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ABSTRACT
The advent of quantum computers has generated a wave of

interest for post-quantum cryptographic schemes, as a

replacement for currently used cryptographic primitives. In this

context, lattice-based cryptography has emerged as the leading

paradigm to build post-quantum cryptography. However, all viable

replacements of the classical Diffie-Hellman key exchange require

additional rounds of interactions, thus failing to achieve all the

benefits of this protocol. Although earlier work has shown that

lattice-based Non-Interactive Key Exchange (NIKE) is theoretically

possible, it has been considered too inefficient for real-life

applications.

In this work, we provide the first evidence against this folklore

belief. We construct a practical lattice-based NIKE whose security

is based on the standard module learning with errors (M-LWE)

problem in the quantum random oracle model. Our scheme is

obtained in two steps: (i) A passively-secure construction that

achieves a strong notion of correctness, coupled with (ii) a generic

compiler that turns any such scheme into an actively-secure one.

To substantiate our efficiency claim, we present an optimised

implementation of our construction in Rust and Jasmin,

demonstrating its applicability to real-world scenarios. For this we

obtain public keys of approximately 220KBs and the computation

of shared keys takes than 12 million cycles on an Intel Skylake

CPU at a post-quantum security level of more than 120 bits.

1 INTRODUCTION
A key exchange is a cryptographic primitive that allows two users

to agree on a common secret key over an insecure channel, such as

the Internet. If the protocol consists of a single, asynchronous

message from each party, then we refer to it as a Non-Interactive
Key Exchange (NIKE). The seminal work of Diffie and Hellman [34]

introduced the well-known NIKE scheme that marked the birth of

public-key cryptography; each party sends a single group element

𝑔𝑥 (or 𝑔𝑦 , respectively) and the shared key can be derived by

computing (𝑔𝑦)𝑥 = (𝑔𝑥 )𝑦 . From a theoretical stand-point NIKE

implies the existence of public key encryption (PKE), key

encapsulation mechanism (KEM), and even authenticated

key-exchange (AKE) when combining the results of [23] with [41].

Moreover, in practice, the Diffie-Hellman key exchange lies at the

heart of protocols such as Transport Layer Security (TLS) [71], the

Signal protocol, or the Noise protocol framework [66].

The looming threat of quantum computers, combined with the

discovery of efficient quantum algorithms for factoring integers

and computing discrete logarithms [75], has motivated the

cryptographic community to explore solutions based on new

mathematical structures, departing from protocols based on the

Diffie-Hellman key exchange. In particular, lattice-based

cryptography [70] has emerged as the leading paradigm for

constructing post-quantum cryptographic schemes. As a result of

NIST’s recent standardisation process, three, of the four algorithms

that were selected for standardisation, are lattice-based [58, 69, 72].

While efficient lattice-based key exchange protocols

exist [5, 21, 72], they are all qualitatively different from the

standard Diffie-Hellman-style key exchange, in the sense that they

require additional rounds of interaction. For many applications,

where interaction is already built-in, these protocols are perfectly

fine substitutes for the Diffie-Hellman (that is not post-quantum

secure). However, in many scenarios of interest, the

non-interactive nature of NIKE protocols is crucial (we discuss

concrete examples in further detail in Section 1.1). Unfortunately,

despite almost two decades of research on the subject, an efficient

lattice-based NIKE remains elusive. Perhaps more worryingly, a

recent work [46] has shown theoretical barriers on the efficiency

of lattice-based NIKE, calling into question whether it is even

possible to build a practical scheme at all. Thus, the current state

of affairs, leaves open the following question:

Is lattice-based non-interactive
key exchange feasible in practice?

In our work we seek to answer this question in the affirmative, and

show that lattice-based NIKE can be made efficient enough to be

used in practice, whilst maintaining post-quantum security.

1.1 NIKE vs. KEMs
While the Diffie-Hellman (DH) key exchange happens to be non-

interactive, most post-quantum approaches to key exchange are

interactive key-encapsulation mechanisms (KEMs). Intuitively, the

difference is as follows. In a NIKE, any user 𝐴 can use their secret

key 𝑠𝑘𝐴 together with the public key 𝑝𝑘𝐵 of a user 𝐵 to derive a

shared key 𝑘𝐴𝐵 . At the same time, and without interaction with 𝐴,

user 𝐵 can compute the same shared key 𝑘𝐴𝐵 by combining their
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secret key 𝑠𝑘𝐵 with the public key 𝑝𝑘𝐴 of user𝐴. However, in a KEM,

this key-derivation becomes a two-stage, inherently asymmetric

and interactive process. First, 𝐴 invokes an encapsulation routine

that accepts 𝑝𝑘𝐵 as input and produces as output the shared key

𝑘𝐴𝐵 , and a ciphertext 𝑐𝑡 , which they send to 𝐵. User 𝐵 then invokes

the decapsulation routine that takes as input 𝑐𝑡 and secret key 𝑠𝑘𝐵
to produce the same shared secret 𝑘𝐴𝐵 .

Some protocols employing DH do not actually make use of the

non-interactive nature and can thus be migrated to post-quantum

KEMs in a straight-forward manner. Probably the most prominent

example is TLS, which uses the DH key exchange with ephemeral

keys on both sides for forward secrecy and has been updated to offer

post-quantum security by using KEMs inmultiple papers [15, 22, 64]

and real-world deployments [53–55, 78].

Other protocols do make use of the non-interactive nature of

DH and their migration to post-quantum primitives is thus much

more involved. A common pattern in these protocols is that they

use static DH keys for authentication. One example is OPTLS by

Krawczyk and Wee [52], a proposal that eliminates the need for

handshake signatures in TLS. The idea was picked up in the

post-quantum setting in the KEMTLS proposal by Schwabe,

Stebila, and Wiggers [73]. Like OPTLS, also KEMTLS eliminates

the need for handshake signatures, but unlike OPTLS uses static

KEM keys for authentication. This comes at the expense of

requiring more communication round-trips until full server

authentication is achieved. This can be problematic for some

protocols like HTTPS that allow the server to send early payload

data before the handshake is finished. Similar issues with delayed

authentication when moving from DH to KEMs were identified in

the migration of WireGuard to the post-quantum setting in [48]

and in the the recently proposed post-quantum version of the

Noise protocol framework [9].

These examples all manage to migrate from the DH setting to

the KEM setting at the cost of further communication round trips,

and without having to move to signature-based authentication or

engaging even more involved cryptographic primitives. If

communicating parties cannot be assumed to be online at the same

time, this approach is doomed to fail. A prominent example of

precisely this asynchronous communication setting is the Signal

secure-messaging protocol and specifically the X3DH protocol [60]

that is invoked when a user 𝐴 starts their communication with a

(possibly offline) user 𝐵. The X3DH protocol uses a combination of

ephemeral, static, and semi-static DH keys to achieve forward

secrecy, mutual authentication, and offline deniability without the

need for direct interaction between 𝐴 and 𝐵. There have been

multiple attempts to migrate X3DH to the post-quantum

setting [25, 26, 36, 47, 76] but they all either assume the existence

of a reasonably efficient post-quantum NIKE, or fail to achieve the

same security and privacy as the pre-quantum version from a

single simple asymmetric primitive.

1.2 Our Contributions
In this work, we demonstrate the practical feasibility of lattice-

based non-interactive key exchange. We propose a new scheme, that

we call “Swoosh”, based on the hardness of the M-LWE problem.

We show a proof of its security, both in the passive and active

setting, and provide parameter sets for the former with over 120-

bits of security against quantum adversaries (using the best known

attacks that incorporate recent advances in lattice cryptanalysis).

Our contributions can be succinctly summarised as follows.

(1) We propose a new construction of NIKE based on the

hardness of the M-LWE problem. Our construction is

based on the standard template [35, 57], but with a new

tweak that allows us to prove a strong notion of

correctness (which, in turn, is necessary to achieve active

security) in the quantum random oracle model (QROM).

Somewhat interestingly, our use of the random oracle

appears to be different from the Fiat-Shamir [40] and the

Fujisaki-Okamoto [42, 43] transformations, and may thus

be of independent interest.

(2) We propose a compiler to generically lift a passively

secure NIKE to an actively secure scheme, using

non-interactive zero-knowledge (NIZK) proofs. While this

approach is folklore, to the best of our knowledge it has

never appeared explicitly in the literature. Furthermore,

the exact notion of passive security needed for the proof

to go through, turns out to be surprisingly subtle to

identify.

(3) We carefully select parameters for the passively secure

NIKE and instantiate the scheme with parameters

achieving 120 bits of security against quantum adversaries

The resulting scheme we call “Passive-Swoosh” and the

full scheme including the NIZK “Swoosh”.

(4) We provide an implementation of Passive-Swoosh written

in a combination of Rust and Jasmin, and show that the

public keys of Passive-Swoosh are smaller than the ones

of the smallest parameter set of Classic McEliece [1], an

interactive KEM selected for round 4 of the NIST-PQC

competition. We also demonstrate that in terms of speed,

Passive-Swoosh outperforms CSIDH [30], the only

currently known (and realistic) post-quantum NIKE, by

orders of magnitude.

1.3 Related work

Post-quantum NIKE. While interactive KEMs appear to be much

more efficient in a post-quantum world than NIKEs, this does not

mean that there are no previous proposals for post-quantum NIKE.

In [19], Boneh and Zhandry show a construction using iO to

construct a multiparty NIKE from pseudorandom generators.

Given the impractical performance of iO, the result is mainly of

theoretical interest. Much more practical was

supersingular-isogeny Diffie-Hellman (SIDH) [32, 50]. However, in

2016, this construction was shown to be susceptible to active

attacks [44]. This could be solved by employing the

Fujisaki-Okamoto transform [42] in the NIST PQC candidate

SIKE [49], but this came at the expense of turning the NIKE into an

interactive KEM. Another approach to restoring the active security

of SIKE was presented in [10]. This approach preserved the

non-interactive nature of SIDH, but required many parallel

protocol executions and thus massively increased computation

time and message sizes. In 2022, all of these approaches based on
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SIDH were made obsolete by the Castryck-Decru attack against

SIDH [29].

In 2018, Castryck, Lange, Martindale, Panny, and Renes

proposed CSIDH, a different approach for constructing an

isogeny-based NIKE [30]. CSIDH is not affected by the

Castryck-Decru attack, and is arguably the most plausible

candidate for practical post-quantum NIKE thus far, although the

post-quantum security of concrete parameters is subject of

debate [16, 20, 65]. Multiple works have considered the efficient

and secure implementation of CSIDH, currently the fastest

approach is a variant called CTIDH [11]. We provide a

performance comparison of our proposal to CTIDH in Section 6.2.

Lattice-based NIKE. The idea of lattice-based NIKE using the

approach we use for Swoosh is not new; in [57] Lyubashevsky

calls it “folklore (since at least 2010)”. An attempt at selecting

parameters was made in [33]. However, the proposed scheme did

not formally consider passive security, nor active security.

Furthermore, the selected parameters resulted in a correctness

error that would not even allow the transformation into an

actively secure scheme through the use of NIZK proofs that we use

for Swoosh.

In fact, prior to our work, lattice-based NIKE was widely

considered impractical and this was even substantiated by

theoretical evidence. The work of [46] discovered information

theoretic barriers in constructing lattice-based NIKE with

non-interactive reconciliations. In particular, they showed that any

natural candidate of lattice-based NIKE with polynomial

modulus-to-noise ratio would necessarily incur an

inverse-polynomial correctness error. However, we stress that our

work does not contradict the theorem of [46]. As the authors

of [46] observe, non-interactive reconciliation is possible, if we

consider (M-)LWE instances with super-polynomial
modulus-to-noise ratio. This is indeed the regime of parameters

that we adopt in our work.

2 TECHNICAL OUTLINE
We give a self-contained overview of our approach for constructing

a fast lattice-based NIKE. The following is somewhat informal and

glosses over many important details, as it is only intended for an

intuitive understanding of our approach. The reader is referred to

the respective technical sections for precise statements.

The Basic Blueprint. Before delving into the specifics of our

approach, it is useful to recall the folklore construction of lattice-

based key exchange between Alice and Bob. Let 𝑨 be a random

public 𝑁 × 𝑁 matrix over some ring R𝑞 and 𝜒 a noise distribution.

