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1. Introduction

Hash-based signature schemes were developed as one-time signature schemes in the late 1970s
by Lamport [12] and extended to more signatures by Merkle [13]. The security of these
schemes is easy to analyze and relies solely on the properties of the used hash function. How-
ever, Merkle’s tree-based signature scheme required fixing at key-generation time the number
of signatures to be made, keeping this number small for performance. Most importantly,
the system required users to remember a state: some information to remember how many
signatures were already made with the key.

In the 40 years since Lamport’s scheme, many ideas improved the performance, practicality,
and theoretical foundations of hash-based signatures, culminating in XMSS [6], which is in the
last phase of being standardized by the CFRG as the first post-quantum signature scheme.
A strong point of these systems is that they need very few security assumptions — the hash
function even need not be collision resistant. The only downside of XMSS is that it is stateful,
which makes it not fit the standard definition of signature schemes as, e.g., stated in the NIST
call for submissions.

SPHINCS [4] was designed by Bernstein, Hopwood, Hiilsing, Lange, Niederhagen, Pa-
pachristodoulou, Schneider, Schwabe, and Wilcox-O’Hearn as a stateless hash-based signature
scheme and was the first signature scheme to propose parameters to resist quantum cryptanal-
ysis. SPHINCS uses many components from XMSS but works with larger keys and signatures
to eliminate the state.

This document is about the SPHINCS™ construction. At a high level, SPHINCS™ works
like SPHINCS. The basic idea is to authenticate a huge number of few-time signature (FTS)
key pairs using a so-called hypertree. FTS schemes are signature schemes that allow a key
pair to produce a small number of signatures, e.g., in the order of ten for our parameter sets.

For each new message, a (pseudo)random FTS key pair is chosen to sign the message. The
signature consists then of the FTS signature and the authentication information for that FT'S
key pair. The authentication information is roughly a hypertree signature, i.e. a signature
using a certification tree of Merkle tree signatures.

More specifically, a hypertree is a tree of hash-based many-time signatures (MTS). These
many-time signatures allow a key pair to sign a fixed number N of messages — for SPHINCS™
N is a power of 2, for example 256. The MTS key pairs themselves are organized in an N-ary
tree with d layers. On the top layer d — 1 there is a single MTS key pair which is used to sign
the public keys of N MTS key pairs that form layer d — 2. Each of these N MTS key pairs is
used to sign another N MTS public keys forming layer d — 3. This goes on down to the N¢~!
key pairs on the bottom layer which are used to sign N FTS public keys, each, leading to a
total number of N¢ authenticated FTS key pairs. The authentication information for an FTS
key pair consists of the d MTS signatures that build a path from the FTS key pair to the top
MTS tree.

An MTS signature is just a classical Merkle-tree signature in the case of SPHINCS™. It
consists of a one-time signature (OTS) on the given message plus the authentication path in
the binary hash-tree, authenticating the N OTS key pairs of one MTS key pair.

The public key of SPHINCS™ is essentially the public key of the top level MTS which is
just the root node of its binary hash tree and hence, a single hash value. However, actual
SPHINCS™ public keys additionally contain a public seed value of the same length as the root
node. This is due to technical reasons explained in the detailed specification below.

The SPHINCS™ secret key is just a single secret seed value. From this, all the OTS and



FTS secret keys are generated in a pseudorandom manner. The OTS and FTS secret keys
together fully determine the whole virtual structure of an SPHINCS™ key pair.

1.1. SPHINCS" vs SPHINCS
SPHINCS™ builds on SPHINCS by introducing several improvements:

e Multi-target attack protection: We apply the mitigation techniques from [9] using keyed
hash functions. Each hash function call is keyed with a different key and applies different
bitmasks. Keys and bitmasks are pseudorandomly generated from an address specifying
the context of the call, and a public seed. For this we introduce the notion of tweakable
hash functions which in addition to the input value take a public seed and an address.

e Tree-less WOTS™ public key compression: The last nodes of the WOTS™ chains are not
compressed using an L-tree but using a single tweakable hash function call. This call
again receives an address and a public seed to key this call and to generate a bitmask
as long as the input.

e FORS: A HORST key pair does not consist anymore of a single monolithic tree. Instead
it consists of k trees of height a The leaves of these trees are the hashes of the 2 secret
key elements. The public key is the tweakable hash of the concatenation of all the root
nodes as for the WOTS™ public key.

A FORS key pair can be used to sign k2*bit message digests. The digest is first split
into k strings m; of length 2% bits each. Next, every m; is interpreted as an integer
in [0,2% — 1]. Here m,; selects the m;-th secret key element of the i-th tree for the
signature. The signature also contains the authentication paths for all the selected
secret key elements, which means one path of length a per tree. Verification uses the
signature to reconstruct the root nodes and compresses them using the tweakable hash.

e Verifiable index selection: The message digest is now computed as follows. First, we
deterministically generate randomness

R = PRF(SK.prf,OptRand, M).

Where OptRand is a 256 bit value, per default 0 but can be filled with random bits e.g.
taken from a TRNG to avoid deterministic signing (this might be desirable to counter
side channel attacks). Then we compute message digest and index as

(md|[idx) = Hypsg(R, PK, M)

where PK = (PK.seed, PK.root) contains the top root node and the public seed.
Hence, we can omit the index in the SPHINCS signature as it would be redundant. This
allows to tighten HORST security.

1.2. Organization

In this document we give a formal specification of the SPHINCS™ construction. We follow
a bottom-up approach to specify SPHINCS™. We start with basic notation. Afterwards we
define WOTS™, the OTS used in SPHINCS™. Next, we specify XMSS, the MTS used in



SPHINCS™, and how it is used to do HT signatures. Then, we define FORS, the FTS used,
to finally specify SPHINCS™. Afterwards we discuss different instantiations and explain the
design rationale. Then we present a security analysis, give performance values and conclude
with a discussion of advantages and limitations.

