104] David Schrammel, Samuel Weiser, Richard Sadek, and
Stefan Mangard. Jenny: Securing syscalls for PKU-
based memory isolation systems. In USENIX Security,
2022. 4

[105] Michael Schwarz, Moritz Lipp, Daniel Moghimi,
Jo Van Bulck, Julian Stecklina, Thomas Prescher, and
Daniel Gruss. ZombieLoad: Cross-privilege-boundary
data sampling. In CCS, pages 753–768, 2019. 1, 3

[106] Michael Schwarz, Moritz Lipp, Claudio Canella,
Robert Schilling, Florian Kargl, and Daniel Gruss. Con-
TExT: A generic approach for mitigating Spectre. In
NDSS, 2020. 4

[107] Martin Schwarzl, Pietro Borrello, Andreas Kogler,
Kenton Varda, Thomas Schuster, Daniel Gruss, and
Michael Schwarz. Dynamic process isolation. arX-
iv/2110.04751, 2021. 3

[108] Zhuojia Shen, Jie Zhou, Divya Ojha, and John Criswell.
Restricting control flow during speculative execution
with Venkman. arXiv/1903.10651, 2019. 4

[109] Julian Stecklina and Thomas Prescher. LazyFP: Leak-
ing FPU register state using microarchitectural side-
channels. arXiv/1806.07480, 2018. 1, 3

[110] Robert M Tomasulo. An efficient algorithm for exploit-
ing multiple arithmetic units. IBM Journal of research
and Development, 11(1):25–33, 1967. 3

[111] Paul Turner. Retpoline: a software construct
for preventing branch-target-injection. https://

18

https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html
https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html
https://sgaxeattack.com/
https://support.google.com/faqs/answer/7625886

support.google.com/faqs/answer/7625886, 2018.
Accessed: 2022-02-01. 4

[112] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O.
Duarte, Michael Sammler, Peter Druschel, and Deepak
Garg. ERIM: secure, efficient in-process isolation with
protection keys (MPK). In USENIX Security, pages
1221–1238, 2019. 4

[113] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silber-
stein, Thomas F. Wenisch, Yuval Yarom, and Raoul
Strackx. Foreshadow: Extracting the keys to the intel
SGX kingdom with transient out-of-order execution.
In USENIX Security, pages 991–1008, 2018. 1, 3, 4

[114] Jo Van Bulck, Daniel Moghimi, Michael Schwarz,
Moritz Lipp, Marina Minkin, Daniel Genkin, Yuval
Yarom, Berk Sunar, Daniel Gruss, and Frank Piessens.
LVI: hijacking transient execution through microar-
chitectural load value injection. In IEEE S&P, pages
54–72, 2020. 1, 3

[115] Marco Vassena, Craig Disselkoen, Klaus von Gleis-
senthall, Sunjay Cauligi, Rami Gökhan Kici, Ranjit
Jhala, Dean M. Tullsen, and Deian Stefan. Auto-
matically eliminating speculative leaks from crypto-
graphic code with Blade. Proc. ACM Program. Lang.,
5(POPL):1–30, 2021. 4

[116] Luke Wagner. Mitigations landing for new class
of timing attack. https://blog.mozilla.org/
security/2018/01/03/mitigations-landing-
new-class-timing-attack/, 2018. Accessed:
2022-01-25. 4

[117] Junpeng Wan, Yanxiang Bi, Zhe Zhou, and Zhou Li.
MeshUp: Stateless cache side-channel attack on CPU
mesh. In IEEE SP, 2022. 3

[118] Guanhua Wang, Sudipta Chattopadhyay, Arnab Ku-
mar Biswas, Tulika Mitra, and Abhik Roychoudhury.
KLEESpectre: Detecting information leakage through
speculative cache attacks via symbolic execution. ACM
Trans. Softw. Eng. Methodol., 29(3):14:1–14:31, 2020.
4

[119] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotov-
chits, Tulika Mitra, and Abhik Roychoudhury. oo7:
Low-overhead defense against Spectre attacks via pro-
gram analysis. IEEE Trans. Software Eng., 47(11):
2504–2519, 2021. 4

[120] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F.
Wenisch, and Baris Kasikci. NDA: Preventing spec-
ulative execution attacks at their source. In MICRO,
pages 572–586, 2019. 4

[121] Meng Wu and Chao Wang. Abstract interpretation
under speculative execution. In PLDI, 2019. 4

[122] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers
in the hyper-space: High-speed covert channel attacks
in the cloud. In USENIX Security Symposium, pages
159–173, 2012. 3

[123] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam
Morrison, Christopher W. Fletcher, and Josep Torrellas.
InvisiSpec: Making speculative execution invisible in
the cache hierarchy. In MICRO, pages 428–441, 2018.
4

[124] Mengjia Yan, Read Sprabery, Bhargava Gopireddy,
Christopher W. Fletcher, Roy H. Campbell, and Josep
Torrellas. Attack directories, not caches: Side channel
attacks in a non-inclusive world. In IEEE SP, pages
888–904, 2019. 3