The protocol proceeds as follows; Alice samples ®𝒔1 and ®𝒆1 from

𝜒𝑁 , and computes her public key as ®𝒔⊤
1
𝑨 + ®𝒆⊤

1
. Bob samples an

independent ®𝒔2 and ®𝒆2 from 𝜒𝑁 , and computes his public key as

𝑨®𝒔2 + ®𝒆2. After asynchronously obtaining each other’s public keys,

Alice and Bob can compute an approximate shared key as

®𝒔⊤
1
(𝑨®𝒔2 + ®𝒆2) ≈

(
®𝒔⊤
1
𝑨 + ®𝒆⊤

1

)
®𝒔2 .

A simple calculation shows that the shared keys computed by both

parties are identical with the exception of the error terms ®𝒔⊤
1
®𝒆2 and

®𝒆⊤
1
®𝒔2 for Alice and Bob, respectively. To correct these errors, known

schemes in the literature are based on encryption or interactive

reconciliation, which can be realised quite efficiently. However, if

we insist on a NIKE protocol, no further interaction is allowed, and

Alice and Bob must correct the errors locally. That is, we need to

devise a non-interactive reconciliation function Rec such that

Rec
(
®𝒔⊤
1
(𝑨®𝒔2 + ®𝒆2)

)
= Rec

( (
®𝒔⊤
1
𝑨 + ®𝒆⊤

1

)
®𝒔2
)
.

Note that, thus far, we have assumed that both Alice and Bob

compute their keys according to the specification of the protocol,

i.e., we implicitly only considered passive attacks. However, for the

security of the final scheme, it will be necessary to handle parties

that may behave arbitrarily. In what follows, we show how we

tackle these two challenges separately, in a way that preserves the

efficiency and security of the scheme.

Challenge I: Non-Interactive Reconciliation. A natural

approach for correcting the errors introduced by the noise terms,

is to derive the key by rounding the coefficients of the resulting

ring element. In fact this is the approach that we adopt in this

work, however there are still new ideas required to simultaneously

achieve all of the following objectives: (i) security from the

hardness of the standard module learning with errors (M-LWE)

problem, (ii) reducing the correctness error to negligible, and (iii)

maintaining the concrete efficiency of the construction. Here, we

stress that a negligible correctness error is not just a matter of

convenience, but that a non-negligible correctness error translates

to an attack against the scheme: Loosely speaking, this is because

the attacker can observe whenever the key agreement fails,

therefore learning some information about the secret key of the

honest party. Let us now focus on making the rounding approach

work for non-interactive reconciliation. A simple calculation

shows that the error terms cause a correctness error, only when

the term ®𝒔⊤
1
𝑨®𝒔2 falls into a danger interval

𝑆∗ =
[𝑞
4

± 𝛽2𝑑𝑁
]
∪
[
3𝑞

4

± 𝛽2𝑑𝑁
]
,

where 𝛽 is a bound on the norm of the noise distribution and 𝑑 is

the degree of R𝑞 . It is tempting to conclude that, if 𝑞 is sufficiently

large, then this event only happens with negligible probability.

However, this analysis is imprecise as it does not take into account

adaptive attacks, where the adversary chooses their secret key

intentionally to make this event more likely. To prevent this, and

obtain a provably secure scheme, we add a random shift 𝒓 to the

term ®𝒔⊤
1
𝑨®𝒔2 to ensure that their sum ®𝒔⊤

1
𝑨®𝒔2 + 𝒓 is indeed uniformly

distributed in R𝑞 . Note that such 𝒓 does not need to be kept private,
although it is important that it is sampled independently of the keys.

Our idea is to sample 𝒓 as the output of a hash function (modelled

as a random oracle) on input the two public keys. This allows us to

achieve two goals simultaneously:

• Both parties can recompute the shift 𝒓 without the need of
further interaction.

• We can show that ®𝒔⊤
1
𝑨®𝒔2 + 𝒓 is indeed uniformly sampled,

even if the adversary has quantum access to the random

oracle.

In summary, we are able to build a non-interactive reconciliation

mechanism so that the scheme is provably secure (in the passive

settings) against the standard M-LWE assumption, in the QROM. In

fact, we are also able to show a strong notion of correctness, namely
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that the adversary cannot cause a reconciliation error, even if it is
allowed to choose both secret keys. This strong notion of correctness

will be useful when lifting the scheme to the active setting.

Challenge II: From Passive to Active Security. The above

discussion concerns keys that are guaranteed to be well-formed

(passive security). However, in real-world scenarios we have to

deal with attackers that can behave arbitrarily. In the stronger

notion of active security [28, 41] the adversary is given access to

various oracles that allow him to register honest keys, register

corrupt keys (ones to which he does not know the corresponding

public key), or reveal the shared key between an honest key and a

corrupted one. Ultimately the adversary wins if he can distinguish

between a random key and a shared key, that was derived from

two honestly generated key pairs.

In order to prove the active security of our scheme we present

a compiler that generically lifts our scheme to the active setting

using non-interactive zero-knowledge (NIZK) proofs. Here it is

crucial that our scheme satisfies the aforementioned strong notion

of correctness, since the only thing that the NIZK guarantees is

that the keys are in the support of the honest distributions, but

otherwise they may be chosen arbitrarily. For technical reasons,

we require a NIZK that satisfies the strong property of simulation-

sound online-extractability. We refer the reader to Section 5 for

more details.

Putting Everything Together. Overall, we obtain a passively

secure construction in the QROM assuming the hardness of the

Module-LWE (M-LWE) problem (for the active settings, we

additionally require a NIZK proof). Compared to

Ring-LWE (R-LWE), M-LWE gives us greater flexibility over the

choice of parameters, when implementing our scheme. However,

this introduces an additional complication: Unlike the case for

R-LWE, where single polynomials are considered and their

multiplication is commutative, in the case of M-LWE we work

with matrices where the matrix multiplication is not generally

commutative. For the general case of two parties without

predefined roles in a protocol, there is no way to know ahead of

time whether to left multiply or right multiply. This means that

each public key is effectively duplicated by adding a left multiplied

key and right multiplied key. However, we argue that in many

cases, when parties have predefined roles in a protocol, such as a

server or client, this issue can be resolved (the server could “go

right” and the client “left” or vice versa). We defer a more detailed

discussion of this to Section 5.3.

Our parameters are selected as to provide more than 120 bits

of post-quantum security, taking into account recent advances in

lattice cryptanalysis. We work over the ring R𝑞 B Z𝑞 [𝑋 ]/(𝑋𝑑 + 1)
with 𝑑 = 256. Along with our public matrix 𝑨 ∈ R𝑁×𝑁𝑞 , where

𝑁 = 32, this gives us a lattice dimension of 8192. In order to reduce

the correctness error to reasonable levels, 𝑞 had to be sufficiently

large. We choose 𝑞 = 2
214 − 255, a prime that is simultanously NTT-

friendly and close to a power-of-two making for more efficient

field arithmetic. Furthermore, we use ternary noise sampled from a

centred binomial distribution, for the sake of efficiency.

Finally, we provide an open-source implementation of

Passive-Swoosh in Rust and Jasmin, which employs numerous

optimisations rendering competitive benchmarks. Due to the

modular fashion of our implementation we note that it can easily

be tailored to use different parameters or be incorporated with

suitable NIZKs. We defer a more detailed discussion to Section 6.

3 PRELIMINARIES
In this Section we introduce our notation and review some

quantum preliminaries along with the relevant lattice-based

hardness assumptions.

3.1 Notation
We start by defining some standard notation used throughout the

paper.

Sets, Vectors, Polynomials and Norms. For integers 𝑎, 𝑏, where
𝑎 < 𝑏, [𝑎, 𝑏] denotes the set {𝑎, 𝑎 + 1, . . . , 𝑏}. For any positive 𝛽 ∈ Z,
we define the set [𝛽] B {−𝛽, . . . ,−1, 0, 1 . . . , 𝛽}, and let 𝑥

$← S
denote the uniform sampling of 𝑥 from the set S. Let Z𝑞 denote the

ring of integers modulo a prime 𝑞. We define R B Z[𝑋 ]/(𝑋𝑑 + 1)
to be the ring of integer polynomials modulo 𝑋𝑑 + 1, for 𝑑 a power

of 2, and R𝑞 B Z𝑞 [𝑋 ]/(𝑋𝑑 + 1) the ring of integer polynomials

modulo 𝑋𝑑 + 1 where each coefficient is reduced modulo 𝑞. We

assume that that, for any 𝑁 , a uniformly sampled 𝑁 -dimensional

square matrix over R𝑞 is invertible with probability 𝑐 , for some

constant 0 < 𝑐 ≤ 1. For concreteness, we conservatively set this

constant to be 𝑐 = 0.5. Bold upper case letters 𝑨 and bold lower

case letters with arrows ®𝒂 denote matrices and column vectors over

R𝑞 , respectively; for row vectors we use the transpose
®𝒃⊤.

For a polynomial 𝒇 ∈ R𝑞 , let ®𝑓 ∈ Z𝑑𝑞 denote the coefficient

vector of 𝒇 , and 𝑓𝑖 ∈ Z𝑞 the 𝑖th coefficient. However, we denote

the constant coefficient by
˜𝑓 B 𝑓0 ∈ Z𝑞 . For an element 𝑓𝑖 ∈ Z𝑞 ,

we write |𝑓𝑖 | to mean |𝑓𝑖 mod 𝑞 |. Let the ℓ∞ and ℓ𝑝 norms for 𝒇 =

𝑓0 + 𝑓1𝑋 + . . . + 𝑓𝑑−1𝑋𝑑−1 ∈ R𝑞 be defined as

∥𝒇 ∥∞ B max

0≤𝑖≤𝑑−1
|𝑓𝑖 | and ∥𝒇 ∥𝑝 B

𝑝

√√√
𝑑−1∑︁
𝑖=0

|𝑓𝑖 |𝑝 ,

respectively. If
®𝒇 = (𝒇1, . . . ,𝒇𝑘 ) ∈ R𝑘𝑞 , then


 ®𝒇




∞
B max

1≤𝑖≤𝑘
∥𝒇𝑖 ∥∞ and




 ®𝒇



𝑝
B

𝑝

√√√
𝑘∑︁
𝑖=1

∥𝒇𝑖 ∥𝑝𝑝 .

By default




 ®𝒇


 B 


 ®𝒇



2

.

Probabilities, Algorithms and Games. The support of a discrete
random variable 𝑋 is defined as

sup(𝑋 ) B {𝑥 ∈ R : Pr[𝑋 = 𝑥] > 0}.

Algorithms are denoted by upper-case letters in sans-serif font, such

as A and B. Unless otherwise stated all algorithms are probabilistic

and (𝑥1, . . . ) $← A(𝑦1, . . . ) is used to denote that A returns (𝑥1, . . . )
when run on input (𝑦1, . . . ). When A has oracle access to B during

its execution, this is denoted by AB. For a probabilistic algorithm A,
the notation 𝑥 ∈ A(𝑦) denotes that 𝑥 is a possible output of A on

input 𝑦. We use code-based security games [13], where Pr[G⇒ 1]
denotes the probability that the final output of game G is 1. The
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notation J𝐵K, where 𝐵 is a Boolean statement, refers to a bit that is

1 if the statement is true and 0 otherwise.