2. Notation

In the following we start defining basic mathematical operations on integers and bit strings.
From that we work our way to more specific basic methods used later in the specification.

2.1. Data Types

Bytes and byte strings are the fundamental data types. A byte is a sequence of eight bits.
The set of bytes is denoted as B. A single byte is denoted as a pair of hexadecimal digits with
a leading "0x". A byte string is an ordered sequence of zero or more bytes and is denoted as
an ordered sequence of hexadecimal characters with a leading "0x". For example, 0xe534f0
is a byte string of length 3. An array of byte strings is an ordered, indexed set starting with
index 0 in which all byte strings have identical length. We assume big-endian representation
for any data types or structures.

2.2. Functions

We define the following functions:
[](or ceil(x)) : for x a real number returns the smallest integer greater than or equal to x.
|z |(or floor(x)) : for z a real number returns the largest integer less than or equal to .

log(x) : for x a non-negative real number returns the logarithm to base 2 of z. In pseudocode
this function is written as 1g.

Truncy(x) : truncates the bit-string z to the first ¢ bits.

2.3. Operators

When a and b are integers, mathematical operators are defined as follows:

. a® denotes the result of a raised to the power of b.

- ¢ a - b denotes the product of a and b. This operator is sometimes omitted in the absence
of ambiguity, as in usual mathematical notation.

/ : a/b denotes the quotient of a by non-zero b.

% : a % b denotes the non-negative remainder of the integer division of a by b.
+ : a + b denotes the sum of a and b.

— : a — b denotes the difference of a and b.

4+ : a++ denotes incrementing a by 1, i.e., a =a + 1.



<< : a << b denotes a logical left shift of a by b positions, for b being non-negative, i.e.,
a-2b.

>>: a >> b denotes a logical right shift of a by b positions, for b being non-negative, i.e.
floor(a,/2°).

The standard order of operations is used when evaluating arithmetic expressions.

Arrays are used in the common way, where the i-th element of an array A is denoted Ali].
Byte strings are treated as arrays of bytes where necessary: If X is a byte string, then XT[i
denotes its i-th byte, where X[0] is the leftmost, highest order byte.

If A and B are byte strings of equal length, then:

A AND B denotes the bitwise logical conjunction operation.
A XOR B (or A® B) denotes the bitwise logical exclusive disjunction operation.

When B is a byte and ¢ is an integer, then B >> ¢ denotes the logical right-shift by
positions.

If X is an x-byte string and Y a y-byte string, then X||Y denotes the concatenation of X
and Y, with X||Y = X[0]... X[z — 1]Y[0]... Y[y — 1].

2.4. Integer to Byte Conversion (Function toByte)

For x and y non-negative integers, we define Z = toByte(x,y) to be the y-byte string con-
taining the binary representation of x in big-endian byte-order.

2.5. Strings of Base-w Numbers (Function base_w)

A byte string can be considered as a string of base w numbers, i.e. integers in the set {0,..., w—
1}. The correspondence is defined by the function base_w(X, w, out_len) as follows. Let X be
a len_X- byte string, and w is an element of the set {4, 16,256}, then base_w(X, w, out_len)
outputs an array of out_len integers between 0 and w — 1 (Figure 1). The length out_len is
REQUIRED to be less than or equal to 8 * len_X/log(w).

# Input: len_X-byte string X, int w, output length out_len
# Output: out_len int array basew

base_w(X, w, out_len) {
int in = 0;
int out = 0;
unsigned int total = 0;
int bits = 0;
int consumed;

for ( consumed = 0; consumed < out_len; consumed++ ) {
if ( bits == 0 ) {
total = X[in];
in++;
bits += 8;
}
bits -= lg(w);



basew[out] = (total >> bits) AND (w - 1);
out++;
}

return basew;

3

Algorithm 1: base_w — Computing the base-w representation

Figure 1: For example, if X is the (big-endian) byte string 0x1234, then base_w(X,16,4)
returns the array a = {1,2,3,4}.

X (represented as bits)
S S S

| ol ol ol 11 ol ol 11 ol ol ol 1| 1| ol 1| ol Ol
TS S SN S S R S SR S S

X[o] | X[1]

X (represented as base 16 numbers)

2.6. Member Functions (Functions set, get)

To simplify algorithm descriptions, we assume the existence of member functions. If a complex
data structure like a public key PK contains a variable X then PK.getX() returns the value
of X for this public key. Accordingly, PK.setX(Y) sets variable X in PK to the value held by
Y. Since camelCase is used for member function names, a value z may be referred to as Z in



the function name, e.g. getZ.

2.7. Cryptographic (Hash) Function Families

SPHINCS™ makes use of several different function families with cryptographic properties.
Every SPHINCS™ instantiation MUST describe how to implement each of the following func-
tions. For the main instantiations given in this document, this will be done using a single
(hash) function, i.e., SHA2-256 or SHAKE-128. Specific instantiations are given in Section 7.

SPHINCS™ applies the multi-target mitigation technique from [9], independently keying
and randomizing each hash function call in the original SPHINCS. The implementation of this
randomization and keying differs for different instantiations as different function families (e.g.,
SHA2 or SHAKE) have different properties. Hence, we introduce tweakable hash functions
as a layer of abstraction. All algorithms in this specification use tweakable hash functions in
place of traditional hash functions. Later, in Section 7, we describe how to implement the
tweakable hash functions.

In addition to several tweakable hash functions, SPHINCS™ makes use of two PRFs and a
keyed hash function. Input and output length are given in terms of the security parameter n
and the message digest length m, both to be defined more precisely in the coming sections.

