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Abstract

Cryptography secures our online interactions, transactions,
and trust. To achieve this goal, not only do the cryptographic
primitives and protocols need to be secure in theory, they also
need to be securely implemented by cryptographic library
developers in practice.

However, implementing cryptographic algorithms securely
is challenging, even for skilled professionals, which can lead
to vulnerable implementations, especially to side-channel at-
tacks. For timing attacks, a severe class of side-channel at-
tacks, there exist a multitude of tools that are supposed to help
cryptographic library developers assess whether their code is
vulnerable to timing attacks. Previous work has established
that despite an interest in writing constant-time code, cryp-
tographic library developers do not routinely use these tools
due to their general lack of usability. However, the precise
factors affecting the usability of these tools remain unex-
plored. While many of the tools are developed in an academic
context, we believe that it is worth exploring the factors that
contribute to or hinder their effective use by cryptographic
library developers [61].

To assess what contributes to and detracts from usability
of tools that verify constant-timeness (CT), we conducted
a two-part usability study with 24 (post) graduate student
participants on 6 tools across diverse tasks that approximate
real-world use cases for cryptographic library developers.

We find that all studied tools are affected by similar us-
ability issues to varying degrees, with no tool excelling in
usability, and usability issues preventing their effective use.

Based on our results, we recommend that effective tools for
verifying CT need usable documentation, simple installation,
easy to adapt examples, clear output corresponding to CT vio-
lations, and minimal noninvasive code markup. We contribute
first steps to achieving these with limited academic resources,
with our documentation, examples, and installation scripts 1.

1Installation scripts, tasks, documentation and codebook are provided as
an artifact, see Footnote 3.

1 Introduction

Timing attacks [68] are side-channel attacks that measure pro-
gram execution time to infer information about confidential
data. They are practical and can be used by (remote) attackers
to achieve full recovery of secrets including cryptographic
keys [28]. This makes protection against timing attacks an
important goal for developers of cryptographic libraries.

In his seminal work, Kocher [68] observes that making
control flow and memory access independent of secret data
can help protect programs against timing attacks. Over the
years, this guideline has become known as the constant-time
discipline, and has become a gold standard for cryptographic
libraries. Unfortunately, constant-time programming can be
error-prone, especially when programming under stringent ef-
ficiency constraints, as is the case for cryptographic libraries.
In 2010, Langley developed ctgrind [75], a minimal patch to
Valgrind for checking that crypto software is constant-time.
Subsequently, the security community has developed a broad
variety of tools for protecting against timing attacks. Two
recent works [61] and [49] provide an overview of these tools,
from complementary perspectives. Jancar et al. [61] conduct
a survey about the use of constant-time analysis tools with 44
developers of 27 widely deployed open-source cryptographic
libraries. Their survey shows that these developers do not
leverage constant-time tools despite an interest in writing
constant-time code. As reasons, they identify that tools are
not ready-to use and their use therefore requires significant
time and expertise. Geimer et al. [49] presents a systematic
evaluation of five selected tools, and identifies several tech-
nical roadblocks for the usability of tools. In addition, both
works provide a systematic classification of around 40 tools
for checking constant-time, and provide recommendations
for tool developers and users. Although both [61] and [49]
provide valuable insights on these tools, an empirical study
to corroborate and deepen their findings has been lacking.

Therefore, in this work, we aim to understand which fac-
tors support and hinder effective use of CT tools through
an empirical usability investigation that analyzes participant



strategies while working with CT tools. Our investigation pro-
vides a complementary view on the issues discussed in [61]—
which predates this work—and [49]—which was published
after we completed the developer study. Our developer study
is designed to provide deeper insight into usability require-
ments and how they influence their interaction with CT tools,
to determine the features that tools should provide to achieve
their full potential. Due to the broad range of tools, we de-
signed a usability study with six CT tools. The participants of
the study are 24 advanced CS students who had knowledge in
cryptography (including about CT programming) and C pro-
gramming. Our study comprises two phases: in the first phase,
participants work through tasks escalating in difficulty while
familiarizing themselves with a tool; in the second phase, they
analyze real-world cryptographic libraries for CT-ness.

We identify usability issues that we group into seven cat-
egories that revolve around three high-level aspects: (1) re-
quired efforts to setup and start using the tool, (2) barriers and
work overhead hindering the use of CT tools, and (3) func-
tionality the developer wants in analysis to identify and fix
problems. We aim to answer the following research questions:
RQ1: What are the pain points when trying to use CT tools?

A: Installation, setup for analytic use, and (long term)
operationalization in a larger library context are chal-
lenges for effective CT tool usage.

RQ2: How helpful are the tools at discovering and fixing
problems? Which tool properties help or hinder effective use?

A: Tools can help cut down the amount of work needed
to analyze larger code bases rigorously, but if a tool
is too much work to install and get to work, cryptog-
raphers might just “eyeball” the analysis without the
tool. Meaningful documentation to get a tool working
on simple examples effectively helps to overcome this.

RQ3: How can we support potential users in using the tools?
A: Easy setup, a set of simple examples to appropriate for

the markup (which should be minimal and noninvasive
to the source code), a tutorial on how to use the tool
and get clear information from the output, and good
general documentation were all found to be helpful.

Based on our findings, we suggest how the usability of CT
tools can be improved to make CT analysis more accessible
to developers. In summary, our contributions in this paper are:
• We concretize the problems mentioned by experts in the

Jancar et al. survey [61] through a developer study with 24
newly trained potential crypto developers and publish the
full procedure material (see Footnote 3) for replication.

• We offer a systematization of crypto developer workflow in
using CT analysis tools, common to all 49 tools we found
(see Table 3).

• We document pain points and their impact on crypto devel-
oper usage of CT analysis, giving an explanation on why
the findings of Jancar et al. [61] are still prevalent.

• We propose what to consider during development of CT
analysis tools by contrasting prior attempts.

Supplementary material and disclosure. We have com-
municated our results to the authors of the tools included
in our study and made the artifacts available to them. We
have received four responses; all four expressed interest, one
said they plan to link to our study materials in their project.
The supplementary material, including tutorials, installation
guides, and codebooks is publicly available on a dedicated
web page2 and as an artifact3.

2 Background & Related Work

We give an overview over the background and related work
to this research by first discussing impacts of timing attacks
on security, then describing CT development and CT analysis
as defenses. For context, we also discuss a new generation
of timing attacks that exploit microarchitectural features of
CPUs, and the related efforts to protect against these attacks.
Finally, we explain how a lack of consideration of human
factors in cryptographic development can hinder widespread
effective use of cryptography.

1. Timing attacks. Since Kocher’s introduction of side-
channel vulnerabilities in 1996 [68], these threats have per-
sisted despite significant efforts to address them. Considering
the vast range of side-channel attacks, we will highlight a few
pivotal moments with a focus on timing attacks. Kocher’s
seminal work highlighted vulnerabilities in asymmetric cryp-
tographic algorithms like RSA and DSS through "Timing
Attacks", emphasizing the potential for exploitation based
on secret-dependent operation times. In 2002, Tsunoo et
al. [104, 105] expanded timing attacks to symmetric cryptog-
raphy, noting vulnerabilities in MISTY1, DES, and suggesting
AES being vulnerable to cache-timing attacks. Independent
work by Bernstein [13] and Osvik et al. [87] confirmed these
AES vulnerabilities. In 2003, Brumley and Boneh [28] re-
vealed that these attacks could be conducted remotely via
network timings. Subsequent vulnerabilities were discovered
in the SSL/TLS libraries [3, 27, 29, 44] and on hardware-
assisted defenses, such as Yarom et al.’s "CacheBleed" [125].
Kaufman et al. [66] also warned of persistent vulnerabilities
post-compilation.