3.2 Quantum Preliminaries
We review some quantum preliminaries as stated in [37].

Qubits, 𝒏-qubit States andMeasurement.A qubit |𝑥⟩ B 𝛼0 |0⟩ +
𝛼1 |1⟩ is a unit vector in some Hilbert space H . When 𝛼0 ≠ 1

and 𝛼1 ≠ 1, we say that |𝑥⟩ is in superposition. An 𝑛-bit quantum

register |𝑥⟩ B ∑
2
𝑛−1
𝑖=0 𝛼𝑖 |𝑖⟩ is a unit vector inH⊗𝑛 � C2

𝑛
, that is∑

2
𝑛−1
𝑖=0 |𝛼𝑖 |

2 = 1 for 𝛼𝑖 ∈ C. We call the set {|0⟩ , |1⟩ , . . . , |2𝑛 − 1⟩}
the computational basis and say that |𝑥⟩ is entangled when |𝑥⟩
cannot be written as the tensor product of single qubits. Unless

otherwise stated, measurements are done in the computational

basis. After measuring a quantum register |𝑥⟩ = ∑
2
𝑛−1
𝑖=0 𝛼𝑖 |𝑖⟩ in

the computational basis, the state collapses and |𝑥⟩ = ± |𝑖⟩ with
probability |𝛼𝑖 |2.
Quantum Algorithms. A quantum algorithm A is a sequence of

unitary operations𝑈𝑖 , where unitary operations are defined to map

unit vectors to unit vectors, while preserving the normalisation

constraint of quantum registers. A quantum oracle algorithm AO is

defined analogously, and can additionally query the oracleO before

(or after) executing a unitary𝑈𝑖 . As quantum computations need

to be reversible, we model an oracle O : 𝑋 → 𝑌 by a unitary 𝑈O
that maps |𝑥⟩ |𝑦⟩ ↦→ |𝑥⟩ |𝑦 ⊕ O(𝑥)⟩. For an oracle O, we write |O⟩
to denote that an algorithm has quantum-access to𝑈O.

Quantum Random Oracle Model. In the random oracle

model [12], all parties have access to a uniformly sampled random

function H. Since quantum adversaries can evaluate hash functions

in superposition, we model quantum adversaries to have quantum

access to random oracles [18]. Specifically, we assume that all

algorithms have access to the unitary implementing the mapping:

|𝑥⟩ |𝑦⟩ ↦→ |𝑥⟩ |𝑦 ⊕ H(𝑥)⟩
where H is a uniformly sampled random function.

Query Depth and Query Parallelism. As in the work of [8] we

consider the query depth 𝐷 of an adversary making a total of 𝑄H
random oracle queries. This is important in practice because for

highly parallel adversaries we have 𝐷 ≪ 𝑄H. By setting 𝐷 B 𝑄H
we obtain the bounds for sequential adversaries. We will use the

following technical Lemma from [8].

Lemma 3.1 (Search in unstructured functions [8, Lem. 2]).

Let H be a random function drawn from a distribution such that
Pr[H(𝑥) = 1] ≤ 𝜆 for all 𝑥 . Let A be an adversary with query depth
𝐷 , making at most 𝑄H many queries to H. Then

Pr

[
H(𝑥) = 1 : 𝑏

$← AH
]
≤ 4 · (𝐷 + 2) · (𝑄H + 1) · 𝜆.

3.3 Hardness Assumptions
The security of our scheme relies on the following variant of the

Module-Learning With Errors (M-LWE) [56, 70].

Definition 3.2 (M-LWE𝑞,𝑛,𝑚,𝜒 ). The decisional Module-Learning
With Errors problem (in its Hermite normal form) with parameters

𝑛,𝑚 > 0 and an error distribution 𝜒 over R𝑞 is defined via the

game M-LWE𝑏𝑞,𝑛,𝑚,𝜒 depicted in Figure 1. Here, M-LWE𝑏𝑞,𝑛,𝑚,𝜒 is

parameterised by a bit𝑏. We define A’s advantage inM-LWE𝑏𝑞,𝑛,𝑚,𝜒

as

AdvM-LWE
𝑞,𝑛,𝑚,𝜒 (A) B

����� Pr[M-LWE0,A𝑞,𝑛,𝑚,𝜒 ⇒ 1]
− Pr[M-LWE1,A𝑞,𝑛,𝑚,𝜒 ⇒ 1]

����� ,
and say thatM-LWE𝑞,𝑛,𝑚,𝜒 is 𝜖-hard for all adversariesA satisfying

AdvM-LWE
𝑞,𝑛,𝑚,𝜒 (A) ≤ 𝜖 .

Game M-LWE𝑏𝑞,𝑛,𝑚,𝜒

01 𝑏′ $← ARoR(𝑏 )

02 return J𝑏 = 𝑏′K

Oracle RoR(𝑏) // Once

03 if 𝑏 = 0 :

04 𝑨 $← R𝑛×𝑚𝑞

05 ®𝒔 $← 𝜒𝑚

06 ®𝒆 $← 𝜒𝑛

07 return (𝑨,𝑨®𝒔 + ®𝒆)
08 elseif 𝑏 = 1 :

09 𝑨 $← R𝑛×𝑚𝑞

10 ®𝒖 $← R𝑛𝑞
11 return (𝑨, ®𝒖)

Figure 1: Game defining M-LWE𝑏𝑞,𝑛,𝑚,𝜒 with adversary A.

Theoretic treatments of LWE-based schemes typically consider

the modulus to be polynomial in 𝑛 and 𝜒 to be the discrete

Gaussian on 𝐷Z,𝛼 ·𝑞 over Z with mean 0 and standard deviation

𝜎 = 𝛼 · 𝑞/
√
2𝜋 for some 𝛼 < 1. For these choices the work

of [24, 70] showed that if 𝛼𝑞 > 2

√
𝑛 then worst-case

GapSVP-
˜O(𝑛/𝛼) reduces to average-case LWE. As such, many

early implementations sampled from a discrete Gaussian

distribution, which turns out to be either fairly inefficient [22] or

vulnerable to timing attacks [27, 39, 67]. Furthermore, the

performance of the best known attacks against LWE-based

schemes does not depend on the exact distribution of noise, but

rather on the standard deviation (and potentially the entropy).

This motivates the use of noise distributions that we can easily,

efficiently, and securely sample from. One example is the centred

binomial distribution used by CRYSTALS-Kyber [72] and in [5].

4 DEFINITIONS
In this section we present a formal definition of a non-interactive

key exchange along with its security notions. A precise definition

of non-interactive zero-knowledge proofs can be found

in Appendix A.1.

4.1 Non-Interactive Key Exchange
Following the work of [28, 41], we formally define a

non-interactive key exchange (NIKE). Through the use of IDs, the
security model proposed in [28] abstracts away all considerations

concerning certification and public-key infrastructure.

Definition 4.1 (Non-Interactive Key Exchange). A non-interactive

key exchangeNIKE is defined as a tupleNIKE B (Stp,Gen, SdK) of
the following PPT algorithms. Furthermore, we define an identity

space IDS and a shared key space SKS.
5



𝑝𝑎𝑟
$← Stp(1𝜆): Given the security parameter 1

𝜆
(encoded in

unary), the probabilistic setup algorithm returns a set of

system parameters 𝑝𝑎𝑟 .

(𝑠𝑘, 𝑝𝑘) $← Gen(ID): Given an identity ID ∈ IDS, the

probabilistic key generation algorithm Gen returns a

secret/public key pair (𝑠𝑘, 𝑝𝑘).
𝑘 ← SdK(ID1, 𝑝𝑘1, ID2, 𝑠𝑘2): Given an identity ID1 ∈ IDS and

its corresponding public key 𝑝𝑘1 along with another

identity ID2 ∈ IDS and its corresponding secret key 𝑠𝑘2,

the deterministic shared key establishment algorithm SdK
returns a shared-key 𝑘 ∈ SKS, or a failure symbol ⊥. We

assume that SdK always returns ⊥ if ID1 = ID2.

Correctness. Informally, honest correctness states that shared

keys derived by two honest parties should be the same with

overwhelming probability. Although our subsequent definition of

correctness implies honest correctness, we state both definitions

here for completeness.

Definition 4.2 (Honest Correctness). A non-interactive key

exchange NIKE B (Stp,Gen, SdK) has correctness error 𝛿 (or is

said to be 𝛿-correct), if for all 𝑝𝑎𝑟 ∈ Stp(1𝜆) and ID1, ID2 ∈ IDS
it holds that,

Pr

[
SdK(ID1, 𝑝𝑘1, ID2, 𝑠𝑘2) ≠ SdK(ID2, 𝑝𝑘2, ID1, 𝑠𝑘1)

����
(𝑠𝑘1, 𝑝𝑘1) $← Gen(ID1)
(𝑠𝑘2, 𝑝𝑘2) $← Gen(ID2)

]
≤ 𝛿,

where the probability is taken over the random choices of Stp and

Gen.

In this work we define a stronger notion, semi-malicious
correctness that captures the property that two maliciously chosen

key pairs (that are in the support of the key-generation algorithm)

will not cause the key exchange to fail. Since this property clearly

implies honest correctness, throughout the rest of this work we

only focus on semi-malicious correctness. We formalise

semi-malicious correctness for NIKE relative to a random oracle H
via the game SM-CORNIKE depicted in Figure 2 and define the

advantage of an adversary A in SM-CORNIKE as

AdvSM-COR
NIKE,𝑝𝑎𝑟 (A) B Pr[SM-CORA

NIKE ⇒ 1] .

Definition 4.3 (Semi-malicious Correctness). Let
NIKE B (Stp,Gen, SdK) be a non-interactive key exchange. In the

quantum random oracle model, we say that NIKE is

𝛿 (𝑄H, 𝐷)-SM-COR if for all ID1, ID2 ∈ IDS and for all (possibly

unbounded) adversaries A of depth at most 𝐷 , making at most 𝑄H
queries (possibly in superposition) to the random oracle H, we
have AdvSM-COR

NIKE,𝑝𝑎𝑟 (A) ≤ 𝛿 (𝑄H, 𝐷). 1

1
Note that in the standard model our correctness definition can be considered a special

case where the number of random oracle queries is zero and hence 𝛿 (𝑄H, 𝐷 ) is a
constant.

Game SM-CORNIKE

01 𝑝𝑎𝑟 ← Stp(1𝜆)

02
supp(Gen(ID1)) ∋ (𝑠𝑘1, 𝑝𝑘1)
supp(Gen(ID2)) ∋ (𝑠𝑘2, 𝑝𝑘2)

}
$← A |H⟩ (𝑝𝑎𝑟 )

03 return JSdK(ID1, 𝑝𝑘1, ID2, 𝑠𝑘2) ≠ SdK(ID2, 𝑝𝑘2, ID1, 𝑠𝑘1)K

Figure 2: Correctness game SM-CORNIKE for a non-
interactive key exchange NIKE defined relative to a random
oracle H with adversary A.

Passive Security. We formalise the notion of key

indistinguishability with passive security for a non-interactive key

exchange NIKE, with respect to system parameters 𝑝𝑎𝑟 ∈ Stp(1𝜆)
via the game PasSec𝑏NIKE,𝑝𝑎𝑟 depicted in Figure 3. In

PasSec𝑏NIKE,𝑝𝑎𝑟 , the adversary A provides two identities ID1 and

ID2 for which the public and secret keys are derived honestly.

Given both public keys, A has to distinguish the shared key from a

random key. We define the advantage of adversary A in

PasSec𝑏NIKE,𝑝𝑎𝑟 as

AdvPasSecNIKE,𝑝𝑎𝑟 (A) B
����� Pr[PasSec0,ANIKE,𝑝𝑎𝑟 ⇒ 1]
− Pr[PasSec1,ANIKE,𝑝𝑎𝑟 ⇒ 1]

����� .
Definition 4.4 (Passive Security). Let NIKE B (Stp,Gen, SdK) be

a non-interactive key exchange. We say that NIKE is

(𝜖,𝑄H)-PasSec relative to 𝑝𝑎𝑟 ∈ Stp(1𝜆) if for all

ID1, ID2 ∈ IDS and for all PPT adversaries A, making at most 𝑄H
queries (possibly in superposition) to the random oracle H, we
have AdvPasSecNIKE,𝑝𝑎𝑟 (A) ≤ 𝜖 (𝑄H).

Game PasSec𝑏NIKE,𝑝𝑎𝑟

01 (𝑠𝑘1, 𝑝𝑘1) $← Gen(ID1)
02 (𝑠𝑘2, 𝑝𝑘2) $← Gen(ID2)
03 𝑘0 B SdK(ID1, 𝑝𝑘1, ID2, 𝑠𝑘2)
04 𝑘1

$← SKS
05 𝑏′ ← A |H⟩ (𝑝𝑘1, 𝑝𝑘2, 𝑘𝑏 )
06 return J𝑏 = 𝑏′K

Figure 3: Passive security game PasSec𝑏NIKE,𝑝𝑎𝑟 for a non-
interactive key exchange NIKE defined relative to a random
oracle H with adversary A.