2.7.1. Tweakable Hash Functions (Functions T_1, F, H)

A tweakable hash function takes a public seed PK.seed and context information in form of
an address ADRS in addition to the message input. This allows to make the hash function
calls for each key pair and position in the virtual tree structure of SPHINCS™ independent
from each other. The addressing scheme will be described in Section 2.7.3.

The schemes described in this specification build upon several instantiations of tweakable
hash functions of the form

T, : B" x B*? x B™ — B”,
md + Ty(PK.seed, ADRS, M)

mapping and ¢n-byte message M to an n-byte hash value md using an n-byte seed PK.seed
and a 32-byte address ADRS. The function T, is denoted by T_1 in pseudocode.

There are two special cases which we rename for consistency with previous descriptions of
hash-based signature schemes:

F :B" x B* x B" — B",
F %1,
H: B” x B> x B>* — B"

HE T,

2.7.2. PRF and Message Digest (Functions PRF, PRF_msg, H_msg)

SPHINCS™ makes use of a pseudorandom function PRF for pseudorandom key generation:

PRF : B" x B3 — B".



In addition, SPHINCS™ uses a pseudorandom function PRFysg to generate randomness for
the message compression:
PRF s : B" x B" x B* — B".

To compress the message to be signed, SPHINCS™ uses an additional keyed hash function
H,sg that can process arbitrary length messages:

Hpsg : B" x B" x B" x B* — B™.

2.7.3. Hash Function Address Scheme (Structure of ADRS)

An address ADRS is a 32-byte value that follows a defined structure. In addition, it comes
with set methods to manipulate the address. We explain the generation of addresses in the
following sections where they are used. Essentially, all functions have to keep track of the
current context, updating the addresses after each hash call.

There are five different types of addresses for the different use cases. One type is used for the
hashes in WOTS™ schemes, one is used for compression of the WOTS™ public key, the third
is used for hashes within the main Merkle tree construction, another is used for the hashes in
the Merkle tree in FORS, and the last is used for the compression of the tree roots of FORS.
These types largely share a common format. We describe them in more detail, below.

The structure of an address complies with word borders, with a word being 32 bits long in
this context. Only the tree address (i.e. the index of a specific subtree in the main tree) is too
long to fit a single word: for this, we reserve three words. An address is structured as follows.
It always starts with a layer address of one word in the most significant bits, followed by a tree
address of three words. These addresses describe the position of a tree within the hypertree.
The layer address describes the height of a tree within the hypertree starting from height zero
for trees on the bottom layer. The tree address describes the position of a tree within a layer
of a multi-tree starting with index zero for the leftmost tree. The next word defines the type
of the address. It is set to 0 for a WOTS™ hash address, to 1 for the compression of the
WOTST public key, to 2 for a hash tree address, to 3 for a FORS address, and to 4 for the
compression of FORS tree roots.

We first describe the WOTS™ address (Figure 2). In this case, the type word is followed
by the key pair address that encodes the index of the WOTS™ key pair within the specified
tree. The next word encodes the chain address (i.e. the index of the chain within WOTS™),
followed by a word that encodes the address of the hash function call within the chain. Note
that the address of the bottom of the chain is also used to generate the secret keys based on
SK.seed.

layer address tree address

type = 0 key pair address chain address hash address

Figure 2: WOTS™ hash address.

The second type (Figure 3) is used to compress the WOTS™ public keys. The type word
is set to 1. Similar to the address used within WOTS™, the next word encodes the key pair
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address. The remaining two words are not needed, and thus remain zero. We zero pad the
address to the constant length of 32 bytes.

layer address tree address

type = 1 key pair address padding = 0

Figure 3: WOTS™ public key compression address.

The third type (Figure 4) addresses the hash functions in the main tree. In this case the
type word is set to 2, followed by a zero padding of one word. The next word encodes the
height of the tree node that is being computed, followed by a word that encodes the index of
this node at that height.

layer address tree address

type = 2 padding = 0 tree height tree index

Figure 4: hash tree address.

The next type (Figure 5) is of a similar format, and is used to describe the hash functions
in the FORS tree. The type word is set to 3. The key pair address is used to signify which
FORS key pair is used, identical to the key pair address in the WOTS™ hash addresses. Its
value is the same as that of the WOTS™ key pair that is used to authenticate it, i.e. its index
as a leaf in the specified tree. The tree height and tree index fields are used to address the
hashes within the FORS tree. This is done like for the above-mentioned hashes in the main
tree, with the additional consideration that the tree indices are counted continuously across
the different FORS trees. The addresses at tree height 0 are used to generate the leaf nodes
from SK.seed.

layer address tree address

type = 3 key pair address tree height tree index

Figure 5: FORS tree address.

The final type (Figure 6) is used to compress the tree roots of the FORS trees. The type
word is set to 4. Like the WOTS™ public key compression address, it contains only the address
of the FORS key pair, but is padded to the full length.

All fields within these addresses encode unsigned integers. When describing the generation
of addresses we use set methods that take positive integers and set the bits of a field to the
binary representation of that integer, in big-endian notation. Throughout this document, we

11



layer address tree address

type = 4 key pair address padding = 0

Figure 6: FORS tree roots compression address.

adhere to the convention of assuming that changing the type word of an address (indicated
by the use of the setType () method) initializes the subsequent three words to zero.

In order to make keeping track of the types easier throughout the pseudo-code in the rest of
this document, we refer to them respectively using the constants WOTS_HASH, WOTS_PK, TREE,
FORS_TREE and FORS_ROOTS.

3. WOTS" One-Time Signatures

This section describes the WOTS™ scheme, in a version similar to [7]. WOTS™ is a OTS
scheme; while a private key can be used to sign any message, each private key MUST NOT
be used to sign more than a single message. In particular, if a private key is used to sign two
different messages, the scheme becomes insecure.