Despite these vulnerabilities and an emphasis on fix-
ing them, side channels remain common in numerous plat-
forms [19–21, 46–48, 79, 108, 109]. Some Common Criteria
certified devices, despite their countermeasures, were found
vulnerable [62]. Moreover, even recent post-quantum crypto-
graphic efforts are affected [26, 54, 88, 89, 103, 113].

2. Constant-time Analysis. In this paper, we focus on inves-
tigating usability aspects of tools that evaluate timing leakages

2https://crocs-muni.github.io/ct-tools/
3https://zenodo.org/records/10688581

https://crocs-muni.github.io/ct-tools/
https://zenodo.org/records/10688581


of (cryptographic) software. However, it is worth pointing out
that the tools we consider also differ on a technical level in at
least four different ways:

First, depending on the approach taken by different tools,
they give very different soundness guarantees. Static formal
analysis can achieve full soundness with regards to some leak-
age model. Slightly weaker guarantees are offered by tools
performing symbolic execution; these tools achieve sound-
ness only up to certain upper bounds on loop length. Tools
based on dynamic analysis typically work with symbolic se-
cret data but concrete public data; they achieve soundness up
to code coverage for the concrete public values of the test
cases. Statistical analysis performs measurements on (large
sets of) concrete public and secret data. The advantage is that
this approach does not require any leakage model, but on the
downside, it also does not provide any soundness guarantees.

Second, the tools work on different levels of compilation.
We distinguish tools working on source level, on some inter-
mediate level, or on binary level. An example for a source-
level tool would be the information-flow type system imple-
mented by the secret_integers crate4 in Rust. All tools we
study (we will give detailed introductions later in Section 3.2)
in this paper work on either intermediate-representation (IR)
of the LLVM toolchain [90] or on binary level. Tools working
on IR level are inherently limited in the sense that they are
unable to find any leakages introduced by the compiler when
translating from IR to binary [66, 98].

Third, the tools working on binary level differ in what ar-
chitectures and extensions they support. In order to be used
on production code, they need support not just for the core in-
struction sets of widely used architectures, but also for vector
instructions and dedicated crypto extensions.

Finally—and here is where technical features overlap with
usability—the tools differ in terms of performance. For ex-
ample, for the analysis of Langley’s “donna64” implemen-
tation [74] of Curve25519 [14], the running time of just two
of the tools we considered ranges between 0.38 and 225 sec-
onds. This wide range may impact Continuous Integration
(CI)/Continuous Deployment (CD) and developer workflows.

Table 3 presents the tools we found and categorized accord-
ing to prior literature [60], appending a few tools previously
not included; similar tables are found in [49, 61]. For each
tool, we describe the target of analysis, the techniques used
and whether the tools claim to provide some form of formal
guarantees. We opted to err on the generous side of claimed
soundness guarantees of each tool. For some tools the claims
do not easily map to the soundness categories we discussed
before, so we keep the unqualified “Other” category from the
literature. As usual with this kind of classification, the cate-
gories are not exclusive, each tool may combine approaches
in its design—we opted to continue with best-effort catego-
rization like the established literature.

4See https://docs.rs/secret_integers/.

3. Microarchitectural side-channel attacks and defenses
While constant-time programming is still an important and in-
creasingly standard baseline defense against software-visible
side channels, research on more advanced microarchitectural
attacks in the past few year has shown that this programming
discipline is not a sufficient measure. This line of research
started with the 2018 Spectre [67] and Meltdown [78] at-
tacks, and has since identified multiple pathways for attacks
that often—but not always—exploit speculative execution in
modern CPUs. See, e.g., [70, 81, 86, 117].

The notion of constant-time can be extended to protec-
tions against more advanced microarchitectural attacks [67],
leading to notions of speculative constant-time [31] or more
generally of security with respect to a hardware/software leak-
age contract [58, 82, 83]. Many of the techniques used for
analyzing constant-timeness can be extended to reason about
speculative constant-time and related notions. In fact, there
is already more than two dozen tools that analyze whether a
program satisfies (some variant of) speculative constant-time.
For an overview of these tools see [30, Fig. 2]; they generally
suffer from similar usability issues as tools for constant-time.

Recent work [77, 110, 111] shows that aggressive optimiza-
tions used by modern CPUs to improve performance can lead
to a new class of timing attacks. Many of the leakages are
data-dependent and depend on prior execution history, mak-
ing their detection extremely challenging. As a consequence,
there is a strong incentive to develop analysis tools for check-
ing the counterpart to constant-timeness; see [12, 45] for two
very recent examples.

In both cases, we believe that the insights gained from [49,
61] and our work will provide valuable input for improving
the usability of future tools in this space.

4. Human Factors in Cryptographic Development. There
is a large body of work on human factors in cryptographic
development. Acar et al. establishes in a 2017 study that poor
usablitity of cryptographic libraries contributes to misuse and
insecure code [1]. Haney et al. investigate the mindset of cryp-
tography developers [55], and observe that some developers
do not adhere to mainstream software engineering practices.

Krueger et al. developed a wizard for secure code snippets
for specific cryptographic applications, evaluating its effec-
tiveness and usability in a programming study [71–73].

In the specific context of constant-time tools, a study by
Cauligi et al. [32] was carried out with over 100 students
to understand the benefits of the FaCT tool introduced in
the paper. The tool support by FaCT is found helpful for
generating new code that is CT. In extension of this work, we
include a diverse set of CT tools, documentations, tutorials,
as well as open source libraries in our study.

Unfortunately, while previous research suggests that lack
of usability prevents effective use of security tools [36, 40, 50,
94, 112], and specifically for CT [61], the question of how to
improve the usability of these tools has been understudied [2].

https://docs.rs/secret_integers/


3 Usability criteria and tool selection

In this section wegive a general description of our usability
criteria, and explain how they impact users. In addition, we
briefly introduce the six included CT tools in our study, or-
ganizing our presentation to inspect the previously defined
criteria for each tool.

3.1 Usability criteria
The main purpose of our evaluation is to assess the usability
of current CT tools, and identify features that impact effective
use. To expand on Jancar et al. [61], we define criteria revolv-
ing around three features: (1) the effort required to setup and
familiarize, (2) the work overhead for secret designation and
target building, and (3) the quality of output to identify and
fix problems.

We define our criteria following how users would perform
the tasks related to CT analysis [102]: how users might inter-
act with the tool, what information is given to the user, and
how analysis outcome is presented to the user. The catego-
rization of CT testing workflow steps was created from our
expert team’s experience in building CT tools and using them
on real-world projects, combined with insights gained from
piloting the study. We developed the categorization after all
of the study results were gathered.

Installation. Every tool needs to be installed before use.
There are two broad ways of installing CT tools. Some come
pre-built and bundled for a package manager or in a container.
Others involve manual installation by either building from
the source, or by grabbing the available binary from a release
page. For the latter method, the developer will be in charge of
managing the necessary dependencies manually. CT analysis
tools mostly come as proof-of-concept artifacts. According
to [57], only 3% of artifacts are distributed in containers, while
23% are pre-built and 70% must be compiled from source
code. Therefore, we expect that the installation step of CT
tools may be very challenging for numerous tools, especially
because of unmaintained dependencies, also confirmed by
Jancar et al. [61], who point out that libraries maintainers do
not consider use of hard-to-install CT tools.

Familiarization. Documentation is intended to provide a
high-level overview of the tool and offers technical details
for expert users. Help materials also include tutorials and
examples. In this criterion, we focus on how quickly new
users become comfortable running a tool on simple programs.

Building and Secret Designation. CT tools provide a means
to tag secret data. This is typically achieved via either code
annotation or the creation of an external function wrapper.
Many CT tools operate on instrumented binaries or some
abstract intermediate representation that is designed for pro-
gram analysis. Very often, this implies a custom building and
linking process. Usability is negatively impacted whenever

manual work is needed during this process. In other words,
we look at how much tools modify a project to be analyzed:
both in terms of code (for secret designation) and build work-
flow integration (for target generation). Little work overhead
is commonly appreciated [64].