Active Security. We formalise the notion of key

indistinguishability with active security for a non-interactive key

exchange NIKE, with respect to system parameters 𝑝𝑎𝑟 ∈ Stp(1𝜆)
via the game ActSec𝑏NIKE,𝑝𝑎𝑟 depicted in Figure 4. Observe that the

ActSec notion defined here corresponds to CKS-light which is

polynomially equivalent to CKS and m-CKS-heavy in the work

of [41]. The original CKS notion was defined in [28].

Unsurprisingly our definition of active security implies the former
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notion of passive security. The game starts by selecting a bit 𝑏

uniformly at random after which the adversary A is given access to

four oracles. A’s queries may be made adaptively and are arbitrary

in number. The RegHonUsr and RegCorUsr oracles let A register

honest and corrupted user public keys, respectively. A may make

multiple queries to RegCorUsr, in which case only the most recent

(𝑐𝑜𝑟𝑟𝑢𝑝𝑡, ID,⊥, 𝑝𝑘) entry is kept. The RevCorQue oracle provides
A with a shared key between a pair of registered identities, subject

only to the restriction that at least one of the two identities was

registered as honest. Depending on the bit 𝑏, the TestQue oracle

returns either a random key or a shared key between two

identities registered as honest. Finally, the adversary outputs a

guess bit 𝑏′ and wins the game if and only if 𝑏 = 𝑏′. We define the

advantage of adversary A in ActSec𝑏NIKE,𝑝𝑎𝑟 as

AdvActSecNIKE,𝑝𝑎𝑟 (A) B
����� Pr[ActSec0,ANIKE,𝑝𝑎𝑟 ⇒ 1]
− Pr[ActSec1,ANIKE,𝑝𝑎𝑟 ⇒ 1]

����� .
Definition 4.5 (Active Security [28]). Let

NIKE B (Stp,Gen, SdK) be a non-interactive key exchange. We

say that NIKE is (𝜖,𝑄H, 𝑄RHU, 𝑄RCU, 𝑄RCQ, 𝑄TQ)-ActSec relative to
𝑝𝑎𝑟 ∈ Stp(1𝜆) if for all PPT adversaries A making at most; 𝑄H
queries (possibly in superposition) to the random oracle H, 𝑄RHU

queries to RegHonUsr, 𝑄RCU queries to RegCorUsr, 𝑄RCQ queries to

RevCorQue, and 𝑄TQ queries to TestQue, we have

AdvActSecNIKE,𝑝𝑎𝑟 (A) ≤ 𝜖 .

5 CONSTRUCTION
We present our NIKE construction in two steps by introducing a

scheme that only satisfies passive security followed by a generic

transformation that turns it into a scheme with active security.

5.1 Passive Setting
In this section we present our construction of a non-interactive

key exchange with semi-malicious correctness that satisfies key

indistinguishability for honestly registered public keys (passive

security) in the random-oracle model. The scheme is depicted

in Figure 5.

Correctness. In order to achieve better bounds in our proof of

security, we show that our scheme satisfies both honest

correctness as well as the stronger notion of semi-malicious

correctness of Definition 4.2 and Definition 4.3, respectively.

Although Theorem 5.1 implies Lemma 1, we will use the latter and

state its proof in Appendix B for sake of completeness.

Lemma 1 (Honest Correctness). For all (possibly unbounded)

adversaries A the non-interactive key exchange

NIKE B (Stp,Gen, SdK) construction depicted in Figure 5 has

honest correctness error

𝛿 ≤ 4𝛽2𝑑2𝑁

𝑞

as per Definition 4.2.

We show that the scheme satisfies the stronger notion of semi-

malicious correctness in the quantum random-oracle model.

Theorem 5.1 (SM-COR of NIKE). For all (possibly unbounded)

adversaries A of depth 𝐷 making at most 𝑄H queries (possibly in

superposition) to the random oracle H, the non-interactive key

exchange NIKE B (Stp,Gen, SdK) construction depicted

in Figure 5 has semi-malicious correctness error

𝛿 (𝑄H, 𝐷) ≤ 16 · (𝐷 + 2) · (𝑄H + 1) ·
𝛽2𝑑2𝑁

𝑞

as per Definition 4.3, where 𝛽 is a bound on the maximum absolute

value of the support of 𝜒 .

Proof. We are going to prove that the adversary cannot cause

an error in the key-derivation, i.e., a mismatch between the derived

keys, even if he is allowed to choose both secret keys from the

support of the key generation algorithm. This trivially implies

semi-malicious correctness. Let (𝑠𝑘1, 𝑝𝑘1) and (𝑠𝑘2, 𝑝𝑘2) be the

pairs returned by the adversary. Without loss of generality we can

consider 𝑠𝑘1 = 𝑠𝑘𝐿 and 𝑝𝑘2 = 𝑝𝑘𝑅 , i.e., only “one side” of the key.

A key mismatch occurs whenever

Rec
(
𝑝𝑘⊤𝐿 𝑠𝑘𝑅 + 𝒓

)
≠ Rec

(
𝑠𝑘⊤𝐿 𝑝𝑘𝑅 + 𝒓

)
Rec

( (
®𝒔⊤𝐿𝑨 + ®𝒆

⊤
𝐿

)
®𝒔𝑅 + 𝒓

)
≠ Rec

(
®𝒔⊤𝐿 (𝑨®𝒔𝑅 + ®𝒆𝑅) + 𝒓

)
Rec

©­­­­«
®𝒔⊤𝐿𝑨®𝒔𝑅 + 𝒓︸      ︷︷      ︸
𝒌★∈R𝑞

+®𝒆⊤𝐿 ®𝒔𝑅
ª®®®®¬
≠ Rec

©­­­­«
®𝒔⊤𝐿𝑨®𝒔𝑅 + 𝒓︸      ︷︷      ︸
𝒌★∈R𝑞

+®𝒔⊤𝐿 ®𝒆𝑅
ª®®®®¬
,

where 𝒓 is the output of the random oracle on both public keys and

®𝒆𝐿 and ®𝒆𝑅 are sampled from the noise distribution 𝜒𝑁 . By definition

of the Rec function, this means that the term ®𝒆⊤
𝐿
®𝒔𝑅 (or, equivalently,

the term ®𝒔⊤
𝐿
®𝒆𝑅 ) is causing a rounding error on one of the coefficients

of 𝒌★. We now bound the size of the largest coefficient of ®𝒆⊤
𝐿
®𝒔𝑅 as



®𝒆⊤𝐿 ®𝒔𝑅

∞ =






 𝑁∑︁
𝑖=1

𝒆𝐿,𝑖 𝒔𝑅,𝑖







∞

≤
𝑁∑︁
𝑖=1



𝒆𝐿,𝑖 𝒔𝑅,𝑖

∞
≤ 𝛽2𝑑𝑁,

where the first inequality follows from the triangle inequality. The

norm of ®𝒔⊤
𝐿
®𝒆𝑅 can be bounded similarly. It follows that, in order for

a key-derivation error to occur, at least one coefficient of 𝒌★ must

be in the following interval

𝑆★ =

[𝑞
4

± 𝛽2𝑑𝑁
]
∪
[
3𝑞

4

± 𝛽2𝑑𝑁
]
.

Next we define a function 𝐹 that, on input two public keys and two

identities samples a uniform 𝒓 , it returns 1 if a key mismatch occurs,

i.e.,

Rec
(
𝑝𝑘⊤𝐿 𝑠𝑘𝑅 + 𝒓

)
≠ Rec

(
𝑠𝑘⊤𝐿 𝑝𝑘𝑅 + 𝒓

)
and 0 otherwise. The function checks this by (inefficiently)

recovering the secret keys and comparing the results of the Rec
functions (see equation above). Note that, since 𝑨 is invertible, the

secret key is uniquely determined by the public key, and therefore
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Game ActSec𝑏NIKE,𝑝𝑎𝑟

01 D B ⊥
02 K B ⊥
03 𝑏′ ← A |H⟩, RegHonUsr( ·), RegCorUsr( ·,· ), RevCorQue( ·,· ), TestQue( ·,· )

04 return J𝑏 = 𝑏′K

Oracle RegHonUsr(ID ∈ IDS) // Twice in CKS-light

05 if (𝑐𝑜𝑟𝑟𝑢𝑝𝑡, ID,⊥, ·) ∈ D :

06 return ⊥
07 (𝑠𝑘, 𝑝𝑘) $← Gen(ID)
08 D ∪ {(ℎ𝑜𝑛𝑒𝑠𝑡, ID, 𝑠𝑘, 𝑝𝑘)}
09 return 𝑝𝑘

Oracle RegCorUsr(ID ∈ IDS, 𝑝𝑘)

10 if (𝑐𝑜𝑟𝑟𝑢𝑝𝑡, ID,⊥, ·) ∈ D :

11 (𝑐𝑜𝑟𝑟𝑢𝑝𝑡, ID,⊥, ·) B (𝑐𝑜𝑟𝑟𝑢𝑝𝑡, ID,⊥, 𝑝𝑘)
12 else :

13 D ∪ {(𝑐𝑜𝑟𝑟𝑢𝑝𝑡, ID,⊥, 𝑝𝑘)}

Oracle RevCorQue(ID1, ID2)

14 if (ℎ𝑜𝑛𝑒𝑠𝑡, ID1, ·, ·) ∈ D ∧ (𝑐𝑜𝑟𝑟𝑢𝑝𝑡, ID2, ·, ·) ∈ D :

15 return SdK(ID2, 𝑝𝑘2, ID1, 𝑠𝑘1)
16 elseif (𝑐𝑜𝑟𝑟𝑢𝑝𝑡, ID1, ·, ·) ∈ D ∧ (ℎ𝑜𝑛𝑒𝑠𝑡, ID2, ·, ·) ∈ D :

17 return SdK(ID1, 𝑝𝑘1, ID2, 𝑠𝑘2)

Oracle TestQue(ID1, ID2) // Once in CKS-light

18 if ID1 = ID2 :

19 return ⊥
20 if (ℎ𝑜𝑛𝑒𝑠𝑡, ID1, ·, ·) ∈ D ∧ (ℎ𝑜𝑛𝑒𝑠𝑡, ID2, ·, ·) ∈ D :

21 if 𝑏 = 0 :

22 𝑘 B SdK(ID1, 𝑝𝑘1, ID2, 𝑠𝑘2)
23 if 𝑏 = 1 :

24 if (ID1, ID2, 𝑘) ∈ K ∨ (ID2, ID1, 𝑘) ∈ K :

25 return 𝑘

26 𝑘
$← SKS

27 K ∪ {(ID1, ID2, 𝑘)}
28 return 𝑘

29 return ⊥

Figure 4: Game defining ActSec𝑏NIKE,𝑝𝑎𝑟 for a non-interactive key exchange NIKE with adversary A.