The description given here is tailored to the use inside of SPHINCS™. It assumes that
the scheme is used as a subroutine inside a higher order scheme and is not sufficient for a
standalone implementation of WOTS™. The section starts with an explanation of parame-
ters. Afterwards, the so-called chaining function, which forms the main building block of the
WOTS™ scheme, is explained. A description of the algorithms for key generation and sign-
ing follows. Finally, we give an algorithm to compute a WOTS™ public key from a WOTS™
signature. This will be used as a subroutine in SPHINCS™ signature verification.

3.1. WOTS"' Parameters

WOTST™ uses the parameters n and w; they both take positive integer values. These parame-
ters are summarized as follows:

e n: the security parameter; it is the message length as well as the length of a private key,
public key, or signature element in bytes.

e w: the Winternitz parameter; it is an element of the set {4, 16,256}.
These parameters are used to compute values len, len; and lens:

e len: the number of n-byte-string elements in a WOTS™ private key, public key, and
signature. It is computed as len = len; + leny, with

len; = [n)w leny — rog(lenl(w — 1))J +1

log(w log(w)

The security parameter n is the same as the security parameter n for SPHINCS™. The value
of n determines the in- and output length of the tweakable hash function used for WOTS™.
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The value of n also determines the length of messages that can be processed by the WOTS™
signing algorithm. The parameter w can be chosen from the set {4,16,256}. A larger value of
w results in shorter signatures but slower operations; it has no effect on security. Choices of
w are limited to the values 4, 16, and 256 since these values yield optimal trade-offs and easy
implementation. WOTS™ parameters are implicitly included in algorithm inputs as needed.

3.2. WOTS™" Chaining Function (Function chain)

The chaining function (Algorithm 2) computes an iteration of F on an n-byte input using
a WOTS™ hash address ADRS and a public seed PK.seed. The address ADRS MUST
have the first seven 32-bit words set to encode the address of this chain. In each iteration,
the address is updated to encode the current position in the chain before ADRS is used to
process the input by F.

In the following, ADRS is a 32-byte WOTS™ hash address as specified in Section 2.7.3 and
PK.seed is a n-byte string. The chaining function takes as input an n-byte string X;, a start
index 4, a number of steps s, as well as ADRS and PK.seed. The chaining function returns
as output the value obtained by iterating F for s times on input X.

#Input: Input string X, start index i, number of steps s, public seed PK.seed,

address ADRS
#0utput: value of F iterated s times on X

chain(X, i, s, PK.seed, ADRS) {
if (s ==0) {
return X;
}
if (@ +s8)> @Ww-1)){
return NULL;
}
byte[n] tmp = chain(X, i, s - 1, PK.seed, ADRS);

ADRS.setHashAddress(i + s - 1);
tmp = F(PK.seed, ADRS, tmp);
return tmp;

Algorithm 2: chain — Chaining function used in WOTS™.

3.3. WOTS™ Private Key (Function wots_SKgen)

The WOTS™ private key, denoted by sk (s for secret), is a length len array of n-byte strings.
This private key MUST NOT be used to sign more than one message. This private key is
only implicitly used. Therefore, the following is just to support a better understanding of the
following algorithms. Each n-byte string in the WOTS™ private key is derived from a secret
seed SK.seed which is part of the SPHINCS™ secret key and a WOTS™ address ADRS using
PRF. The same secret seed is used to generate all secret key values within SPHINCS™. The
address used to generate the i-th n-byte string of sk MUST encode the position of the i-th
hash chain of this WOTS™ instance within the SPHINCS™ structure.

The following pseudocode (Algorithm 3) describes an algorithm to generate a WOTS™
private key.

#Input: secret seed SK.seed, address ADRS
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#0utput: WOTS+ private key sk

wots_SKgen(SK.seed, ADRS) {
for (i =0; i < len; i++ ) {
ADRS.setChainAddress(i);
sk[i] = PRF(SK.seed, ADRS);
}
return sk;

}
Algorithm 3: wots_SKgen — Generating a WOTS™ private key.

3.4. WOTS™" Public Key Generation (Function wots_PKgen)

A WOTST™ key pair defines a virtual structure that consists of len hash chains of length w.
Each of the len stings of n-bytes in the private key defines the start node for one hash chain.
The public key is the tweakable hash of the end nodes of these hash chains. To compute the
hash chains, the chaining function (Algorithm 2) is used. A WOTS™ hash address ADRS
and a seed PK.seed have to be provided by the calling algorithm as well as a secret seed
SK.seed. The address ADRS MUST encode the address of the WOTS™ key pair within
the SPHINCS™ structure. Hence, a WOTS™ algorithm MUST NOT manipulate any parts of
ADRS other than the last three 32-bit words. Note that the PK.seed used here is public
information also available to a verifier. The following pseudocode (Algorithm 4) describes an
algorithm for generating the public key pk.

#Input: secret seed SK.seed, address ADRS, public seed PK.seed
#0utput: WOTS+ public key pk

wots_PKgen(SK.seed, PK.seed, ADRS) {
wotspkADRS = ADRS; // copy address to create 0TS public key address
for (i =0; i < len; i++ ) {
ADRS.setChainAddress (i) ;
sk = PRF(SK.seed, ADRS);
tmp[i] = chain(sk[i], O, w - 1, PK.seed, ADRS);
}
wotspkADRS. setType (WOTS_PK) ;
wotspkADRS . setKeyPairAddress (ADRS. getKeyPairAddress());
pk = T_len(PK.seed, wotspkADRS, tmp);
return pk;

Algorithm 4: wots_PKgen — Generating a WOTS™ public key.