Analysis Runtime. Once the target is built, users can actually
run the tool for CT analysis. Here, we look at two sub-criteria,
the tool’s interface and its runtime. For a command-line inter-
face tool, users may struggle with passing the right options.
Importantly, tools are expected to yield results in an accept-
able time frame. The longer the runtime of the analysis, the
more difficult it is to integrate the analysis into the project
workflow [64]. This problem hinders a feedback loop using
CT analysis at coding time. This can be important both in
CI workflows, which may have an upper time limit, and de-
veloper workflows, where each developer may only want to
spend a small amount of time waiting for analysis results.

CT Problem Fixing. When the analysis is finished, CT tools
display some output to direct the developer’s attention to
detected issues. The purpose is to provide the developer with
enough information to judge whether or not they care about
the issue, and if yes, why the tool reports it. For example,
it is not helpful if tools just display that there is an issue
without any detail about the origin of the leakage. In addition,
it is more productive for developers to be able to navigate and
manage the list of reported issues. Otherwise, developers must
linearly search through the (potentially large) list of results,
making selective fixing more difficult.

Specialized Output Generation. To improve the experience
of fixing problems, users might require customizing the gen-
erated analysis output. We introduce two features that we
identify for CT tools. First, tools should also offer differ-
ent verbosity in report details to avoid excess of informa-
tion [50]. For example, a summary mode is beneficial in order
to quickly skim the reported vulnerabilities to decide which
one to inspect. Second, within the context of a CI pipeline, a
delta report can be handy in assisting developers to determine
whether a specific leakage has been correctly patched, and
that the fix has not induced other leakage.

Reliability / False Positives. Ultimately, users need to trust
the tool and its analysis. Therefore, any indication of poten-
tial false positives or missed issues could undermine user
confidence, leading to tool abandonment. Solutions do not
necessarily involve sound or complete tools, but also support
for filtering user-supplied false positive patterns. This may
help the user but can also lead to user filtering actually missing
timing leaks, either mistakenly or lazily.

3.2 Tools
We selected six tools for use in our study: MemSan, timecop,
dudect, ctverif, BINSEC/REL, and haybale-pitchfork. These



tools were primarily chosen to include a representative from
each analysis type. The selection of the tools was made to-
wards the end of 2022, therefore more recent tools were not
considered. We prioritized tools well-recognized in the com-
munity, ideally those used by developers, gauging their repu-
tation through a recent survey [61]. Out of the tools, 4 (ctverif,
MemSan, dudect and timecop) are 4 out of top 5 most known
tools in [61], with the top one being ctgrind, which we re-
placed with the functionally equivalent and still maintained
timecop. haybale-pitchfork and BINSEC/REL were selected
as representatives of other tool approaches. The number of
tools was also constrained by participant numbers to ensure
even distribution. At the end of the subsection we compare
our choice of tools with the five tools chosen in [49].

MemSan [99]. MemSan is designed to leverage the Clang
built-in memory sanitizer to dynamically analyze binaries for
constant-time violations, thereby requiring Clang for instal-
lation (which is available in most Linux package managers).
Clang sanitizers are well documented, but there is little docu-
mentation on how to use MemSan for CT analysis. Concern-
ing secrets, users can declare private variables and/or memory
regions containing secrets, and declassify variables within
certain code sections if required. To run the tool, developers
must compile the program with Clang, using the appropriate
option to enable the memory sanitizer. All parts with no en-
abled sanitization are ignored—it is easy to get this wrong.
Then, the analysis is performed by running the resulted binary.
Note that only the executed code is analyzed, leading to differ-
ent conclusions when running the same binary with different
inputs. Indeed, code coverage is essential for MemSan. Upon
the binary execution, errors will be displayed on branching or
memory access indexing an annotated variable. The output
details the path between the annotated variable and the cause
of leakage. The output messages will be more related to the
source code if the target is compiled in debug mode.

timecop [84]. Similar to MemSan, timecop relies on the Val-
grind memcheck module [39] to dynamically analyze binaries
for CT violations. Therefore, for installation, it solely requires
Valgrind (which is available in most Linux package managers)
and an additional C header file that must be downloaded from
the project page. The timecop page also contains several tuto-
rials and examples to smooth its first uses by beginners. To
analyze code, users need to annotate private variables in the
source code and may declassify variables within certain code
sections if needed. There is no need for changes in the compi-
lation chain. Concerning the analysis, users can simply run
Valgrind on the binary as if they were searching for memory
leaks. Valgrind will raise warnings for CT violations just like
it would for the use of uninitialized memory in a branching
or memory access. The output details the path between the
annotated variable and the cause of leakage. timecop relies
on the debug information to display the lines of code in its
warnings. With its use in SUPERCOP [15], it is widely used.

dudect [91]. Installation for dudect is virtually non-existent
as the tool is provided as a simple archive containing the
C header file implementing it. The dudect documentation is
rather limited. The tool operates via a black-box evaluation
of a function, obviating the need for code annotation. The
user, however, is required to implement an external wrapper
in charge of setting the analysis parameters and options, as
well as two functions to initialize the secret input classes and
call the code to assess, respectively. Then, the target program
must be compiled (with no custom build) and executed for
analysis. The dudect approach is statistical, and it thus outputs
values of statistics after code analysis. The output does not
underline any source leakage, but only some probabilistic
conclusion about the target CTness.

ctverif [4]. The installation of ctverif presents a significant
challenge, requiring undocumented versions of specific de-
pendencies and manual patches across different projects, such
as SMACK and Bam-Bam-Boogieman. Aside from the paper,
there is no or little documentation available. As for secret
designation, users must declare private and public variables
and/or memory regions (arrays) containing secret or public in-
puts. In addition, they could declassify outputs, and assert the
non-overlapping nature of these regions. The tool operation is
straightforward, requiring only the source code file as input,
in addition to the entry point to analyze. Thus, ctverif does
not need any custom build. However, ctverif can process a C
translation unit only when all the called functions inside are
defined by other input files, otherwise it produces an unknown
error. After a run, ctverif only highlights the leakage location
in the source code, without a dependency chain of variables
or memory locations that lead to each leaked secret. Surpris-
ingly, ctverif may raise some warnings even after a successful
run without CT violations. It is worth mentioning that ctverif,
instead of making some approximate analysis, informs devel-
opers when it cannot conclude about some leakage, displaying
inconclusive output.

BINSEC/REL [38]. BINSEC/REL comes as source code, an
extension to the Binsec tool. Some dependencies, such as
an SMT solver and the OCaml package manager, shall be
installed manually, before compiling the project source avail-
able on GitHub. BINSEC/REL offers a comprehensive list of
supported command-line options and numerous examples to
start with. On the analyzed project, users shall employ markup
declarations to annotate the source code, thereby designating
public and private data. The analysis of BINSEC/REL operates
over binaries. The version utilized in this study only supports
ARM 32 and x86_32 architectures, necessitating the target to
be compiled accordingly. This might require to add additional
compiler flags, since in numerous compilers, the default mode
supports 64-bit. Upon completion of the analysis, a report
is produced including the number of CT violations and an
assembler dump correlating with the violation location. The
assembler dump does not point to the leaked secret, but only



to the instruction causing the leakage. Note that during our
study, BINSEC/REL received a major update that integrated
the CT checking functionality into the main tool Binsec.

haybale-pitchfork [106]. Written in Rust, haybale-pitchfork
can be installed from source using cargo, although its depen-
dencies must be manually installed beforehand as documented
on the project page, which includes multiple examples and
different documentation materials. haybale-pitchfork runs its
analysis over the LLVM intermediate representation. Thus,
users need to modify the compilation chain to produce the
corresponding LLVM bitcode of the target. Any symbol in
the generated bitcode must be correctly resolved, or haybale-
pitchfork stops the analysis, while printing a message raising
“other errors”. Instead of relying on annotations to mark se-
crets, users are instructed to implement an external wrapper
in Rust, in order to define an abstract signature of the target
function. Here, each function parameter can be declared as
public or secret using the appropriate Rust type. This wrapper
also contains other configurations, such as the bitcode path to
inspect. Users carry out the analysis by compiling and execut-
ing the Rust wrapper. haybale-pitchfork provides conclusive
results, displaying the leakage origin whenever a CT issue is
found, together with a tree path to the leaked secret.