[125] Yuval Yarom and Katrina Falkner. Flush+Reload: A
high resolution, low noise, L3 cache side-channel at-
tack. In USENIX Security, pages 719–732, 2014. 3, 4,
8, 9

[126] Yuval Yarom, Daniel Genkin, and Nadia Heninger.
CacheBleed: A timing attack on OpenSSL constant
time RSA. In CHES, pages 346–367, 2016. 3, 10

[127] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Mor-
rison, Josep Torrellas, and Christopher W. Fletcher.
Speculative taint tracking (STT): a comprehensive pro-
tection for speculatively accessed data. In MICRO,
pages 954–968, 2019. 4

[128] Tao Zhang, Kenneth Koltermann, and Dmitry Ev-
tyushkin. Exploring branch predictors for constructing
transient execution Trojans. In ASPLOS, pages 667–
682, 2020. 3, 4, 6

A Semantic Security Proof

This section formalizes our claim that our countermeasure
protects against Spectre attacks. For clarity of exposition, we
consider a toy high-level language, but out results carry to
realistic assembly languages.

The syntax of the programming language is given in Fig-
ure 9where a ∈ A ranges over arrays and x ∈ X ranges over
registers. We let |a| denote the size of a. Moreover, we in-
formally assume that values are either integers or booleans.
Informally, the language features assignments (restricted to
3-address mode, with only variable-time operators), condi-
tional assignments, arrays and conditionals and loops. The
operational semantics of the language is modeled in the style

19

https://support.google.com/faqs/answer/7625886
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/

c ::= [] empty, do nothing does not leak
fence fence does not leak
| c;c sequence does not leak
| x := op y z assignment leaks operands y, z
| x := b̃?y : z cond. assignment does not leak
| x := a[y] load from array a offset y leaks offset y
| a[x] := y store to array a offset x leaks offset x
| if t then c else c conditional leaks guard t
| while t do c while loop leaks guard t

Figure 9: Language and informal leakage model

Jx := op y zK= y := b̃?0 : y;z := b̃?0 : z;x := op y z mask operands conditioned on b̃
Ja[x] := yK= x := b̃ : 0?x;a[x] := y mask index conditioned on b̃
Jx := a[y]K= y := b̃ : 0?y;x := a[y] mask index conditioned on b̃

Jif t then c1 else c2K= t := b̃?⊥ : tif t then (b̃ := t?b̃ :>;Jc1K) else (b̃ := t?> : b̃;Jc2K) mask guard conditioned on b̃ and update b̃
Jwhile t do cK= t := b̃?⊥ : t;while t do (b̃ := t?b̃ :>;JcK); b̃ := t?> : b̃ mask guard conditioned on b̃ and update b̃

Jc1;c2K= Jc1K;Jc2K

Figure 10: USLH Countermeasure

of [10, 25] as an indexed transition relation 〈c,ρ,µ,b〉 o−−→
d

〈c′,ρ′,µ′,b′〉, where o is an observation taken from the set:

o ::= • | read a,v | write a,v | branch b | op v v

and 〈c,ρ,µ,b〉 and 〈c′,ρ′,µ′,b′〉 are states consisting of a com-
mand, memories mapping variables and locations (i.e. pairs
of arrays and valid indexes) to values, and b is a specula-
tion flag tracking whether execution has entered an incorrect
branch.

Figure 11 presents the rules of the semantics. The opera-
tional semantics is similar to the standard semantics, except
for some key differences:

• for conditionals and loops, execution can enter both
branches, according to adversarial directives. Note that
the flag b is set to true when the adversary uses the direc-
tive force and causes execution to enter the branch that
corresponds to the negation of the guard;

• for unsafe accesses, an adversary’s directive is used to
decide which value is read or address is written; note
that we assume that programs are safe under the nominal
execution, and thus unsafe accesses are only considered
when execution is misspeculating.

• compared to other speculative semantics, we do not con-
sider backtracking—as shown in [10], the associated
notions of security are equivalent for semantics with and
without backtracking.

To model USLH, we fix a distinguished register b̃ used to
track speculation, and not used anywhere else in the program.

The definition of USLH is shown in Figure 10. The key points
of the definitions are:

• USLH masks the guard before entering a conditional
conditioned on the speculation flag, and updates the spec-
ulation flag immediately after entering it;

• USLH masks the operands of variable-time instructions
conditioned on the speculation flag;

• USLH masks the addresses of memory accesses, condi-
tioned on the speculation flag; we assume that the 0-th
entry of each array contains a default value that is never
modified during execution.

The key correctness lemma is that leakage of transformed
programs does not depend on the memory, when b̃ is set to >.

Lemma 1. If 〈JcK,ρ,µ,>〉 o−−→
d
〈c′,ρ′,µ′,>〉 and ρ(b̃) = >,

then o only depends on the syntax of c.

Using this lemma, it is possible to show that transformed
programs are relative constant-time (RCT), in the sense that
speculative execution of transformed programs does not leak
more than their sequential execution.