3.5. WOTS™" Signature Generation (Function wots_sign)

A WOTS™ signature is a length len array of n-byte strings. The WOTS™ signature is gener-
ated by mapping a message M to len integers between 0 and w — 1. To this end, the message
is transformed into len; base-w numbers using the base_w function defined in Section 2.5.
Next, a checksum over M is computed and appended to the transformed message as lens
base-w numbers using the base_w function. Note that the checksum may reach a maximum
integer value of len; - (w — 1) - 28 and therefore depends on the parameters n and w. For the
parameter sets given in Section 7, a 32-bit unsigned integer is sufficient to hold the check-
sum. If other parameter sets are used, the size of the variable holding the integer value of the
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checksum MUST be sufficiently large. Each of the base-w integers is used to select a node
from a different hash chain. The signature is formed by concatenating the selected nodes. A
WOTS™ hash address ADRS, a public seed PK.seed, and a secret seed SK.seed have to be
provided by the calling algorithm. The address will encode the address of the WOTS™ key pair
within a greater structure. Hence, a WOTS™ algorithm MUST NOT manipulate any parts
of ADRS other than the last three 32-bit words. Note that the PK.seed used here is public
information also available to a verifier while the secret seed SK.seed is private information.
The pseudocode for generating a WOTS™ signature sig is shown below (Algorithm 5).

#Input: Message M, secret seed SK.seed, public seed PK.seed, address ADRS
#0utput: WOTS+ signature sig

wots_sign(M, SK.seed, PK.seed, ADRS) {
csum = O;

// convert message to base w
msg = base_w(M, w, len_1);

// compute checksum
for (i =0; i < len_1; i++ ) {
csum = csum + w - 1 - msg[i];

}

// convert csum to base w
csum = csum << ( 8 - ( ( len_2 * 1g(w) ) % 8 ));
len_2_bytes = ceil( ( len_2 * 1lg(w) ) / 8 );
msg = msg || base_w(toByte(csum, len_2_bytes), w, len_2);
for (i =0; i < len; i++ ) {

ADRS.setChainAddress (i) ;

sk = PRF(SK.seed, ADRS);

sigli] = chain(sk, 0, msg[i], PK.seed, ADRS);
}

return sig;

Algorithm 5: wots_sign — Generating a WOTS+ signature on a message M.

The data format for a signature is given in Figure 7.

sigos[0] n bytes

sig [len — 1] n bytes

Figure 7: WOTS™ Signature data format.

3.6. WOTS" Compute Public Key from Signature (Function wots_pkFromSig)

SPHINCS™ uses implicit signature verification for WOTS™'. In order to verify a WOTS™
signature sig on a message M, the verifier computes a WOTS™ public key value from the
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signature. This can be done by “completing” the chain computations starting from the signa-
ture values, using the base-w values of the message hash and its checksum. This step, called
wots_pkFromSig, is described below in Algorithm 6. The result of wots_pkFromSig then has
to be verified. In a standalone version, this would be done by simple comparison. When used
in SPHINCS™ the output value is verified by using it to compute a SPHINCS™ public key.

A WOTS™ hash address ADRS and a public seed PK.seed have to be provided by the
calling algorithm. The address will encode the address of the WOTS™ key pair within the
SPHINCS™ structure. Hence, a WOTS™ algorithm MUST NOT manipulate any parts of
ADRS other than the last three 32-bit words. Note that the PK.seed used here is public
information also available to a verifier.

#Input: Message M, WOTS+ signature sig, address ADRS, public seed PK.seed
#0utput: WOTS+ public key pk_sig derived from sig

wots_pkFromSig(sig, M, PK.seed, ADRS) {
csum = O;
wotspkADRS = ADRS;

// convert message to base w
msg = base_w(M, w, len_1);

// compute checksum
for (i =0; i < len_1; i++ ) {
csum = csum + w - 1 - msgl[i];

}

// convert csum to base w
csum = csum << ( 8 - ( ( len_2 * 1g(w) ) % 8 ));
len_2_bytes = ceil( ( len_2 * 1g(w) ) / 8 );
msg = msg || base_w(toByte(csum, len_2_bytes), w, len_2);
for (i =0; i < len; i++ ) {
ADRS.setChainAddress (i) ;
tmp[i] = chain(sig[i], msg[il, w - 1 - msg[i], PK.seed, ADRS);
}

wotspkADRS. setType (WOTS_PK) ;

wotspkADRS . setKeyPairAddress (ADRS. getKeyPairAddress());
pk_sig = T_len(PK.seed, wotspkADRS, tmp);

return pk_sig;

}

Algorithm 6: wots_pkFromSig — Computing a WOTS+ public key from a message and its
signature.

4. The SPHINCS™' Hypertree

In this section, we explain how the SPHINCS™ hypertree is built. We first explain how
WOTST™ gets combined with a binary hash tree, leading to a fixed input-length version of the
eXtended Merkle Signature Scheme (XMSS). Afterwards, we explain how to go to a hypertree
from there. The hypertree might be viewed as a fixed input-length version of multi-tree XMSS
(XMSSMT),
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4.1. (Fixed Input-Length) XMSS

XMSS is a method for signing a potentially large but fixed number of messages. It is based
on the Merkle signature scheme. It authenticates 2h" WOTS™ public keys using a binary
tree of height #’. Hence, an XMSS key pair for height #’' can be used to sign 2" different
messages. Each node in the binary tree is an n-byte value which is the tweakable hash of the
concatenation of its two child nodes. The leaves are the WOTS™ public keys. The XMSS
public key is the root node of the tree. In SPHINCS™, the XMSS secret key is the single secret
seed that is used to generate all WOTS™ secret keys.