Stp(1𝜆)

01 R𝑞 B Z𝑞 [𝑋 ]/(𝑋𝑑 + 1)
02 𝑨 $← GL(𝑁,R𝑞)
03 𝑝𝑎𝑟 B (𝑞, 𝑑,R𝑞, 𝑁 ,𝑨)
04 return 𝑝𝑎𝑟

Gen(ID)

05 ®𝒔𝐿, ®𝒔𝑅 ← Cbd(·) // Samples ®𝒔 ∈ R𝑁𝑞 from 𝜒𝑁

06 ®𝒆𝐿, ®𝒆𝑅 ← Cbd(·) // Samples ®𝒆 ∈ R𝑁𝑞 from 𝜒𝑁

07 𝑠𝑘𝐿 B ®𝒔⊤𝐿 ∈ R
1×𝑁
𝑞

08 𝑠𝑘𝑅 B ®𝒔𝑅 ∈ R𝑁𝑞
09 𝑝𝑘𝐿 B ®𝒔⊤𝐿𝑨 + ®𝒆

⊤
𝐿
∈ R1×𝑁𝑞

10 𝑝𝑘𝑅 B 𝑨®𝒔𝑅 + ®𝒆𝑅 ∈ R𝑁𝑞
11 return

(
𝑠𝑘ID B (𝑠𝑘𝐿, 𝑠𝑘𝑅), 𝑝𝑘ID B (𝑝𝑘𝐿, 𝑝𝑘𝑅)

)

SdK(ID1, 𝑝𝑘1, ID2, 𝑠𝑘2)

12 if ID1 ≤ ID2 :

13 𝒓 B H (ID1, 𝑝𝑘1, ID2, 𝑝𝑘2) ∈ R𝑞
14 parse 𝑝𝑘1 → (𝑝𝑘𝐿,⊥) C ®𝒖⊤𝐿 ∈ R

1×𝑁
𝑞

15 parse 𝑠𝑘2 → (⊥, 𝑠𝑘𝑅) C ®𝒔𝑅 ∈ R𝑁𝑞
16 𝒌′ B ®𝒖⊤

𝐿
®𝒔𝑅 + 𝒓 ∈ R𝑞

17 else :

18 𝒓 B H (ID2, 𝑝𝑘2, ID1, 𝑝𝑘1) ∈ R𝑞
19 parse 𝑝𝑘1 → (⊥, 𝑝𝑘𝑅) C ®𝒖𝑅 ∈ R𝑁𝑞
20 parse 𝑠𝑘2 → (𝑠𝑘𝐿,⊥) C ®𝒔⊤𝑅 ∈ R

1×𝑁
𝑞

21 𝒌′ B ®𝒔⊤
𝑅
®𝒖𝑅 + 𝒓 ∈ R𝑞

22 𝑘 B Rec(𝒌′) ∈ {0, 1}𝑑

23 return 𝑘

Rec(𝒌)

24 for 𝑖 ∈ {0, . . . , 𝑑 − 1} :
25 ki B Rnd(𝑘𝑖 ) ∈ {0, 1}
26 return 𝑘 ∈ {0, 1}𝑑

Rnd(𝑘𝑖 )

27 if 𝑞
4
≤ 𝑘𝑖 ≤ 3𝑞

4
:

28 return 1

29 else :

30 return 0

Cbd(·)

31 for 𝑖 ∈ {1, . . . , 𝑁 } :
32 for 𝑗 ∈ {0, . . . , 𝑑 − 1} :
33 𝑎, 𝑏

$← {0, 1}
34 𝑓𝑗 B 𝑎 − 𝑏
35 𝒇𝑖 B

∑𝑑−1
𝑗=0 𝑓𝑗𝑋

𝑗

36 return ®𝒇 B (𝒇1, . . . ,𝒇𝑁 )

Figure 5: Construction of passively secure non-interactive key exchangeNIKE B (Stp,Gen, SdK) with functions Rec : R𝑞 → {0, 1}𝑑 ,
Rnd : Z𝑞 → {0, 1} and Cbd : ∅ → R𝑁𝑞 , and random oracle H : IDS ×

(
R1×𝑁𝑞 × R𝑁𝑞

)
× IDS ×

(
R1×𝑁𝑞 × R𝑁𝑞

)
→ R𝑞 . Here GL(𝑁,R𝑞)

denotes the set of invertible matrices over R𝑞 .

this (inefficient) function is well defined on all inputs. Furthermore, note that the element

𝒌★ = 𝑠𝑘⊤𝐿 𝑨𝑠𝑘𝑅 + 𝒓
8



is uniformly distributed in R𝑞 , since 𝒓 $← R𝑞 . It follows that for
any given input 𝑥 :

Pr[𝐹 (𝑥) = 1] ≤ 4𝛽2𝑑2𝑁

𝑞
.

Finally, observe that by definition a key mismatch happens if and

only if the function 𝐹 outputs 1 and consequently the adversary

is able to find such accepting input. By Lemma 3.1, this happens

with probability at most 16 · (𝐷 + 2) · (𝑄H + 1) · 𝛽2𝑑2𝑁 /𝑞 for an

adversary of depth 𝐷 , making at most 𝑄H quantum query to the

random oracle. ■

On the Need for Random Oracles. An astute reader may wonder

whether the usage of the random oracle is needed at all to prove

the above notion of correctness, since there does not appear to be

an immediate attack even if we omit the random oracle completely

from the scheme. It is plausible to conjecture that semi-malicious

correctness holds even without the random oracle. Informally, semi-

malicious correctness boils down to showing that, for a given public

key 𝑝𝑘 ∈ R𝑁𝑞 , it is hard to find an 𝒔 ∈ R𝑁𝑞 such that for no coefficient

of the product 𝒔⊤𝑝𝑘 lies in the interval 𝑆★. Thus, the a bound

in these settings would require one to estimate the hardness of

this version of the (inhomogenous) 1-dimensional short-integer-

solution (SIS) problem. By relying on the random-oracle heuristic,

we are able to bypass this problem and obtain a construction in

the QROM that is: (i) unconditionally correct in any ring and (ii)

whose security is based on the well-established M-LWE problem.

We leave the precise study of the hardness of this 1-dimensional

variant of the SIS problem as ground for future work.

Passive Security. Assuming the hardness of

M-LWE, Definition 3.2, we show that the scheme satisfies passive
security, Definition 4.4, in the QROM.

Theorem 5.2 (Passive Security). For any PPT adversary A
against NIKE B (Stp,Gen, SdK), depicted in Figure 7, making at

most 𝑄H queries (possibly in superposition) to H, there exist PPT
adversaries B1,B2 such that

AdvPasSecNIKE,𝑝𝑎𝑟 (A) ≤6 · Adv
M-LWE
𝑞,𝑁 ,𝑁 ,𝜒

(B1) + 2 · AdvM-LWE
𝑞,𝑁 ,𝑁+1,𝜒 (B2) +

4𝛽𝑑

𝑞
.

Proof of Theorem 5.2. Let A be an adversary against NIKE in

the PasSec game. Consider the sequence of games in Figure 6.

Game G0. This is the original PasSec𝑏NIKE,𝑝𝑎𝑟 game so by

definition

AdvPasSecNIKE,𝑝𝑎𝑟 (A) ≤
����Pr [GA

0
⇒ 1

]
− 1

2

����.
Game G1. In this game the half of 𝑝𝑘1 that is used in the key-

derivation is replaced with a uniform key.Without loss of generality

we can consider either half of the key. Indistinguishability follows

from a reduction against the M-LWE problem, conditioned on the

matrix 𝑨 being invertible. Since this happens with probability at

least 1/2, we have that���Pr [GA
0
⇒ 1

]
− Pr

[
GA
1
⇒ 1

] ��� ≤ 2 · AdvM-LWE
𝑞,𝑁 ,𝑁 ,𝜒

(B1) .

Game PasSec𝑏NIKE,𝑝𝑎𝑟

01 (𝑠𝑘1, 𝑝𝑘1) $← Gen(ID1)
02 𝑝𝑘1

$← R1×𝑁𝑞 × R𝑁𝑞 //G1

03 (𝑠𝑘1, 𝑝𝑘1) $← Gen(ID1) //G4

04 (𝑠𝑘2, 𝑝𝑘2) $← Gen(ID2)
05 𝑝𝑘2

$← R1×𝑁𝑞 × R𝑁𝑞 //G3

06 (𝑠𝑘2, 𝑝𝑘2) $← Gen(ID2) //G4

07 if ID1 ≤ ID2 :

08 𝒓 B H (ID1, 𝑝𝑘1, ID2, 𝑝𝑘2) ∈ R𝑞
09 parse 𝑝𝑘1 → (𝑝𝑘𝐿,⊥) C ®𝒖⊤𝐿 ∈ R

1×𝑁
𝑞

10 parse 𝑠𝑘2 → (⊥, 𝑠𝑘𝑅) C ®𝒔𝑅 ∈ R𝑁𝑞
11 𝒌′ B ®𝒖⊤

𝐿
®𝒔𝑅 + 𝒓 ∈ R𝑞

12 else :

13 𝒓 B H (ID2, 𝑝𝑘2, ID1, 𝑝𝑘1) ∈ R𝑞
14 parse 𝑝𝑘1 → (⊥, 𝑝𝑘𝑅) C ®𝒖𝑅 ∈ R𝑁𝑞
15 parse 𝑠𝑘2 → (𝑠𝑘𝐿,⊥) C ®𝒔⊤𝑅 ∈ R

1×𝑁
𝑞

16 𝒌′ B ®𝒔⊤
𝑅
®𝒖𝑅 + 𝒓 ∈ R𝑞

17 𝑘0 B Rec(𝒌′) ∈ {0, 1}𝑑 //G0

18 𝒆 $← 𝜒 //G2

19 𝑘0 B Rec(𝒌′ + 𝒆) ∈ {0, 1}𝑑 //G2

20 𝒖 $← R𝑞 //G3

21 𝑘0 B Rec(𝒖) ∈ {0, 1}𝑑 //G3

22 𝑘1
$← SKS

23 𝑏′ ← A |H⟩ (𝑝𝑘1, 𝑝𝑘2, 𝑘𝑏 )
24 return J𝑏 = 𝑏′K

Figure 6: Games G0, G1, G2, G3, G4 for the proof of PasSec of
NIKE in Figure 5.

Game G2. In this hybrid we modify the way we compute the

shared key. Consider 𝒌′ as computed in the SdK algorithm, we

define the shared key as Rec(𝒌′ + 𝒆) where 𝒆 $← 𝜒 is a freshly

sampled ring element from the noise distribution. Note that the

adversary can only detect a change in this hybrid if

Rec(𝒌′ + 𝒆) ≠ Rec(𝒌).
Since 𝒌′ is uniformly sampled from R𝑞 , the probability that any

coefficient is rounded to a different term is at most 4𝛽𝑑/𝑞, which
is also an upper bound on the distinguishing advantage of the

adversary. Thus we get���Pr [GA
1
⇒ 1

]
− Pr

[
GA
2
⇒ 1

] ��� ≤ 4𝛽𝑑

𝑞
.

Game G3. In this game the half of 𝑝𝑘2 used in the key-derivation

is replaced with a uniform key, along with 𝒌′ + 𝒆 that is replaced
with a uniform ring element 𝒖. By another invocation of theM-LWE

assumption, again conditioning on 𝑨 being invertible, we have that���Pr [GA
2
⇒ 1

]
− Pr

[
GA
3
⇒ 1

] ��� ≤ 2 · AdvM-LWE
𝑞,𝑁 ,𝑁+1,𝜒 (B2).
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Game G4. In this game we revert the changes made to 𝑝𝑘1 and

𝑝𝑘2, and appealing again to Definition 3.2 we get���Pr [GA
3
⇒ 1

]
− Pr

[
GA
4
⇒ 1

] ��� ≤ 4 · AdvM-LWE
𝑞,𝑁 ,𝑁 ,𝜒

(B1) .

Observe that 𝑘0 and 𝑘1 are identically distributed and the adversary

can only guess 𝑏′. Hence,

Pr

[
GA
4
⇒ 1

]
=

1

2

.

Collecting all probabilities yields the bound stated in Theorem 5.2.

■

5.2 Active Setting
Here we show how a non-interactive key exchange with passive

security can be generically transformed to one with active security.

The transformation, depicted in Figure 7, requires a simulation-

sound NIZK with a straight-line extractor. The proof is deferred

to Appendix B.

Theorem 5.3 (PasSec and SM-COR of NIKE′
QROM

⇒
ZKPoK

ActSec of

NIKE). Let H : {0, 1}∗ → R𝑞 be a random oracle and NIKE′ B
(Stp′,Gen′, SdK′) a passively secure non-interactive key exchange

with semi-malicious correctness defined relative to 𝑝𝑎𝑟 ′ ∈ Stp′ (1𝜆).
Further, let ZKPoK B (ZK.Prv,ZK.Ver) be a simulation-sound

online extractabile zero-knowledge proof of knowledge for the

NP relation 𝑅 = (𝑝𝑘ID, 𝑠𝑘ID). Then, for any ActSec adversary A
against NIKE B (Stp,Gen, SdK), depicted in Figure 7, there exist

PPT adversaries B1,B2,B3.𝑖 ,B′
3.𝑖
,B4 such that

AdvActSecNIKE,𝑝𝑎𝑟 (A) ≤𝑄RCU · AdvSSNDZKPoK (B1) + 2 · Adv
SM-COR
NIKE′,𝑝𝑎𝑟 ′ (B2)

+𝑄TQ ·𝑄2

RHU · Adv
PasSec
NIKE′,𝑝𝑎𝑟 ′ (B3.𝑖 )

+ 2 ·𝑄TQ · AdvSM-COR
NIKE′,𝑝𝑎𝑟 ′ (B

′
3.𝑖 )

+ 2 ·𝑄RHU · AdvZKZKPoK (B4),

where 𝑄RCU and 𝑄RHU, are the number of queries made by A to

RegCorUsr and RegHonUsr, respectively, and 𝑄TQ denotes the

number of queries made by B𝑖 to TestQue for 𝑖 ∈ {0, . . . , 𝑄TQ − 1}.