Comparison with the tools of Geimer et al. [49]. Geimer et
al. [49] explores five tools in depth: Abacus [9], BINSEC/REL,
ctgrind, dudect, and MicroWalk-CI [122]. Two of these tools
(BINSEC/REL and dudect) are also included in our study. As
explained above, we selected timecop and MemSan over ct-
grind, because the ctgrind patches are outdated and do not
work with recent versions of Valgrind and the Linux kernel
anymore. In contrast, timecop and MemSan can be seen as
more usable versions of ctgrind. We did not select Microwalk-
CI [122], because it was release after we had initiated our
study. We also did not select Abacus, because its focus is
quantitative information flow rather than constant-timeness.
We included ctverif for its strong correctness and coverage
guarantees. We also included haybale-pitchfork, as an in-
stance of a tool that covers both constant-time and speculative
constant-time—however, to our knowledge, the tool was even-
tually not extended to speculative constant-time.

4 Methodology

In this section, we provide details on the procedure and struc-
ture of the study we conducted with (initially) 31 participants.
We describe the experimental setup including choice of li-
braries, surveys, and experimental infrastructure. We also
describe our coding process of qualitative data, including
participant behavior and free-text responses, as well as the
approach for statistical analysis of quantitative data, such as
success measures and quantitative survey items. Finally, we
explain our data collection and ethical considerations, and
discuss the limitations of this work.

1. Eligibility survey
Determines demographics and participant's eligibility
for the study.

2. Repair task
Identify whether code is CT and fix if not.

Exit survey

SurveySubtask 10

SurveySubtask 3

SurveySubtask 2

Tutorial

SurveySubtask 1

Example solutions

...

3. Audit task
Audit (parts of) cryptographic library code.

Tutorial

Task

Exit survey

library 1

4. Audit task
Audit (parts of) cryptographic library code.

Tutorial

Task

Exit survey

lib
rary 2

tool 1
tool 2

Figure 1. Study flow for each participant.

1. Recruitment and Participants. Due to the challenges of
recruiting professional developers with security expertise, we
targeted CS students for participation. We engaged Master’s
and early PhD students from 5 universities across 4 coun-
tries, as recommended by [101]. From the 74 students we
approached with an eligibility survey, 31 began the study. A
tools assignment error led us to exclude one participant.
Eligibility Criteria. We only consider participants having the
minimum knowledge necessary to run CT tools. We asked
them to self-report their knowledge of the C programming
language and the CT paradigm. Naturally, considering our
usability criteria, we also verify that they had never used any
of the tools that are part of this study. Finally, to distinguish
our work from [61], participants needed to lack experience in
working on production-quality cryptographic code.
Compensation. Participants were compensated with 200 eu-
ros on completion of the study in exchange for 16 hours of
participation; this compares to the hourly payment for student
research assistants in participating countries.

2. Study Procedure. After a short eligibility and demo-
graphics survey which preceded the study, we asked partici-
pants to assess code for vulnerability to timing attacks using a
CT verification tool across ten tasks that escalated in complex-



ity, as well as to audit (parts of) two cryptographic libraries.
Assignment of participants to tools and libraries was done by
hand, following a pattern of complete coverage of all possible
tool combinations.The study flow is described below as well
as visualized in Fig. 1.

During the study, participants were assigned ten successive
repair tasks—tasks building upon tool-support specifics tested
in prior tasks, which we will explain in detail—in which they
were instructed to use a pre-installed CT analysis tool (tool
1) to identify whether a given code snippet is CT regarding a
well-defined secret. If the code was not CT, participants were
asked to fix it. The repair tasks represent textbook examples of
secret-dependent branching and memory access, and their CT
variant. After working on the first task, participants were given
a tutorial that we had written for the tool. After the second
task, we gave them the solutions to previous tasks, to be used
as examples. Tasks 3 to 8 added various elements to increase
difficulty, such as calls to libc functions (memcmp), reading
randomness from the operating system and particular source
code designed to trigger optimization during compilation. The
goal of these repair tasks is to assess the participants’ ability
to use the tool to evaluate and fix a rather simple code snippet.

After completing work on the ten repair tasks (or exhaust-
ing the allotted time of 8 hours), and so becoming familiar
with the tool, we asked them to audit well-known crypto-
graphic libraries using the same tool (tool 1). In this audit
task, participants were asked to compile the library (library
1) in such a way that enables them to use the tool, and audit
a much larger code base. They were pointed at potentially
interesting parts of the library, but not at specific functions.
After a first library audit with a tool they had used for the
entire study up to that point, we provided them with a new
tool (tool 2), a tutorial, and a new library (library 2) to
start a second audit task. These audit tasks aim at assessing
the tools’ usability in a setting more closely resembling a
real-world use case.

For both parts of the study, we consider that a participant
successfully completed a task if they underline the CT vio-
lation using the respective CT tool, and recognize it as such
to fix it. The task structure was monolithic, simply stating
that the task was to find CT violations with the given tool.
Participants had to find out the necessary steps themselves.

After each of the repair tasks, participants were given a
brief survey asking about their results (was the code CT or
not, etc.), their experience with the tool during the task, and
issues they encountered. After the last of the repair tasks, we
gave participants a longer exit survey, which included the
System Usability Scale [24] and questions regarding their
overall experience with the tool. Participants were asked, e.g.,
whether they trust their tool to give them correct results and
what their biggest problem was while using it. A similar
survey was included after each audit task.
Instrument Development. Our group of authors consisted
of experts in cryptographic engineering, side-channel attacks,

and CT tool developers, as well as one human-factors re-
searcher. We based the study development on our usability
criteria and related features. We also let our experience with
the development of cryptographic libraries and CT verifica-
tion tools (as authors as well as users) influence the study
design. The human-factors researcher introduced and facili-
tated the use of human-factors research methodology to bet-
ter explore the identified usability criteria. In particular, the
human-factors researcher explained methods when appropri-
ate, facilitated discussions and helped the team to develop the
study, pilot it, gather feedback, and evaluate the results.
Pre-Testing. Three co-authors dry-ran the study, followed by
one student from the targeted population. Using their feedback
we updated, expanded, and clarified the study.
Time Frame. Every participant had a recommended and self-
enforced time limit of 8 hours to work on each part of the
study (repair and audit, thus a total of 16 hours), within a soft
frame of 2 weeks. We allowed extension of the 2-week time
frame. Participants, although encouraged to fully use their
time, were allowed to hand in their results earlier.
Repair Task Details. The first four of our tasks demonstrate
the main points of the CT criterion: Secret-dependent branch-
ing and secret-dependent memory access. Repair tasks 01
and 02 are non-CT and CT examples of a selection based
on a secret value, once with a branch and once with an arith-
metic transformation like the one presented by Schwabe at
ShmooCon 2015 [96]. Repair tasks 03 and 04 are likewise
memory accesses depending on a secret value or boolean
arithmetic for selecting a value loaded from all addresses
without depending on the secret for the load address.