An XMSS signature in the context of SPHINCS™ consists of the WOTS™ signature on the
message and the so-called authentication path. The latter is a vector of tree nodes that allow
a verifier to compute a value for the root of the tree starting from a WOTS™ signature. A
verifier computes the root value and verifies its correctness. A standalone XMSS signature
also contains the index of the used WOTS™ key pair. In the context of SPHINCS™ this is not
necessary as the SPHINCS™ signature allows to compute the index for each XMSS signature
contained.

4.1.1. XMSS Parameters

XMSS has the following parameters:
B’ : the height (number of levels - 1) of the tree.
n : the length in bytes of messages as well as of each node.
w : the Winternitz parameter as defined for WOTS™ in the previous Section.

There are 2" leaves in the tree. XMSS signatures are denoted by SIGxmss (SIG_XMSS in
pseudocode). WOTS™ signatures are denoted by sig.
XMSS parameters are implicitly included in algorithm inputs as needed.

4.1.2. XMSS Private Key

In the context of SPHINCS™, an XMSS private key is the single secret seed SK.seed contained
in the SPHINCS™ secret key. It is used to generate the WOTS™ secret keys within the
structure of an XMSS key pair as described in Section 3.

4.1.3. TreeHash (Function treehash)

For the computation of the internal n-byte nodes of a Merkle tree, the subroutine treehash
(Algorithm 7) accepts a secret seed SK.seed, a public seed PK.seed, an unsigned integer s
(the start index), an unsigned integer z (the target node height), and an address ADRS that
encodes the address of the containing tree. For the height of a node within a tree, counting
starts with the leaves at height zero. The treehash algorithm returns the root node of a tree
of height z with the leftmost leaf being the WOTS™ pk at index s. It is REQUIRED that
s % 2% =0, i.e. that the leaf at index s is a leftmost leaf of a sub-tree of height z. Otherwise
the algorithm fails as it would compute non-existent nodes. The treehash algorithm described
here uses a stack holding up to (z — 1) nodes, with the usual stack functions push() and pop().
We furthermore assume that the height of a node (an unsigned integer) is stored alongside a
node’s value (an n-byte string) on the stack.
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# Input: Secret seed SK.seed, start index s, target node height z, public seed
PK.seed, address ADRS
# Output: n-byte root node - top node on Stack

trechash(SK.seed, s, z, PK.seed, ADRS) {
if( s % (1 << z) =0 ) return -1;
for (i=0; i< 2°z; i++ ) {
ADRS . setType (WOTS_HASH) ;
ADRS.setKeyPairAddress(s + i);
node = wots_PKgen(SK.seed, PK.seed, ADRS);
ADRS. setType (TREE) ;
ADRS.setTreeHeight (1) ;
ADRS.setTreeIndex(s + 1i);
while ( Top node on Stack has same height as node ) {
ADRS.setTreeIndex ((ADRS.getTreeIndex() - 1) / 2);
node = H(PK.seed, ADRS, (Stack.pop() || node));
ADRS.setTreeHeight (ADRS.getTreeHeight () + 1);
}
Stack.push(node) ;
}
return Stack.pop();

Algorithm 7: treehash — The TreeHash algorithm.

4.1.4. XMSS Public Key Generation (Function xmss_PKgen)

The XMSS public key is computed as described in xmss_PKgen (Algorithm 10). In the context
of SPHINCS™ the XMSS public key PK is the root of the binary hash tree. The root is
computed using treehash. The public key generation takes a secret seed SK.seed, a public
seed PK.seed, and an address ADRS. The latter encodes the position of this XMSS instance
within the SPHINCS™ structure.

# Input: Secret seed SK.seed, public seed PK.seed, address ADRS
# Output: XMSS public key PK

xmss_PKgen(SK.seed, PK.seed, ADRS) {

pk = treehash(SK.seed, 0, h’, PK.seed, ADRS)
return pk;

Algorithm 8: xmss_PKgen — Generating an XMSS public key.

4.1.5. XMSS Signature
An XMSS signature is a ((Len + h’) * n)-byte string consisting of
e a WOTS™ signature sig taking len - n bytes,

e the authentication path AUTH for the leaf associated with the used WOTS™ key pair
taking h’ - n bytes.

The authentication path is an array of h’ n-byte strings. It contains the siblings of the
nodes in on the path from the used leaf to the root. It does not contain the nodes on the path
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itself. These nodes in AUTH are needed by a verifier to compute a root node for the tree
from a WOTS™ public key. A node N is addressed by its position in the tree. N(z,y) denotes
the yth node on level z with y = 0 being the leftmost node on a level. The leaves are on level
0, the root is on level A'. An authentication path contains exactly one node on every layer
0 <ax < (W —1). For the ith WOTS™ key pair, counting from zero, the jth authentication
path node is

AUTH[j] = N <j, l® 1)

The computation of the authentication path is discussed in Section 4.1.6.
The data format for a signature is given in Figure 8.

sig (len - n bytes)

AUTH [0] (n bytes)

AUTH |h-1] (n bytes)

Figure 8: XMSS Signature

4.1.6. XMSS Signature Generation (Function xmss_sign)

To compute the XMSS signature of a message M in the context of SPHINCS™, the secret seed
SK.seed, the public seed PK.seed, the index idx of the WOTS™ key pair to be used, and the
address ADRS of the XMSS instance are needed. First, a WOTS™ signature of the message
digest is computed using the WOTS™ instance at index idx. Next, the authentication path is
computed.

The node values of the authentication path MAY be computed in any way. The least
memory-intensive method is to compute all nodes using the treehash algorithm (Algorithm 7).
This is described here. Note that the details of how this step is implemented are not relevant
to interoperability; it is not necessary to know any of these details in order to perform the
signature verification operation.