5.3 Practical considerations

Halving the Key Size. Observe that the “left” and “right”

components 𝑝𝑘𝐿 and 𝑝𝑘𝑅 of the public key of the NIKE as

specified in Figure 5 are necessary because we work in the

non-commutative M-LWE setting. An easy way to halve the size of

the public key would be to set 𝑁 = 1, i.e., to work in the R-LWE

setting; this also eliminates the need for the case distinction in

SdK. We argue that for essentially all relevant applications of a

NIKE, we can halve the public-key size even without moving to the

R-LWE setting. All that is required is that protocol participants

(and their associated NIKE keys) have different roles, typically
called initiator and responder or client and server, and that these

roles are clear from protocol context. This is certainly the case for

the application examples sketched in Section 1.1: The OPTLS

handshake, like the TLS handshake, clearly distinguishes the roles

of client and server, so does the handshake in (post-quantum)

WireGuard. Also in X3DH the critical static-semistatic key

exchange has clear roles that can be used to distinguish between

the “left” and “right” participant instead of transmitting both

halves of the key and using comparison of IDs. Note that this

setting of a NIKE using keys with different roles is very similar to

the ℓ𝐴 and ℓ𝐵 keys of SIDH [50, § 3.2], when it was still considered

as a replacement for DH, i.e., before it was shown to not be

actively secure in [44] and completely broken in [29].

Based on these considerations, we stick to the M-LWE setting

for the construction of Swoosh; in our performance evaluation

in Section 6 we report the size of only one public-key component.

Security of the NIZK. We highlight that our proof of active

security, Theorem 5.3, requires the strong property of

simulation-sound online-extractability. Although constructions

satisfying such a strong notion exist [77], they tend to be less

efficient than alternatives satisfying weaker notions of security.

For instance, a proof of knowledge of an M-LWE secret satisfying

simulation soundness, but without online-extractability, using state
of the art techniques [59] and appropriate parameters is around 70

KB in size.

It appears likely that the need for the stronger notion is an

artefact of the proof, and we conjecture that our construction

remains secure even if we use NIZKs that are simulation-sound

and extractable, although not online-extractable (such as the

protocol in [59]). We are not the first to make this additional

assumption, in favour of a more efficient scheme and similar

heuristics have already appeared in the literature, e.g., in [31].

While we cannot exclude that contrived examples of NIZKs could

make our compiler fail, we believe that all natural candidates of

NIZKs would lead to secure schemes.

Tangentially, we also mention that for some applications, the

performance of the NIZK does not affect the efficiency of the shared-

key computation, since it can be verified once and for all for a given

public key: In any scenario where the public keys are distributed by

some PKI, the NIZK proof can be simply verified by the PKI upon

the registration of the key, and then immediately discarded. The

users would then trust the PKI to have verified the NIZK on their

behalf. Note that this does not introduce any extra trust assumption,

since the PKI is anyway trusted to provide the correct public key. In

these scenarios, the efficiency of the NIZK only marginally impacts

the overall system performance, and thus justifies ignoring the

costs of the NIZK for shared-key computation.

5.4 Parameter selection
Selecting parameters for the scheme influences several aspects,

most notably the correctness error and the hardness of M-LWE. In

order to evaluate the security of our scheme we use the

Lattice-Estimator [2, 4, 68], to estimate the memory and CPU

operations required to perform various lattice attacks, including

dual attacks, uSVP, the Coded-BKW attack, and solving using

Gröbner bases with the Arora-Ge attack. The estimator has been

used to estimate the concrete security for all LWE and NTRU

based candidates of the NIST competition [3], and is regularly

updated to include the latest developments in lattice

cryptanalysis
2
. However, we also take into account practical

2
An up-to-date list of implemented works can be found https://lattice-estimator.

readthedocs.io/en/latest/references.html.
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Stp(1𝜆)

01 𝑝𝑎𝑟
$← Stp′ (1𝜆)

02 return 𝑝𝑎𝑟

Gen(ID)

03 (𝑠𝑘′ID, 𝑝𝑘
′
ID)

$← Gen′ (ID)
04 𝜋

$← ZK.Prv(𝑝𝑘′ID, 𝑠𝑘
′
ID)

05 𝑠𝑘ID B 𝑠𝑘′ID
06 𝑝𝑘ID B (𝑝𝑘′ID, 𝜋)
07 return (𝑠𝑘ID, 𝑝𝑘ID)

SdK(ID1, 𝑝𝑘1, ID2, 𝑠𝑘2)

08 parse 𝑝𝑘1 → (𝑝𝑘′
1
, 𝜋)

09 if ZK.Ver(𝑝𝑘′
1
, 𝜋) = 0 : return ⊥

10 𝑘′ B SdK′ (ID1, 𝑝𝑘′
1
, ID2, 𝑠𝑘2)

11 return 𝑘′

Figure 7: Compiler for transforming a passively secure non-interactive key exchange NIKE′ B (Stp′,Gen′, SdK′) with semi-
malicious correctness into an actively secure non-interactive key exchange NIKE B (Stp,Gen, SdK).

considerations for the implementation when selecting our

parameters, such as the use of ternary secrets and noise sampled

from a centred binomial distribution. For our scheme with

parameters 𝑛 = 8192, 𝑞 = 2
214 − 255 and X a ternary distribution,

we estimate the hardness of the M-LWE problem underlying

Swoosh at 120 bits
3
.

The other way to attack Swoosh is, for an active attacker, to try

to produce failures. We consider a quantum attacker with a

bounded query depth of 𝐷 = 2
64

(i.e., what NIST considers to be

“the approximate number of gates that current classical computing

architectures can perform serially in a decade” [63, Sec. 4.A]) and a

bound on the number of queries of 2
120

(i.e., matching the

hardness of the underlying lattice problem). Applying Theorem 5.1

yields a success probability (correctness error), after this amount of

computation, of

16 ·
(
2
64 + 2

)
·
(
2
120 + 1

)
· 256

2 · 32
2
214

<
1

2
4
= 𝛿 (𝑄H, 𝐷),

i.e., considerably smaller than 1/2. Note that this analysis is

conservative as it ignores the circuit depth for the Grover oracle

that an attacker would need to implement.

Generating an Invertible Matrix. In order to justify our

conservative estimate that at least 50% of all matrices in R𝑁×𝑁𝑞 are

invertible, we used Sage to generate 2000 random matrices and

checked if they are invertible. They were all invertible. We

additionally verified that the concrete matrix used by our

implementation (see Section 6) is invertible.

Parameter Description Value
𝛽 upper bound on ∥®𝒔∥∞ = ∥®𝒆∥∞ 1

𝑞 prime modulus 2
214 − 255

𝑑 dim of R𝑞 B Z𝑞 [𝑋 ]/(𝑋𝑑 + 1) 256

𝑙 # factors 𝑋𝑑 + 1 splits into mod 𝑞 128

𝑁 height of the 𝑨matrix 32

𝑛 lattice dimension 8192

𝜒 noise distribution

𝑝 (−1)=25%
𝑝 (0)=50%
𝑝 (1)=25%

Table 1: Parameter selection for non-interactive key
exchange NIKE.

3
These numbers can be reproduced with the estimator — the version used in this work

is at commit 96875622c6b0e6f98a91ddeecaaa17b66dbc5a87.

6 IMPLEMENTATION AND PERFORMANCE
EVALUATION

In order to demonstrate the practicality of Swoosh in terms of

performance, we implement the core part of the scheme, Passive-

Swoosh, present benchmarks of this implementation, and compare

to other KEMs and (pre- and post-quantum) NIKEs. We caution the

reader that all implementation details and numbers we present in

this section are for Passive-Swoosh only. To obtain a full picture

of the performance of Swoosh, the implementation will need to be

augmented with a future implementation of the NIZKP from [59].

As outlined in Section 5.3, the performance impact of adding the

NIZKP in terms of both size and computational effort depends on

the concrete application scenario and may be negligible if key-

generation performance is not critical and if NIZKP verification

can be outsourced to the PKI.

6.1 Implementation
As a NIKE, Swoosh is composed of two major functions, the key

generation procedure and the shared-key computation, the

performance of which dictates the practicality of Swoosh.

In the case of the key generation, the matrix 𝑨 is fixed and

assumed to be in the NTT domain, so performance is dictated by

the sampling of the secret and error vectors, as well as the

computation of the public key which involves two NTT

transformations, and a matrix multiplication followed by a

polynomial addition. As for the shared key computation, its

performance is mainly dictated by the random offset computation,

which requires the use of cSHAKE [51] and the polynomial base

multiplication required to calculate 𝒌′ (see Fig. 5). Similar to other

schemes, the shared-key derivation also performs rounding of the

shared key, however its execution time is negligible. At a high

level, the architecture of our implementation is divided into two

distinct parts: low-level field arithmetic over F𝑞 that is

implemented using the Jasmin language [6, 7], and polynomial

arithmetic in R𝑞 as well as the scheme itself, both of which are

implemented in Rust.

The structure largelymimics the abstract specification in Figure 5.

The main difference is that, like other lattice-based schemes [5, 72],

we encode and transmit public keys in NTT domain. This massively

reduces the number of cycles required for shared-key computation.

In addition, as discussed in Section 5.3, we assume that the role of

each party is well defined and thus only compute one half of the

key. We implement this by passing a Boolean flag as an argument to
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Scheme (variant) Assumption Non-interactive Post-quantum Sizes (in bytes)
Ciphertext Public Key

CRYSTALS-Kyber [72] (Kyber-512) M-LWE ✗ ✓ 768 800

Classic McEliece [1] (mceliece348864) Binary Goppa Codes ✗ ✓ 96 261120

X25519 [14] DLOG ✓ ✗ — 32

CTIDH [11] (CTIDH-1024) Supersingular Isogenies ✓ ✓ — 128

Passive-Swoosh (this work) M-LWE ✓ ✓ — 221184

Table 2: Public-key sizes for select NIKEs and public-key and ciphertext sizes of select post-quantum KEMs

key generation and shared-key derivation to indicate which party

is calling the respective function. Finally, we implement the noise

sampling in a slightly different way than one might expect; we will

discuss this later in this section.

Zooming in on the low-level field arithmetic, the operations on

integers modulo 2
214−255 require multiple-precision integers since

native scalar registers (64 bits in AMD64) are not large enough to

store a single field element. This arithmetic is implemented through

libjbn
4
, a Jasmin library that exposes big-integer arithmetic.

Polynomial Arithmetic. On top of this layer, operations in

polynomial rings are implemented using Rust, in addition to other

functions such as reconciliation, matrix and noise generation.

Similar to other lattice-based schemes, one of the more critical

(and easier) operations to optimise (from a performance

perspective) is polynomial multiplication. The naive algorithm for

multiplying two polynomials in R𝑞 , sometimes called Schoolbook

multiplication, involves multiplying all pairs of coefficients,

calculating their sum and reducing modulo 𝑋𝑑 + 1. However, the
complexity of this approach is quadratic in the number of

coefficients and thus quite costly.

The Number Theoretic Transform (NTT) provides a more efficient

approach for polynomial multiplicationwith quasi-logarithmic time

complexity O(𝑑 log(𝑑)) instead of O
(
𝑑2

)
. For a detailed discussion

on the NTT refer to [74].