Repair task 05 introduces the use of a C programming lan-
guage standard library function, memcmp, which is non-CT, to
compare secret values. Tools which depend on static binaries
and cannot inspect dynamically loaded libraries—which are
the majority of deployed software today—are expected to
fail here and show no CT violation. Repair task 06 includes
a system call to read random numbers. System calls are on
most operating systems implemented in a way that cannot be
seen from user space, the memory area that is analyzable to
most CT analysis tools. The tools can work around this, for
example by recognizing a set of known system calls and their
expected behavior. This task greatly differs from previous
tasks, as it does not include secrets, but only checks for sup-
port analyzing this code. Task 07 starts to build up problems
toward a harder criterion than CT - probabilistic CT, which is
a criterion for functions that behave CT by default except for
a subset of cases. Indeed, the program reads a random num-
ber like in task 06, but in 1 out of 256 cases, it will perform
secret-dependent branching like in task 03. This may sound
easy to spot manually by most users, but statistics-based CT
tools were expected to underperform on this task. Task 08
introduces a different, and on first sight trivial problem: the
same function is called, but in two branches based on the
value of a secret. This may seem to be CT, but in practice a



compiler may transform this into assembly code that does not
branch on the secret, even though in the given source code
the CT criterion is violated. The intent behind this task is to
see if the abstraction level of a tool, whether it works on bi-
naries or instrumented source code, has a measurable impact
on the success of participants. Task 09 makes the compiler
transform impossible by changing the branching structure,
passing a secret variable as a function input. The called func-
tion just returns a constant, which makes the whole program
CT. Finally, task 10 is distinguished from previous tasks. It
is formally non-CT and can be repaired in two non-obvious
ways: users can either make it CT, but only probabilistically
correct, or correct, but only probabilistically CT. With this last
task, we wanted to see how participants pick up on less trivial
code, inspired by techniques used in some cryptographic algo-
rithms recently standardized by NIST, such as Kyber [10, 18]
and Dilithium [43].

3. Study Setup. Our tool selection is explained in Sec-
tion 3.2. Note that one of the included tools (BINSEC/REL)
did receive a substantial update during the study, that we did
not include as not to invalidate our study.

In order to have similar working environments, we de-
ployed one VM for each tool, and gave SSH access to the
participants. Each participant had restricted access to their
home directory, with all necessary material (such as instruc-
tions and source code of the task and the library) available.
For each resource, a clean copy was available as read-only in
case they needed a fresh start. We decided to pre-install the
tools on the VMs. The reasoning for that choice is twofold.

First and foremost, most tools are the outcome of academic
research, and served the purpose of demonstrating new tech-
niques and approaches, without aiming for maintainability.
Hence, some tools are not maintained, and rely on specific
version of dependencies that are outdated and deprecated.
This can make the installation particularly complex and time
consuming, especially on recent systems. Second, given that
participants using the same tools were co-located on a VM,
we could deploy the tool globally to ensure a functional setup,
and avoid unintentional corruption of the tool by participants.

As an effort to make the first step easier, we implemented
installation scripts for each tool present in our study—for
possible difficulties in the installation phase, see Reynolds et
al. [92]. We made them publicly available (see Footnote 3),
along with the repair tasks and a small functional tutorial we
provided to the participants. We hope this can prove useful,
and motivate tool developers to do the same.

To make sure the participants have something to find in the
audit tasks, we needed to include libraries that had problems
with CT-ness, therefore we chose the following: two of them—
OpenSSL and GNUTLS/Nettle—were chosen because they
are in ubiquitous use in open-source software projects. The
other—mbedTLS—was chosen because it was common and
is targeted more for use on embedded devices. Other libraries

like BearSSL were not included due to fewer documented CT
issues and fewer prior audits of those libraries compared to
the first two. We specifically audited the libraries ourselves,
first, to see if participants can meaningfully find code that is
non-CT in those libraries, either by looking at public docu-
mentation and then verifying with a CT verification tool, or
direct analysis. All three chosen libraries document which
parts of their code bases are not expected to be CT, so our
participants could be expected to find them.

4. Coding and Analysis. All qualitative coding and data
analysis were done by multiple researchers from a set of
four, each coding part done by at least two, from diverse
backgrounds and views. All of those researchers were familiar
with CT verification, open-source and cryptographic code
development practices, while two researchers had additional
experience with human factors research with developers. We
followed the process for thematic analysis [22]. The four
coders familiarized themselves with the free-text answers in
their part of the analysis, adding annotations and developing
themes as well as codebooks.

Codebooks were first developed deductively based on the
questions on each subtask, then changed inductively. The
codebooks were iteratively changed while extracting themes
from the free-text answers. Coders discussed until agreement
was reached to make unanimous decisions; we therefore do
not calculate inter-coder reliability [80]. The codebooks cod-
ify experiences—good or bad—as well as misconceptions,
insecurities, and wishes encountered during the study’s sur-
veys.

5. Data Collection and Ethics. Our invitations were sent
to participants of thematically fitting courses of five partic-
ipating universities. We invited students by emailing them
individually. During and after the study they could opt-out of
participation. We only linked participants names to results for
payment, not during analysis and not by members of the re-
search team who had prior contact to those students. We keep
the participant responses as confidential as possible and do not
link quotes to them by name, only by pseudonyms.The study
protocol and consent forms (for study participation and sur-
veys) were approved by our lead institution’s data protection
officer and ethics board, who determined that the study poses
minimal risk. Identifying data of the participants, like names,
email addresses, and payment information, were stored sep-
arately from study data, and were only used to contact the
participants; we did not retain any identifying data in excess
of following laws.

6. Data cleaning & Presentation. From the 74 students we
invited, 31 started our study, of which we were able to use
the results of 24 participants. We only evaluate the results of
participants who finished a meaningful part of our study and



compared results with and without familiarization with each
tool on each library to offset possibly bad pairings, but did
not find any meaningful differences between the two groups.
As for the 7 incomplete results, we were not meaningfully
able to incorporate them in most of the statistics—to not
over represent results from simpler tasks—but we used partial
results that were complete in appropriate sections.

Participants were paid for and expected to spend two days
of eight hours each on the study, leaving rich free text com-
ments in the surveys as well as comments in source code
of their task solutions. We received mixed feedback, from
disillusioned responses to high interest in further research on
CT verification and coding practice. Generally, the feedback
to our study was positive, even when the comments about the
experience with some tasks were less so.

7. Familiarization. By design of our study, we set our par-
ticipants up for familiarization with one tool each, then we ask
to analyze a common real-world cryptographic library with
the same tool. The repair tasks during the familiarization pro-
cedure were optimized for familiarization with the tool from
simple examples to simplified current research problems.

8. Limitations. Survivorship bias [76] might taint the re-
sults, due to the study not reporting all the results of partici-
pants which dropped out. Selection bias due to comparatively
high requirements in recruiting for the study as well as selec-
tive perception due to recruiting from student population who
is accustomed to writing exams and tests might both also be
relevant, but are both similar to the population which might
use one of the CT tools. Participants may have reported more
familiarity with the subject matter than they actually had, but
due to our recruiting criteria, this was limited to a minimum
actually necessary for participation. Our study may also suffer
from the typical effects of fatigue in participating in a study,
frustrations, and, of course, took place during the later years
of the COVID-19 pandemic. Finally, our low participant num-
bers (due to the significant time investment and prerequisites)
does not allow for statistical inference; we report numbers to
highlight trends and/or outstanding observations.
Problem Fixing. When participants marked a repair task as
already constant-time they were not asked to fix the code.
Library Selection. The projects we included for the audit
task represents a selection and are not representative of all
open-source cryptographic libraries. We are aware that other
libraries might lead to different usability results.
Unknown Code. Our participants were not familiar with the
cryptographic libraries used in this study. Annotating and
custom-building are likely to be different when analyzing a
project the participants are familiar with. Developers might
achieve different results if they have a rough overview of the
code base. We expect completing the repair tasks to be easier
to our participants than the open-ended audit tasks.