# Input: n-byte message M, secret seed SK.seed, index idx, public seed PK.seed,
address ADRS
# Output: XMSS signature SIG_XMSS = (sig || AUTH)

xmss_sign(M, SK.seed, idx, PK.seed, ADRS)
// build authentication path
for ( j =0; j<h’; j++ ) {
k = floor(idx / (273)) XOR 1;
AUTH[j] = treehash(SK.seed, k * 27j, j, PK.seed, ADRS);
}
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ADRS . setType (WOTS_HASH) ;
ADRS.setKeyPairAddress(idx) ;

sig = wots_sign(M, SK.seed, PK.seed, ADRS);
SIG_XMSS = sig || AUTH;

return SIG_XMSS;

Algorithm 9: xmss_sign — Generating an XMSS signature.

4.1.7. XMSS Compute Public Key from Signature (Function xmss_pkFromSig)

SPHINCS™ makes use of implicit signature verification of XMSS signatures. An XMSS signa-
ture is used to compute a candidate XMSS public key, i.e., the root of the tree. This is used
in further computations (signature of the tree above) and implicitly verified by the outcome
of that computation. Hence, this specification does not contain an xmss_verify method but
the method xmss_pkFromSig.

The method xmss_pkFromSig takes an n-byte message M, an XMSS signature SIGxiss,
a signature index idx, a public seed PK.seed, and an address ADRS. The latter encodes
the position of the current XMSS instance within the virtual structure of the SPHINCS™ key
pair. First, wots_pkFromSig is used to compute a candidate WOTS™ public key. This in turn
is used together with the authentication path to compute a root node which is then returned.
The algorithm xmss_pkFromSig is given as Algorithm 10.

# Input: index idx, XMSS signature SIG_XMSS = (sig || AUTH), n-byte message M,
public seed PK.seed, address ADRS
# Output: n-byte root value node[0]

xmss_pkFromSig(idx, SIG_XMSS, M, PK.seed, ADRS){

// compute WOTS+ pk from WOTS+ sig

ADRS.setType (WOTS_HASH) ;

ADRS.setKeyPairAddress (idx) ;

sig = SIG_XMSS.getWOTSSig();

AUTH = SIG_XMSS.getXMSSAUTH() ;

node [0] = wots_pkFromSig(sig, M, PK.seed, ADRS);

// compute root from WOTS+ pk and AUTH
ADRS . setType (TREE) ;
ADRS.setTreeIndex (idx) ;
for (k =0; k <h’; kt+ ) {
ADRS.setTreeHeight (k+1);
if ( (floor(idx / (2°k)) % 2) == 0 ) {
ADRS.setTreeIndex (ADRS.getTreeIndex() / 2);
node[1] = H(PK.seed, ADRS, (node[0] || AUTH[k]));
} else {
ADRS.setTreeIndex ((ADRS.getTreeIndex() - 1) / 2);
node[1] = H(PK.seed, ADRS, (AUTH[k] || node[0]));
}
node[0] = node[1];
}
return node[0];

}
Algorithm 10: xmss_pkFromSig — Computing an XMSS public key from an XMSS signature.
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4.2. HT: The Hypertee

The SPHINCS™ hypertree HT is a variant of XMSSMT. Tt is essentially a certification tree
of XMSS instances. A HT is a tree of several layers of XMSS trees. The trees on top and
intermediate layers are used to sign the public keys, i.e., the root nodes, of the XMSS trees on
the respective next layer below. Trees on the lowest layer are used to sign the actual messages,
which are FORS public keys in SPHINCS™. All XMSS trees in HT have equal height.

Consider a HT of total height h that has d layers of XMSS trees of height A" = h/d. Then
layer d — 1 contains one XMSS tree, layer d — 2 contains 2% XMSS trees, and so on. Finally,
layer 0 contains 2" XMSS trees.

4.2.1. HT Parameters

In addition to all XMSS parameters, a HT requires the hypertree height h and the number of
tree layers d, specified as an integer value that divides h without remainder. The same tree
height A’ = h/d and the same Winternitz parameter w are used for all tree layers.

4.2.2. HT Key Generation (Function ht_PKgen)

The HT private key is the secret seed SK.seed which is used to generate all the WOTS™
private keys within the virtual structure spanned by the HT.

The HT public key is the public key (root node) of the single XMSS tree on the top layer.
Its computation is explained below. The public key generation takes as input a private and a
public seed.

# Input: Private seed SK.seed, public seed PK.seed
# Output: HT public key PK_HT

ht_PKgen(SK.seed, PK.seed){
ADRS = toByte(0, 32);
ADRS.setLayerAddress(d-1);
ADRS.setTreeAddress(0);
root = xmss_PKgen(SK.seed, PK.seed, ADRS);
return root;

Algorithm 11: ht_PKgen — Generating an HT public key.

4.2.3. HT Signature

A HT signature SIGgT is a byte string of length (h + d * len) x n. It consists of d XMSS
signatures (of (h/d + len) % n bytes each).
The data format for a signature is given in Figure 9

4.2.4. HT Signature Generation (Function ht_sign)

To compute a HT signature SIGygT of a message M using, ht_sign (Algorithm 12) described
below uses xmss_sign as defined in Section 4.1.6. The algorithm ht_sign takes as input a
message M, a private seed SK.seed, a public seed PK.seed, and an index idx. The index
identifies the leaf of the hypertree to be used to sign the message. The HT signature then
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XMSS signature SIGxyss (layer 0) ((h/d + len) - n bytes)

XMSS signature SIGxyss (layer 1) ((h/d + len) - n bytes)

XMSS signature SIGxmss (layer d — 1) ((h/d + len) - n bytes)

Figure 9: HT signature

consists of a stack of XMSS signatures using the XMSS trees on the path from the leaf with
index idx to the top tree. Note that idx is passed as two separate arguments, split into an index
to address the specific tree and the leaf index within that tree. This allows for a somewhat
higher hypertree, as one can use a 64-bit integer for tree idx to support parameters that
conform to h < 64+ h/d. This matches the parameters in this specification If other parameter
sets are used that allow greater h, the data type of tree idx MUST be adapted accordingly.