As is the case for other implementations [5, 72], we implement

an in-place NTT which requires bit-reversal operations in the

forward and inverse transforms but uses less memory. Another

optimisation is to make the NTT a part of our scheme, which

means the matrix 𝑨 is sampled in the NTT domain, and the secret

and public keys are stored in the NTT domain. This results in the

NTT only being used three times, once for the shared key

derivation and twice in the key generation to convert the secret

and error vectors, which are sampled in the normal domain to the

NTT domain before computing the public key. A common trick to

speed-up the NTT transformation when using Montgomery

reduction [61], as is the case for libjbn, is the pre-computed

constants in Montgomery form 𝜁 · 𝑅 (mod 𝑞).
Noise sampling and matrix generation. Both the matrix

generation and noise sampling procedures use a seed, either set as

a system parameter for 𝑨 or as a secret input to a PRG in the case

of ®𝒔 and ®𝒆, to produce a stream bytes from which the distributions

are sampled. In the case of matrix generation this is achieved via

rejection sampling on the stream of bytes produced by an

extendable output function (XOF). The noise sampling procedure,

4
See https://github.com/formosa-crypto/libjbn.

used for generating the secret key and the error vector, samples

these vectors from a centred binomial distribution using the

output of a PRF with a random seed. As with other schemes where

multiplication is optimised using the NTT, the choice of

(symmetric) primitive that underlies these functions tends to be a

deciding factor for the performance. We chose cSHAKE [51] based

on Keccak [38] as the underlying primitive for the XOF and

AES256-CTR for the PRF used in noise sampling.

Similar to the NewHope scheme [5], for efficiency reasons the

secret and error vectors are sampled from a centred binomial

distribution rather than a discrete Gaussian distribution. Using

ternary noise means that each coefficient can be generated from

only 2 bits and thus, the generation of a polynomial in R𝑞 only

requires (32 · 256 · 2)/8 = 2048 (pseudo-random) bytes. Intuitively,

our CBD definition in Figure 5 when 𝑎 and 𝑏 are sourced from a

PRG, maps 00𝑏 and 11𝑏 to 0 mod 𝑞 with 50% probability, 10𝑏 to 1

mod 𝑞 and 01𝑏 to −1 mod 𝑞 with 25% probability each. Our

implementation differs from the specification by applying signed

reduction modulo 3 to each two bit block and converting it to a

congruent value in F𝑞 , as opposed to using big integer field

arithmetic to map bits 𝑎 and 𝑏 to an element in F𝑞 . Although this

approach produces a different mapping (11𝑏 to −1 mod 𝑞, 00𝑏
and 10𝑏 to 0 mod 𝑞 and 01𝑏 to 1 mod 𝑞), the distribution of the

outputs is identical. Due to the size of our field elements, this

approach results in a considerable speed up in the noise sampling.

The random offset used in our scheme is generated by performing

rejection sampling on the output of cSHAKE-256 [51].

6.2 Performance Evaluation
In this section we evaluate the performance of our scheme and

compare it to others. We also provide a comparison of key sizes

and the properties of each scheme such as post-quantum security,

and whether they are non-interactive.

The benchmark results for Passive-Swoosh were obtained on an

Intel Core i7-6500U (Skylake) running on a single core with Hyper-

threading and TurboBoost disabled. The Rust compiler version used

for the benchmarks was 1.62.1
5
and the Jasmin compiler version

was 2022.09.0. We report the median cycle counds of 10000 runs.

In Table 3 we list the results and compare to the cycle counts of

CTIDH-1024 as reported in [11, Sec. 8] and of lib25519 [62], on Intel

Skylake CPUs.

As expected, the pre-quantum X25519 [14] scheme is orders of

magnitude faster than Passive-Swoosh for key generation.

However, in many applications of NIKEs, keys are re-used many

5
The following build configuration options/values were used: opt-level=3 and

target-cpu="native".
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times and what is more critical is the performance of shared-key

computation. Here the gap to pre-quantum X25519 is considerably

smaller and Passive-Swoosh outperforms the only real

post-quantum competitor CTIDH by a factor of 48.

Operation X25519 CTIDH-1024 Passive-Swoosh

NTT — — 217 430

NTT
−1

— — 262 992

Noise generation — — 89 776

Key generation 28 187 469 520 000 146 920 890

Shared key 87 942 511 190 000 10 612 666

Table 3: Cycle counts on Intel Skylake.

However, as shown in Table 2, CTIDH, Kyber, and X25519 have

a public-key size several orders of magnitude smaller than

Passive-Swoosh. In this aspect, only Classic McEliece has a public

key size comparable to that of Passive-Swoosh, even when taking

into account the expected size of the proof of knowledge (see

Section 5.3).

7 CONCLUSIONS
In this work, we constructed a NIKE based on the M-LWE problem,

with a proof in the QROM. Our scheme is based on the standard

blueprint, but with an additional twist to guarantee provable

security for arbitrary rings. Our optimised implementation shows

that our scheme offers reasonable computational performance and

key sizes that should be acceptable for most applications. We view

our work as the first evidence contradicting the folklore belief that

lattice-based NIKE is too inefficient to be used in practice. As

future work, we plan an implementation of the full Swoosh

scheme, i.e., including the NIZK proof. We also plan to explore

applications of our scheme to more complex protocols and to

formally verify the correctness of (parts of) our implementation.
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A PROOFS FOR SECTION 4 (DEFINITIONS)
A.1 Non-Interactive Zero-Knowledge Proofs
Zero-Knowledge proofs [45] allow a verifier to convince a prover

of the validity of a statement without revealing anything beyond

that. In the random oracle model [12] zero-knowledge proofs can

be made non-interactive [17] by applying the Fiat-Shamir

transformation [40].

Definition A.1 (Zero-Knowledge Proof of Knowledge). A
zero-knowledge proof of knowledge ZKPoK for an NP language

L 6
is defined as a tuple ZKPoK B (ZK.Prv,ZK.Ver) of the

following oracle algorithms.

𝜋
$← ZK.PrvH (𝑥,𝑤): Given a statement 𝑥 and a witness 𝑤 , the

probabilistic prover algorithm ZK.Prv returns a proof 𝜋 .
1/0← ZK.VerH (𝑥, 𝜋): Given a statement 𝑥 and a proof 𝜋 , the

deterministic verifier algorithm returns either 1 for accept

or 0 for reject.

Similar to the work of [77] we assume a distribution RODist on
functions, modelling the distribution of our random oracle. That is,

given a random oracle H : {0, 1}∗ → {0, 1}𝑛 , RODist would be the

uniform distribution on {0, 1}∗ → {0, 1}𝑛 .

ZKPoK Security Notions. Besides completeness, which captures

that valid proofs are accepted by the verifier, a zero-knowledge

proof of knowledge should fulfil two additional properties;

soundness ensures a cheating prover cannot convince the verifier
of a false proof, and zero-knowledge conveys that the verifier learns
nothing from its interaction with the prover beyond the fact that

he knows a valid witness to the proof. We make this more precise

with the following definitions and note that we require the strong

notion of simulation soundness with a straight-line extractor [77],
sometimes referred to as “online extractability” in the literature.

Definition A.2 (Completeness). Completeness for a

zero-knowledge proof of knowledge ZKPoK of an NP language L
is defined via the game CMPLTZKPoK depicted in Figure 8. For an

adversary A, we define A’s advantage in CMPLTZKPoK as

AdvCMPLT
ZKPoK (A) B Pr[CMPLTA

ZKPoK ⇒ 1],

and say that ZKPoK is (𝜖,𝑄H)-CMPLT if for all

quantum-polynomial-time adversaries A, making at most 𝑄H
queries (possibly in superposition) to the random oracle H, we
have AdvCMPLT

ZKPoK (A) ≤ 𝜖 (𝑄H).

6
The language L is defined as the set of all yes-instances of the relation 𝑅, i.e. L =

{𝑥 : ∃ 𝑤 s.t. 𝑅 (𝑥, 𝑤 ) = 1}.
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Game CMPLTZKPoK

01 H $← RODist
02 (𝑥,𝑤) $← A |H⟩

03 𝜋
$← ZK.PrvH (𝑥,𝑤)

04 return JZK.VerH (𝑥, 𝜋) = 0 ∧ 𝑅(𝑥,𝑤) = 1K

Figure 8: Game defining CMPLTZKPoK for a zero-knowledge
proof of knowledge ZKPoK with adversary A.

For the following notions we additionally require a simulator

ZK.Sim B (ZK.Sim1,ZK.Sim2) that is split into two classical

algorithms ZK.Sim1 and ZK.Sim2, where:

H $← ZK.Sim1: The probabilistic simulator algorithm ZK.Sim1

returns a circuit H which represents the initial simulated

random oracle.

𝜋
$← ZK.Sim2 (𝑥): Given a statement 𝑥 the stateful simulator

algorithm ZK.Sim2 returns a proof 𝜋 . Additionally,

ZK.Sim2 is given access to the description of H and may

replace it with a different description (i.e. it can program

the random oracle).

Definition A.3 (Zero-Knowledge [45]). Zero-knowledge for a

zero-knowledge proof of knowledge ZKPoK of an NP language L
is defined via the game ZK𝑏

ZKPoK, depicted in Figure 9, where

ZK𝑏
ZKPoK is parametrised by a bit 𝑏. For an adversary A, we define

A’s advantage in ZK𝑏
ZKPoK as

AdvZKZKPoK (A) B
���Pr[ZK0,A

ZKPoK ⇒ 1] − Pr[ZK1,A
ZKPoK ⇒ 1]

���,
and say that ZKPoK is (𝜙,𝑄H)-ZK, if there exists a PPT simulator

ZK.Sim B (ZK.Sim1,ZK.Sim2), such that for all

quantum-polynomial-time adversaries A, making at most 𝑄H
queries (possibly in superposition) to the random oracle H, we
have AdvZKZKPoK (A) ≤ 𝜙 (𝑄H).

Game ZK0

ZKPoK

01 H $← RODist
02 𝑏′ $← A |H⟩,ZK.Prv( ·,· )

03 return J𝑏′ = 0K

Game ZK1

ZKPoK

04 H $← ZK.Sim1

05 𝑏′ $← A |H⟩,ZK.Sim
′
2
( ·,· )

06 return J𝑏′ = 1K

Procedure ZK.Sim′
2
(𝑥,𝑤)

07 if 𝑅(𝑥,𝑤) = 0 :

08 return ⊥
09 else :

10 return ZK.Sim2 (𝑥)

Figure 9: Games defining ZK𝑏
ZKPoK for a zero-knowledge

proof of knowledge ZKPoK with adversary A and simulator
ZK.Sim B (ZK.Sim1,ZK.Sim2). The purpose of ZK.Sim′

2
(·, ·) is

merely to serve as an interface for the adversary who expects
a prover taking two arguments 𝑥 and𝑤 .

Definition A.4 (Simulation-Sound Online-Extractability [77]).
Simulation-sound online-extractability 7

for a zero-knowledge

proof of knowledge ZKPoK of an NP language L is defined via the

game SSNDZKPoK, depicted in Figure 10. For an adversary A, we
define A’s advantage in SSNDZKPoK as

AdvSSNDZKPoK (A) B Pr[SSNDA
ZKPoK ⇒ 1],

and say that ZKPoK is (𝜓,𝑄H)-SSND relative to a simulator

ZK.Sim B (ZK.Sim1,ZK.Sim2), if there exists a PPT extractor

ZK.Ext such that for all quantum-polynomial-time adversaries A,
making at most 𝑄H queries to the random oracle H, we have

AdvSSNDZKPoK (A) ≤ 𝜓 (𝑄H).

Game SSNDZKPoK

01 H $← ZK.Sim1

02 (𝑥, 𝜋) $← A |H⟩,ZK.Sim2 ( ·)

03 𝑤
$← ZK.Ext(H, 𝑥, 𝜋)

04 return JZK.VerH (𝑥, 𝜋) = 1 ∧ 𝑅(𝑥,𝑤) = 0 ∧ (𝑥, 𝜋) ∉ �̃�K

Figure 10: Games defining SSNDZKPoK for a zero-knowledge
proof of knowledge ZKPoK with adversary A, simulator
ZK.Sim B (ZK.Sim1,ZK.Sim2) and extractor ZK.Ext. Here, �̃�
denotes the set of all proofs returned by ZK.Sim2 (·) (together
with the corresponding statements).

B PROOFS FOR SECTION 5 (CONSTRUCTION)
Lemma 1 (Honest Correctness). For all (possibly unbounded)

adversaries A the non-interactive key exchange

NIKE B (Stp,Gen, SdK) construction depicted in Figure 5 has

honest correctness error

𝛿 ≤ 4𝛽2𝑑2𝑁

𝑞

as per Definition 4.2.