VMs, Tutorials, and Examples. By including ready-made
virtual machines with each installed CT tool, combined with
layered introduction of tasks and documentation, not restrict-
ing online documentation and providing some as a backup
ourselves, we provided our participants with a best-case sce-
nario to learn how to work with each of the tools. Participants
could approach the study as they saw fit, while being able
to adapt example solutions and their own prior solutions to
everything after a first introduction to the base cases for CT
programming practice in minimal examples (tasks 01 to 04).
This was a trade-off to gather more data about all CT analysis
steps, not being stuck over installation or finding documen-
tation. Nevertheless, this means that our participants had an
easier task with the tools than users would have in real world.

5 Results

Tool (Tech., Guar.) Repair Audit 1 Audit 2

BINSEC/REL (Sy, G#) 33.5 (3.8) 38.7 (11.8) 45.6 (7.2)
ctverif (F,  ) 30.6 (18.4) 34.4 (8.5) 31.5 (14.8)
dudect (St, #) 53.1 (29.1) 65 (5.9) 59.4 (23.8)
haybale-pitchfork (Sy, G#) 64.4 (6.6) 52.5 (13.7) 50.6 (26.6)
MemSan (Dy, G#) 49.5 (20.3) 41.3 (22) 49.4 (20.1)
timecop (Dy, G#) 71.2 (6) 69.4 (10.3) 70.6 (24.1)

Table 1. Average and standard deviation of System Usability Scale scores
from exit surveys after repair and audit tasks.
Technique: Sy—Symbolic, St—Statistics, Dy—Dynamic, F—Formal
Guarantees:  —sound, G#—sound with restrictions, #—no guarantee

Table 1 showcases the System Usability Scale (SUS)
scores [24] for each tool on both repair and audit tasks. The
SUS is supposed to give a quick overview of a tool’s overall
usability; a score above 68 would be “above average” across
software types. From the scores presented, usability remains
fairly consistent between repair and audit, with notable ex-
ceptions for haybale-pitchfork, which had a noticeable dip
during audits, and dudect, which exhibited enhanced usability
in the audit tasks. Among the tools, timecop has the highest
and most consistent score, suggesting superior usability. In
contrast, ctverif and BINSEC/REL emerge as the least usable.
For the correctness of solving the repair tasks, see Table 2.

Through thematic analysis of feedback during repair tasks,
we identified common usability issues with the tools. Feed-
back points, categorized according to our codebooks, often
overlapped, except for the “no issue” category. The distribu-
tion, depicted in Fig. 2, gave insights into tool perceptions
and task challenges.

In Section 6, we delve into the diverse factors impacting us-
ability, as organized by the criteria introduced in Section 3.1,
and report on participants’ confidence in their results. Each
criterion corresponds to a step in detecting/fixing CT viola-
tions, and each subsequent step depends on the success of
its predecessor. Those who encountered initial setbacks of-
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Figure 2. Participant’s major issues during the repair tasks. (Left) For tools over all tasks. (Right) For tasks over all tools.

ten did not report in the later stages. This was particularly
pronounced when auditing real-world software libraries.

Our findings spotlight factors affecting the tools’ usability:
Clear and intuitive outputs stood out as extremely important,
and a lack of beginner-friendly documentation emerged as
a recurrent issue. Though well-structured documentation is
invaluable during the familiarization phase, participants re-
ported distinct challenges as they delved deeper into the tools,
but mixed with positive feedback as well. This disparity be-
came evident when contrasting feedback between standard
textbook examples and real-world audits, emphasizing differ-
ent stages of tool assimilation.

Although the participants were equipped with the tools for
the tasks, their installation and setup experiences could not
be included in our data as we set up the tools for them.

1. Familiarization. During the first task, the main issue re-
ported was unclear and non-user-friendly documentation, with
16 complaints (18 overall). Although the tools had associated
academic papers, participants felt these didn’t serve as effec-
tive documentation. They particularly missed step-by-step
setup and results interpretation examples. “[T]he documenta-
tion about every command doesn’t exist or I didn’t find them.
Maybe a beginner-friendly aspect of the tool would have been
good for me to start.” (P19)

Notably, participants had no complaints about ctverif
documentation—possibly due to its basic user interface—but
most of them faced issues with its operational aspects until
they consulted our tutorial.

Despite the issues, our study also highlighted successes in
the familiarization phase. Concise, beginner-focused docu-
mentation was identified as a significant upside in enhancing
user engagement. The turnaround is likely a direct result of the
tutorial we provide upon the completion (or non-completion)
of the first task.

None of the participants managed to solve the second task
using ctverif, and all expressed complaints about the output.
After the tutorial and solution were provided, 3 out of the
4 participants were able to solve the subsequent task. This
improvement persisted through the remaining tasks and can be

attributed largely to the alleviation of difficulties in correctly
interpreting the output and running the tool.

The effect was similar with BINSEC/REL. While none of
the participants solved the first task, 4 out of 5 successfully
solved the second task following the tutorial.

We noticed that our tutorials had a particularly strong im-
pact on the usage of dudect, a tool that elicited the most com-
plaints about lack of documentation. One participant even
expressed their appreciation with the following: “Great tuto-
rial about dudect on the previous study page. Why it is not
included in the official documentation?” (P31)

Overall, the tutorial was appreciated for every tool in the
repair tasks, as suggested by the following quote. “I am just
really using the template provided in the tutorial” (P14),

During the audit task, 15 struggled to start using the tool,
despite our tutorial. This was especially true for BINSEC/REL
(3), ctverif (5) and haybale-pitchfork (4). Complaints mainly
referred to lack of guidance in more complex tool usage,
such as hooking functions, or bypassing some tool limita-
tions. Tools with a more straightforward functioning, such as
timecop and MemSan, did not suffer from these complaints.

2. Building and Secret Designation. This crucial prepro-
cessing step is fraught with complexity, leading to 30 com-
plaints from the study’s participants during the repair task.

Central to the participants’ challenges was the task of desig-
nating the secret within the given code snippets. The complex-
ities arose either from the need to annotate the code, leading
to 17 complaints, or the requirement to design a wrapper,
which received 7 grievances in total. In particular, the annota-
tion APIs provided by BINSEC/REL and ctverif were deemed
overly complicated. This perspective was substantiated by
7 and 9 complaints, respectively, suggesting poor usability.
In contrast, MemSan and timecop offered more streamlined
processes, simply enabling users to flag a memory region as
secret. The challenge of implementing external wrappers for
tools like dudect and haybale-pitchfork was accentuated by
insufficient documentation, evidenced by 4 and 3 feedback
reports. A unique challenge presented by haybale-pitchfork
was its reliance on the Rust language, which impeded 3 par-



ticipants. This prerequisite even pushed one to abandon the
study. Hesitance to continue, even when participants were pro-
vided with ready-to-use tools and monetary encouragement,
underscores usability concerns for the target user base.

Interestingly, the audit tasks unveiled a new set of founda-
tional hurdles. A seemingly rudimentary step - local library
installation - became a roadblock for 13 participants across
all tools. While participants found the compilation of minor
repair tasks with specified options manageable, the challenge
escalated when they had to adapt intricate compilation chains
to enable the tool use. In this regard, 16 participants faced hur-
dles when gearing up the libraries for suitable compilation to
enable analysis. The architectural constraints of BINSEC/REL,
especially the need to compile libraries for a 32-bit architec-
ture, caused difficulties for 7 participants (given the study
reliance on an older tool version). haybale-pitchfork posed its
unique challenge, with 5 participants coping to generate the
necessary bitcode of the library. The tools dudect and haybale-
pitchfork added another layer of complexity by necessitating
external wrappers, proving problematic for 4 and 1 users. The
demands of accurate code annotation further intensified the
complexities during this phase for 4 participants. This was
notably severe for BINSEC/REL users and MemSan, 2 reports
each. Overall, 10 participants faced significant hurdles in ad-
vancing further in the library audit, and did not manage to run
the tool. 6 of them were blocked when using ctverif.