In order to define the notion of RCT, we define complete
executions. This is done by defining the (labeled) reflexive-
transitive closure 〈c,ρ,µ,b〉 −−→O−−→

D
〈c′,ρ′,µ′,b′〉 of one-step ex-

ecution, and 〈c,ρ,µ,b〉 ⇓O
D iff 〈c,ρ,µ,b〉 −−→O−−→

D
〈c′,ρ′,µ′,b′〉,

with c′ = [] or c′ = fence and b =>. These two cases corre-
spond to a complete execution or an execution that is inter-
rupted due to misspeculation.

20

We do not provide a separate semantics for sequential ex-
ecution. Instead, sequential execution is viewed as a special
case where all adversary directives are step and the specula-
tion flag is thus always⊥. We write 〈c,ρ,µ〉 ⇓O for sequential
executions.

Formally, a program c is RCT iff for every executions

〈c,ρ1,µ1,⊥〉 ⇓O1
D

〈c,ρ2,µ2,⊥〉 ⇓O2
D

〈c,ρ1,µ1〉 ⇓Os
1

〈c,ρ2,µ2〉 ⇓Os
2

we have Os
1 = Os

2 implies O1 = O2.
The informal argument to prove RCT of transformed pro-

grams is as follows: first, we prove that the register b̃ intro-
duced by the USLH transformation is always in sync with
the speculation flag of the operational semantics, so that b̃ is
always set to true when execution enters the wrong branch.
Second, every execution can be divided into a sequential (sub-
)execution, and a speculative sub-execution, which is trig-
gered by execution entering the wrong branch. Then, thanks
to the key lemma above, we know that the leakage of the spec-
ulative sub-execution does not depend on the state, and thus
does not leak. This means that the leakage of the complete
execution is equal to the leakage of the sequential execution
plus some constant leakage that is completely determined by
the syntax of the program. This suffices to conclude.

21

ρ
′ = ρ{x := Jop y zKρ}

〈x := op y z,ρ,µ,b〉 op ρ(y) ρ(z)−−−−−−−→
step

〈[],ρ′,µ,b〉
[ASSIGN]

〈fence,ρ,µ,⊥〉 •−−−→
step

〈[],ρ,µ,⊥〉
[FEN]

JyKρ ∈ [0, |a|) ρ
′ = ρ{x := µ[(a,JyKρ)]}

〈x := a[y],ρ,µ,b〉
read a,JyKρ−−−−−−−→

step
〈[],ρ′,µ,b〉

[LD]

JyKρ /∈ [0, |a|) i ∈ [0, |a′|) ρ
′ = ρ{x := µ[(a′, i)]}

〈x := a[y],ρ,µ,>〉
read a,JyKρ−−−−−−−→
load a′,i

〈[],ρ′,µ,>〉
[LD-U]

JxKρ ∈ [0, |a|) µ′ = µ[(a,JxKρ) :=JyKρ]

〈a[x] := y,ρ,µ,b〉
write a,JxKρ−−−−−−−→

step
〈[],ρ,µ′,b〉

[ST]

JxKρ /∈ [0, |a|) i ∈ [0, |a′|) µ′ = µ[(a′, i) :=JyKρ]

〈a[x] := y,ρ,µ,>〉
write a,JxKρ−−−−−−−→
store a′,i

〈[],ρ,µ′,>〉
[ST-U]

〈c1,ρ,µ,b〉
o−−→
d
〈c′1,ρ′,µ′,b′〉

〈c1;c2,ρ,µ,b〉
o−−→
d
〈c′1;c2,ρ

′,µ′,b′〉
[SEQ]

〈c1,ρ,µ,b〉
o−−→
d
〈[],ρ′,µ′,b′〉

〈c1;c2,ρ,µ,b〉
o−−→
d
〈c2,ρ

′,µ′,b′〉
[SEQ-SKIP]

〈if t then c> else c⊥,ρ,µ,b〉
branch JtKρ−−−−−−−→

step
〈cJtKρ

,ρ,µ,b〉
[IF]

〈if t then c> else c⊥,ρ,µ,b〉
branch JtKρ−−−−−−−→

force
〈c¬JtKρ

,ρ,µ,>〉
[IF-S]

c⊥ = [] c> = c;while t do c

〈while t do c,ρ,µ,b〉
branch JtKρ−−−−−−−→

step
〈cJtKρ

,ρ,µ,b〉
[WH]

c⊥ = [] c> = c;while t do c

〈while t do c,ρ,µ,b〉
branch JtKρ−−−−−−−→

force
〈c¬JtKρ

,ρ,µ,>〉
[WH-S]

Figure 11: Operational semantics

22

	Introduction
	Background
	Microarchitectural Attacks
	Speculative and Out-of-Order Execution
	Transient Execution Attacks
	Countermeasures for Spectre v1

	Attacker Model
	Speculative Load Hardening
	SLH Variants Implemented in LLVM
	Strong SLH

	SLH Security
	Exploiting Secret-Dependent Control Flow
	Time-Variable Gadget Design
	Exploiting Resource Contention

	Ultimate Speculative Load Hardening
	USLH Implementation
	Testing USLH Security
	Security Analysis
	SLH Performance Overhead

	Conclusion
	Semantic Security Proof