Proof. The proof strategy is similar to the proof of Theorem 5.1,

except that we can bound the probability of any coefficient of 𝒌★

being in the interval

𝑆★ =

[𝑞
4

± 𝛽2𝑑𝑁
]
∪
[
3𝑞

4

± 𝛽2𝑑𝑁
]

by
4𝛽2𝑑2𝑁

𝑞 , with a union bound over all coefficients. ■

Proof of Theorem 5.3. Let A be an adversary against NIKE in

the ActSec game. Consider the sequence of games in Figure 11,

where 𝑄TQ is the number of queries to TestQue.

Game G0. This is the original ActSec0NIKE,𝑝𝑎𝑟 game, where the

bit 𝑏 is fixed to 0, hence

Pr

[
GA
0
⇒ 1

]
= Pr

[
ActSec0,ANIKE,𝑝𝑎𝑟 ⇒ 1

]
.

7
Online-extractability is sometimes referred to as straight line extractability in the

literature.
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Game G1. In this game we modify the RegCorUsr oracle so that

the secret key 𝑠𝑘′ID is extracted from the proof 𝜋 of a public key 𝑝𝑘

on Line 18, and stored with the identity ID. This requires the

strong notion of simulation-sound online-extractability,

from Definition A.4. If the extraction fails, then by default

𝑠𝑘′ID = ⊥. I.e. the secret key is not stored, as in the original game.

Therefore,���Pr [GA
0
⇒ 1

]
− Pr

[
GA
1
⇒ 1

] ��� ≤ 𝑄RCU · AdvSSNDZKPoK (B1).

Game G2. In this game we introduce a new condition for

aborting: If at any point in the simulation the adversary asks a

query to the TestQue or to the RevCorQue oracles on two public

keys that cause a key mismatch, then abort the simulation. Note

that this condition is efficiently testable, as the game knows all the

secret keys. We can bound the probability of this event happening

with a reduction to the semi-malicious correctness

property, Definition 4.3, of NIKE′ by���Pr [GA
1
⇒ 1

]
− Pr

[
GA
2
⇒ 1

] ��� ≤ AdvSM-COR
NIKE′,𝑝𝑎𝑟 ′ (B2).

Game G3. In this game we modify the RevCorQue oracle on

Line 29 and Line 34 to use the secret key that was extracted when

the corresponding public key was registered as a corrupt key. Since

the derived key is always the same for both secret keys, we get���Pr [GA
2
⇒ 1

]
− Pr

[
GA
3
⇒ 1

] ��� = 0.

Game G4.0. In this game we modify the RegHonUsr oracle and
replace the zero-knowledge proof of knowledge on Line 11 with a

simulated proof. By the zero-knowledge property, Definition A.3,

we get���Pr [GA
3
⇒ 1

]
− Pr

[
GA
4.0 ⇒ 1

] ��� ≤ 𝑄RHU · AdvZKZKPoK (B4) .

Game G4.𝑖 . This is identical to the previous game, except that

the 𝑖th query to TestQue is answered with the bit 𝑏 fixed to 1. We

now state the following Lemma.

Claim (Reduction). There exists a pair of adversaries B3.𝑖 and
B′
3.𝑖

such that���Pr [GA
4.𝑖 ⇒ 1

]
− Pr

[
GA
4.𝑖+1 ⇒ 1

] ��� ≤ 𝜖, (1)

where

𝜖 = 𝑄2

RHU · Adv
PasSec
NIKE′,𝑝𝑎𝑟 ′ (B3.𝑖 ) + 2 · Adv

SM-COR
NIKE′,𝑝𝑎𝑟 ′ (B

′
3.𝑖 ) .

Proof. To prove the Claim, we modify the game to guess two

identities ID★ and ID★★ that were queried to the RegHonUsr
oracle. As a first modification, we no longer use the secret keys

corresponding to ID★ and ID★★ to answer any oracle queries,

except for the query involving both ID★ and ID★★. Since key

mismatches cannot happen, the resulting game is in fact identical

to the previous one.

Next, we further modify the game to no longer check for key

mismatches in that involve the public keys associated with ID★ and

ID★★, this change is indistinguishable by another invocation of the

semi-malicious correctness.

Next, switch the bit for the 𝑖th query. To show that this change

is indistinguishable, we construct a reduction B3.𝑖 (for

𝑖 ∈ {0, . . . , 𝑄TQ − 1}) against PasSec of NIKE′. As a first step, the
reduction sets the public keys given by the challenger to be the

keys associated with ID★ and ID★★. RegHonUsr, RegCorUsr, and
RevCorQue remain unchanged, and the only difference is in the

case where the TestQue oracle is queried on ID★ and ID★★. For
the latter queries, we consider two cases:

• The query involving both ID★ and ID★★ is the 𝑖th query.

In this case we simply answer with the key 𝑘𝑏 provided by

the reduction.

• The query involving both ID★ and ID★★ is not the 𝑖th query.
In this case we abort the execution.

Note that, if the reduction correctly guesses ID★ and ID★★ as being

the identities queried in the 𝑖th query of the TestQue oracle, then the
second case does not happen and the reduction perfectly reproduces

the view of the adversary with the bit 𝑏 = 0 (in case 𝑘𝑏 is the

real key) or with the bit 𝑏 = 1 (in case 𝑘𝑏 is random). Since the

reduction guesses correctly with probability at least 1/𝑄2

RHU, the

bound follows.

As the final change to the experiment, we undo the first and

second modifications done above, namely, we check again for key

mismatches for all keys and we no longer randomly sample two

identities. Indistinguishability follows by a similar argument.

Overall, this yields Equation (1).

■

Game G4.𝑄TQ−1. In this game the bit 𝑏 is fixed to 1. Applying a

standard hybrid argument, yields���Pr [GA
4.𝑄TQ−1⇒1

]
−Pr

[
GA
4.0⇒1

] ��� ≤ 𝑄TQ · 𝜖.

Game G5. In this game we undo the changes made Games G2

and G3. Appealing to the semi-malicious correctness, we obtain���Pr [GA
5
⇒ 1

]
− Pr

[
GA
4.𝑄TQ−1 ⇒ 1

] ��� ≤ AdvSM-COR
NIKE′,𝑝𝑎𝑟 ′ (B2) .

Game G6. In this game we undo the changes made to the

RegHonUsr oracle in Game G4 and replace the simulated proof

with a real proof on Line 12. Appealing to Definition A.3 again, we

get ���Pr [GA
6
⇒ 1

]
− Pr

[
GA
5
⇒ 1

] ��� ≤ 𝑄RHU · AdvZKZKPoK (B4) .

Game G7. In this game we undo the changes made Game G1.

Using a similar argument, we obtain���Pr [GA
7
⇒ 1

]
− Pr

[
GA
6
⇒ 1

] ��� ≤ 𝑄RCU · AdvSSNDZKPoK (B1) .

Observe that this game is the original ActSec1NIKE,𝑝𝑎𝑟 game.

Hence,

Pr

[
GA
7
⇒ 1

]
= Pr

[
ActSec1,ANIKE,𝑝𝑎𝑟 ⇒ 1

]
.

Collecting all probabilities yields the bound stated in Theorem 5.3.

■
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Game ActSec𝑏NIKE,𝑝𝑎𝑟

01 D B ⊥
02 K B ⊥
03 𝑏 B 0 //G0

04 𝑏 B 1 //G4.𝑄TQ

05 𝑏′ ← ARegHonUsr( ·), RegCorUsr( ·,· ), RevCorQue( ·,· ), TestQue( ·,· )

06 return J𝑏 = 𝑏′K

Oracle RegHonUsr(ID ∈ IDS)

07 if (𝑐𝑜𝑟𝑟𝑢𝑝𝑡, ID,⊥, ·) ∈ D :

08 return ⊥
09 (𝑠𝑘′ID, 𝑝𝑘

′
ID)

$← Gen(ID)
10 𝜋

$← ZK.Prv(𝑝𝑘′ID, 𝑠𝑘
′
ID) //G0

11 𝜋
$← ZK.Sim2 (𝑝𝑘′ID) //G4.0

12 𝜋
$← ZK.Prv(𝑝𝑘′ID, 𝑠𝑘

′
ID) //G6

13 𝑠𝑘ID B 𝑠𝑘′ID
14 𝑝𝑘ID B (𝑝𝑘′ID, 𝜋)
15 D ∪ {(ℎ𝑜𝑛𝑒𝑠𝑡, ID, 𝑠𝑘ID, 𝑝𝑘ID)}
16 return 𝑝𝑘ID

Oracle RegCorUsr(ID ∈ IDS, 𝑝𝑘)

17 parse 𝑝𝑘 → (𝑝𝑘′ID, 𝜋)
18 𝑠𝑘′ID

$← ZK.Ext(H, 𝑝𝑘′ID, 𝜋) //G1-G5

19 if (𝑐𝑜𝑟𝑟𝑢𝑝𝑡, ID, ·, ·) ∈ D :

20 (𝑐𝑜𝑟𝑟𝑢𝑝𝑡, ID,⊥, ·) B (𝑐𝑜𝑟𝑟𝑢𝑝𝑡, ID,⊥, 𝑝𝑘)
21 (𝑐𝑜𝑟𝑟𝑢𝑝𝑡, ID, ·, ·) B (𝑐𝑜𝑟𝑟𝑢𝑝𝑡, ID, 𝑠𝑘′ID, 𝑝𝑘) //G1–G5

22 else :

23 D ∪ {(𝑐𝑜𝑟𝑟𝑢𝑝𝑡, ID,⊥, 𝑝𝑘)}
24 D ∪

{(
𝑐𝑜𝑟𝑟𝑢𝑝𝑡, ID, 𝑠𝑘′ID, 𝑝𝑘

)}
//G1–G5

Oracle RevCorQue(ID1, ID2)

25 if (ℎ𝑜𝑛𝑒𝑠𝑡, ID1, ·, ·) ∈ D ∧ (𝑐𝑜𝑟𝑟𝑢𝑝𝑡, ID2, ·, ·) ∈ D :

26 if SdK(ID2, 𝑝𝑘2, ID1, 𝑠𝑘1) ≠ SdK(ID1, 𝑝𝑘1, ID2, 𝑠𝑘2) : //G2-G4.𝑄TQ−1
27 abort //G2-G4.𝑄TQ−1
28 return SdK(ID2, 𝑝𝑘2, ID1, 𝑠𝑘1)
29 return SdK(ID1, 𝑝𝑘1, ID2, 𝑠𝑘2) //G3

30 elseif (𝑐𝑜𝑟𝑟𝑢𝑝𝑡, ID1, ·, ·) ∈ D ∧ (ℎ𝑜𝑛𝑒𝑠𝑡, ID2, ·, ·) ∈ D :

31 if SdK(ID1, 𝑝𝑘1, ID2, 𝑠𝑘2) ≠ SdK(ID2, 𝑝𝑘2, ID1, 𝑠𝑘1) : //G2-G4.𝑄TQ−1
32 abort //G2-G4.𝑄TQ−1
33 return SdK(ID1, 𝑝𝑘1, ID2, 𝑠𝑘2)
34 return SdK(ID2, 𝑝𝑘2, ID1, 𝑠𝑘1) //G3

Oracle TestQue(ID1, ID2)

35 if ID1 = ID2 :

36 return ⊥
37 if (ℎ𝑜𝑛𝑒𝑠𝑡, ID1, ·, ·) ∈ D ∧ (ℎ𝑜𝑛𝑒𝑠𝑡, ID2, ·, ·) ∈ D :

38 𝑏 B 1 //G4.𝑖

39 if 𝑏 = 0 :

40 if SdK(ID1, 𝑝𝑘1, ID2, 𝑠𝑘2) ≠ SdK(ID2, 𝑝𝑘2, ID1, 𝑠𝑘1) : //G2-G4.𝑄TQ−1
41 abort //G2-G4.𝑄TQ−1
42 𝑘 B SdK(ID1, 𝑝𝑘1, ID2, 𝑠𝑘2)
43 if 𝑏 = 1 :

44 if (ID1, ID2, 𝑘) ∈ K ∨ (ID2, ID1, 𝑘) ∈ K :

45 return 𝑘

46 𝑘
$← SKS

47 K ∪ {(ID1, ID2, 𝑘)}
48 return 𝑘

49 return ⊥

Figure 11: Games G0, G1, G3, G4.𝑖 (for 𝑖 ∈ {0 ≤ 𝑖 ≤ 𝑄TQ − 1), G6 for the proof of ActSec of NIKE in Figure 7.
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