3. Analysis Runtime. In the context of the repair tasks,
while many tools were wielded effortlessly on multiple tasks—
indicated by the "no issue" category in Fig. 2—both BIN-
SEC/REL and ctverif manifested signs of a higher barrier, even
for tasks that appeared superficially straightforward. Specifi-
cally, BINSEC/REL was utilized seamlessly on 15 occasions,
whereas ctverif demonstrated hassle-free operation only 9
times. We want to highlight the particular difficulty partic-
ipants faced with BINSEC/REL during the first repair task.
Users were presented with a multitude of options, some of
which tangential to the main task, leading to 3 complaints.

The audit phase, characterized by the need to analyze larger
code bases, brought forth a different set of issues. The time-
consuming nature of the analysis was a concern, particularly
for haybale-pitchfork and dudect. Analysis processes were
identified as overly protracted by 1 and 2 participants respec-
tively. This drawn-out analysis underscored concerns over the
efficiency and practicality of these tools in real-world settings.

4. CT Problem Fixing. A preliminary glance at the success
metrics in utilizing the tools, referenced in Table 2, exhibited
significant disparities among the tools. Some adopted a tool-
reliant strategy, while others, having initially engaged with
a tool, later pivoted to manual code analysis. Given the easy
nature of most tasks, forcing participants to resort to manual
analysis is a witness of poor usability. We recorded these
events mostly with ctverif, BINSEC/REL and dudect.

Participants unanimously agreed that discerning the leak-
age and subsequently mitigating it constituted the principal
challenges. These were reflected in 77 grievances. The main
subset of these, amounting to 51, expressed that after detect-
ing the leakage, the repair process itself posed difficulties.
These difficulties could arise from both details of the tasks
and participants’ limited familiarity with CT programming.
The documentation most consulted by participants was re-
lated to CT programming methodologies, suggesting that the
primary impediment might be their inexperience in this do-
main rather than difficulties with the tools themselves. We
think this inexperience is not an impediment to use the tools,
just in fixing more advanced problems in the code. This ob-
servation aligns with our expectations given the demographic
we recruited for the study.

Tool outputs and how to interpret them emerged as a re-
curring concern, in 26 documented instances. Participants
grappled with either a lack of comprehensive documentation
to interpret the output (15 instances) or ambiguous outputs
that did not offer a conclusive determination on the code
CTness (11 instances). Here, dudect and haybale-pitchfork
stood out for their clarity and precision as seen from little
complaints in participant feedback. This likely results from
tools concluding their analysis with a definitive statement
about the status of the analyzed code, whereas other tools
tend to provide information about possible issues, which can
be confusing for beginners. BINSEC/REL and ctverif gathered
criticism for occasional vagueness, with 2 and 9 mentions.

The relatively fewer complaints associated with dudect (3
instances) can likely be attributed to its methodology and
careful wording of reports.

Even though we knew of pre-existing CT violations, 12
participants reported to be unable to detect any of them. These
observations include use of haybale-pitchfork (4 participants)
and BINSEC/REL, dudect, and timecop (2 participants). For
both MemSan and ctverif it was reported once.

5. Specialized Output Generation. Participants voiced
concerns with the verbosity and confusing nature of elab-
orate error reports. A segment of the study population—3
participants out of 24—grappled with decoding these ver-
bose outputs during the audit tasks. These participants found
it challenging to distinguish actual CT violations amid the
warnings, and were overwhelmed by the volume of output.
Specifically, participant feedback highlighted ctverif as the
most problematic in this regard, accounting for 3 complaints.
These complaints were directed toward errors preventing its
proper usage, and not CT violations. timecop had 2 mentions,
while other tools, barring haybale-pitchfork, were criticized
once each.

6. Reliability / False Positives. Throughout the repair tasks,
participants expressed skepticism regarding the tools, regis-
tering 18 complaints centered on perceived reliability issues.



Tool Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10

BINSEC/REL 0% 40% 80% 100% 80% 40% 100% 80% 80% 60%
ctverif 25% 0% 75% 75% 100% 50% 67% 67% 100% 33%
dudect 60% 100% 75% 100% 100% 50% 75% 75% 75% 50%
MemSan 60% 60% 100% 60% 100% 75% 67% 100% 100% 0%
haybale-pitchfork 80% 100% 100% 75% 75% 75% 100% 100% 100% 75%
timecop 75% 100% 100% 75% 75% 50% 25% 75% 75% 50%

Mean 50% 67% 88% 81% 88% 57% 72% 83% 88% 45%

Table 2. Proportion of participants who solved each task per assigned tool (rounded to the nearest percent).

Such concerns typically revolved around reports of false pos-
itives (recorded 4 times), false negatives (4 times), mistrust
in the results (2 instances), or specific tool reasoning lim-
itations (8 times). Among all the tools evaluated, timecop
stood out with no reliability complaints. In stark contrast,
MemSan found itself at the receiving end of the most criti-
cisms—amounting to 5, predominantly targeting perceived
limitations in its analysis. BINSEC/REL follows with the same
amount of complaints, but mostly on false positive.

9 participants successfully modified task 10, which was de-
signed to be easily detectable as non-CT yet challenging to fix,
in a manner where they discussed their solutions statistically
probable CT-ness or correctness compared to the given setting.
These successes provide a valuable insight: even when faced
with complex tasks, participants can learn and adapt to the
nuances of the tools. Due to our provided documentation and
the ramp-up of repair task difficulty, we allege that these find-
ings underline the significant role of quality documentation
in the tool experience.

Upon transitioning to library audits, participants generally
exhibited more restraint in identifying false positives or neg-
atives than in the repair tasks. They mostly expressed low
confidence in their analysis, evidenced by 20 self-report on
low confidence. “I have very low confidence in these results
that must be false due to my usage of the tool.” (P06) This
reticence was particularly pronounced for BINSEC/REL and
MemSan, which gathered 5 and 4 reports, respectively. The
participants detected few to no CT violations while analyzing
libraries using haybale-pitchfork. This was reported 4 times.
With BINSEC/REL, dudect and timecop, only two such cases
were reported, and with MemSan and ctverif only one each.
Low detection rates are usually correlated with issues during
prior steps of the analysis, whether for preparing the library
for audit or for using the tool. We conclude this by looking at
inter repair task success rates in the first part of the study.

Despite the grievances recorded, most tools, except for
ctverif, proved effective in detecting non-CT code during the
audit tasks. dudect emerged as the front runner, recording 6
reports of successful detection, followed by BINSEC/REL and
timecop, which facilitated 4 reports of discoveries each. Fur-
ther, haybale-pitchfork accounted for 2 instances, and Mem-
San contributed 1 finding. We regard these outcomes as prac-
tical successes in identifying potential CT-violating bugs in

the analyzed open source production code. We did not report
these known and (upstream) documented findings.

6 Discussion

Building on the results of our study, we discuss the usability
of different tools and make a series of recommendations based
on the different stages of usage used in our study.

6.1 Usability vs verification approaches
Our results provide relevant information on the usability of
tools relative to the verification approach they use.

Our study suggests that users found dudect intuitive to use.
On the other hand, the underlying approach of statistical time
measurement demands a strategic minimization of test parts
when dealing with large code bases. Interestingly, the tech-
nique that lengthened dudect’s processing time might have
also contributed to its user-friendliness. The developers of
dudect appeared to balance precision with early termination
options for less accurate but faster results. Consequently, our
participants found the output more intuitive. Whether partici-
pants knew they were trading accuracy for speed is unclear.
Although it operates as a “black box”, a careful balance of
precision, speed, and clarity in dudect made it an effective
tool for our participants, as seen from their success rates—as
seen in Table 2—and feedback.

Dynamic instrumentation tools often have a tug-of-war
between technical efficiency and user experience, posing chal-
lenges during the setup phase. MemSan also faced significant
trust issues due to perceived unreliability. timecop stood out
with its blend of efficiency and user-friendliness. haybale-
pitchfork, proficient yet challenging for some users, hinted at
possible issues in the prior analysis steps.

Formal analysis tools, namely BINSEC/REL and ctverif,
stand out due to their capacity to offer strong guarantees
based on rigorous semantics. While robust, the theoretical
foundation of these tools can come at a cost in terms of
user experience. Specifically, ctverif presented a series of
usability hurdles, from its initial installation to operational
procedures. Many participants encountered challenges de-
spite being provided with a working installation and sample
use cases, leading to less successful task resolutions. In addi-



tion, our participants did not report particularly more trust in
ctverif’s output, despite the strong guarantees it claims. On the
other hand, BINSEC/REL demonstrated that it is possible to
maintain strong analytical guarantees while ensuring a more
straightforward setup and operational process. This contrast
between the two tools underscores the significance of balanc-
ing analytical capabilities with an intuitive user experience
when time efficiency and ease of use are highly valued [61].

Our study offers a nuanced perspective on the usability-
efficacy spectrum of different analysis tools. While strong
guarantees are a primary concern, the trade-offs with usability
can sometimes diminish a tool’s practical application. The
findings emphasize the need for tool developers to priori-
tize both rigorous analysis capabilities and a seamless user
experience, ensuring that state-of-the-art tools are not just
theoretically sound but also practically adoptable.

6.2 Recommendations
We combine the data from our empirical study with expert in-
sights to curate a suite of recommendations. Our observations
indicate that the tool usage is divided into multiple stages. Of
particular concern, inhibiting complexities at early stages can
deter users from progressing.

Installation. Many tools have a large number of dependencies
and require custom building paths. As a result, installing these
tools may be highly challenging in the mid-term, even if all
the tool’s dependencies are maintained. From study setup and
piloting we extract the following recommendations:
• Reduce and avoid less maintained dependencies.
• Make tools available via package managers.
A more general recommendation would be to embrace the best
practices of open-source software development, which has a
long, integrated maintenance period and is often available as
native packages in software distributions—native packages
through distributions also make for discoverable tools.

Familiarization. After installation, users may run the tool on
common examples, in this case crypto libraries, just to make
sure that the tool is indeed running, and without caring for the
tool’s results. However, there are many obstacles to such dry
runs. This includes, for instance, the need to compile libraries
using specific compilation flags, different from the flags used
to produce code, or the need to rewrite libraries to overcome
limitations in the coverage of the tool. To avoid such situa-
tions and to ensure that tools provide adequate support for
beginners, we make the following recommendations:
• Provide support for processing inline assembly and vector-

ized cryptographic code.
• Provide support for processing precompiled code, statically

or dynamically linked.
• Provide user-friendly examples amenable to adaptations.
• Design intuitive tutorials catering to novices, and covering

all the aspects of tool-usage.

• Prioritize a comprehensive documentation structure, accen-
tuating essentials before delving into details. Make sure
that the documentation avoids overly specialized jargon.

The latter recommendations are based on the feedback from
the study participants.

Secret Designation. Most constant-time tools require users
to provide security annotations. The annotations are typically
given in the code or through some external wrapper. More-
over, many cryptographic libraries require users to declassify
computations, for example to make ciphertexts public. From
prior literature on different tool designs and their problem
areas, we extract the following recommendations:
• Make annotations simple and external in additional files.
• Provide mechanisms to declare internal secrets [49].
• Provide mechanisms to allow to declassify computations.

Output generation. Results of analysis tools must be se-
mantically rich, easy to navigate, and exploitable in a broader
setting. Based on our interpretation of the results of the study,
and our expertise, we make the following recommendations:
• Provide output that is readily understandable by users, in-

cluding origin of leakage.
• Offer the possibility to report all leakage violations at once.

Deduplicate findings in order to avoid repeating violations.
• Offer export formats for integration with bug-tracking tools.
• Have a delta mode for CI.

Analysis Runtime. For integration into users’ workflows or
CI, analysis should be possible in reasonable time—we think
a few minutes are fine even for interactive use, but hours or
longer are not. From Jancar et al. [61] as well as our own
study participants’ feedback and the CPU utilization of our
study setup, we make the following recommendations:
• Use progress indicators (progress bar or logs) to ensure the

user understands the tool is not stalled.
• If applicable, leverage multiple CPU cores for large tasks.

7 Conclusion

We collected data from 24 participants using 6 CT analysis
tools to analyze small tasks and audit 3 open-source cryp-
tographic libraries that are documented not to be fully CT.
Our broad conclusion is that CT analysis tools have usability
shortcomings that prevent them from being integrated into
developers’ workflows. Although our analysis focused on CT
tools, we believe that many of our findings also apply to tools
for analyzing microarchitectural side-channels. We believe
the community should address these shortcomings by focus-
ing on a handful of easy-to-use and maintained tools that go
beyond the CT leakage model and cover a broad range of
leakage models.
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Summary of CT analysis tools

Tool Target Tech. Guar. Available

Abacus [9] Binary Stat # Github
ABPV13 [5] C Fo  no
ABSynthe [51] Leakage Dyn ■ Github
ANABLEPS [116] Binary Dyn # Github
BINSEC/REL [38] Binary Sym G# Github
Blazer [6] Java Fo  no
BPT17 [16] C Sym  irisa.fr
CacheAudit [41] Binary Fo ■ Github
CacheAudit2 [42] Binary Dyn  Github
CacheD [115] Trace Sym # no
CacheFix [34] Trace Sym G# BitBucket
CacheQL [127] Binary Dyn # Github
CacheS [114] Binary Fo G# no
CANAL [100] LLVM Fo  Github
Cache Templates [53] Binary Stat ■ Github
CaSym [25] LLVM Sym  no
CaType [63] Binary Fo  no
CHALICE [33] LLVM Sym ■ BitBucket
COCO-CHANNEL [23] Java Sym  no
Constantine [17] LLVM Dyn G# Github
ctgrind [75] Binary Dyn G# Github
ct-fuzz [56] LLVM Dyn # Github
ct-verif [4] LLVM Fo  Github
CT-WASM [118] WASM Fo†  Github
DATA [119, 120] Binary Dy G# Github
DifFuzz [85] Java Dyn # no
dudect [91] Binary Stat # Github
ENCIDER [126] LLVM Sym G# Github
ENCoVer [8] Java Fo  kth.se
FlowTracker [93] LLVM Fo  ufmg.br
haybale-pitchfork [106] LLVM Sym G# Github
KMO12 [69] Binary Fo ■ no
Manifold [128] Binary Stat # Zenodo
MemSan [99] LLVM Dyn G# llvm.org
MicroWalk [121] Binary Dyn G# Github
MicroWalk-CI [122] Binary Dyn G# Github
PinCEC [59] Binary Dyn G# Github
Pitchfork-angr [107] Binary Sym # Github
SC-Eliminator [123] LLVM Fo†  Zenodo
Shin et al. [97] Binary Stat # no
SideTrail [7] LLVM Fo ■ Github
STACCO [124] Binary Dyn # no
STAnalyzer [95] C Fo  no
Themis [35] Java Fo  Github
timecop [84] Binary Dyn G# blog
tis-ct [37] C Sym G# no
TLSfuzzer [65] Network Stat ■ Github
TriggerFlow [52] Binary Dyn # Gitlab
VirtualCert [11] x86 Fo  edu.uy

Targets: LLVM—intermediate representation, DSL—domain-specific lan-
guage, WASM—Web Assembly, Network—network-reachable TLS imple-
mentation
Technique: Sym—Symbolic, Stat—Statistics, Dyn—Dynamic, Fo—Formal,
†—also performs code transformation/synthesis
Guarantees:  —sound, G#—sound with restrictions, #—no guarantee, ■—
other property

Table 3. Classification of CT tools.
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