Algorithm ht_sign uses xmss_pkFromSig to compute the root node of an XMSS instance
after that instance was used for signing. An alternative is to use xmss_PKgen. However,
xmss_PKgen rebuilds the whole tree while xmss_pkFromSig only does one call to wots_pkFromSig
and (h' —1) calls to H. The algorithm ht_sign as described below is just one way to generate
a HT signature. Other methods MAY be used as long as they generate the same output.

# Input: Message M, private seed SK.seed, public seed PK.seed, tree index
idx_tree, leaf index idx_leaf
# Output: HT signature SIG_HT

ht_sign(M, SK.seed, PK.seed, idx_tree, idx_leaf) {
// init
ADRS = toByte(0, 32);

// sign
ADRS.setLayerAddress(0) ;
ADRS.setTreeAddress (idx_tree);
SIG_tmp = xmss_sign(M, SK.seed, idx_leaf, PK.seed, ADRS);
SIG_HT = SIG_HT || SIG_tmp;
root = xmss_pkFromSig(idx_leaf, SIG_tmp, M, PK.seed, ADRS);
for (j=1; j <d; j++ ) {
idx_leaf = (h / d) least significant bits of idx_tree;
idx_tree = (b - j * (b / d)) most significant bits of idx_tree;
ADRS.setLayerAddress(j);
ADRS.setTreeAddress(idx_tree);
SIG_tmp = xmss_sign(root, SK.seed, idx_leaf, PK.seed, ADRS);
SIG_HT = SIG_HT || SIG_tmp;
if (j<d-1)A
root = xmss_pkFromSig(idx_leaf, SIG_tmp, root, PK.seed, ADRS);
}

}
return SIG_HT;
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Algorithm 12: ht_sign — Generating an HT signature

4.2.5. HT Signature Verification (Function ht_verify)

HT signature verification (Algorithm 13) can be summarized as d calls to xmss_pkFromSig and
one comparison with a given value. HT signature verification takes a message M, a signature
SIGyT, a public seed PK.seed, an index idx (split into a tree index and a leaf index, as
above), and a HT public key PKpyr.

# Input: Message M, signature SIG_HT, public seed PK.seed, tree index idx_tree,
leaf index idx_leaf, HT public key PK_HT.
# Output: Boolean

ht_verify(M, SIG_HT, PK.seed, idx_tree, idx_leaf, PK_HT){
// init
ADRS = toByte(0, 32);

// verify
SIG_tmp = SIG_HT.getXMSSSignature(0);
ADRS.setLayerAddress(0) ;
ADRS.setTreeAddress (idx_tree);
node = xmss_pkFromSig(idx_leaf, SIG_tmp, M, PK.seed, ADRS);
for (j=1; j<d; j++ ) {
idx_leaf = (h / d) least significant bits of idx;
idx_tree = (b - j * h / d) most significant bits of idx;
SIG_tmp = SIG_HT.getXMSSSignature(j);
ADRS.setLayerAddress(j);
ADRS.setTreeAddress(idx_tree);
node = xmss_pkFromSig(idx_leaf, SIG_tmp, node, PK.seed, ADRS);
}
if ( node == PK_HT ) {
return true;
} else {
return false;
}
}

Algorithm 13: ht_verify — Verifying a HT signature SIGgr on a message M using a HT
public key PKyr

5. FORS: Forest Of Random Subsets

The SPHINCS™ hypertree HT is not used to sign the actual messages but the public keys of
FORS instances which in turn are used to sign message digests. FORS (pronounced |[fo:rs|),
short for forest of random subsets, is a few-time signature scheme (FTS). FORS is an im-
provement of HORST [4] which in turn is a variant of HORS [17]. For security it is essential
that the input to FORS is the output of a hash function. In the following we describe FORS
as acting on bit strings.

FORS uses parameters k and ¢t = 2% (example parameters are t = 2! k = 10). FORS
signs strings of length ka bits. Here, we deviate from defining sizes in bytes as the message
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length in bits might not be a multiple of eight. The private key consists of kt random n-
byte strings grouped into k sets, each containing ¢ n-byte strings. The private key values are
pseudorandomly generated from the main private seed SK.seed in the SPHINCS™ private key.
In SPHINCS™, the FORS private key values are only temporarily generated as an intermediate
result when computing the public key or a signature.

The FORS public key is a single n-byte hash value. It is computed as the tweakable hash
of the root nodes of k binary hash trees. Each of these binary hash trees has height a and is
used to authenticate the ¢ private key values of one of the k sets. Accordingly, the leaves of a
tree are the (tweakable) hashes of the values in its private key set.

A signature on a string M consists of k private key values — one per set of private key
elements — and the associated authentication paths. To compute the signature, md is split
into k a-bit strings. Next, each of these bit strings is interpreted as an integer between 0 and
t — 1. Each of these integers is used to select one private key value from a set. L.e., if the first
integer is 7, the ith private key element of the first set gets selected and so on. The signature
consists of the selected private key elements and the associated authentication paths.

SPHINCS™ uses implicit verification for FORS, only using a method to compute a candidate
public key from a signature. This is done by computing root nodes of the k trees using the
indices computed from the input string as well as the private key values and authentication
paths form the signature. The tweakable hash of these roots is then returned as candidate
public key.

We now describe the parameters and algorithms for FORS.

5.1. FORS Parameters

FORS uses the parameters n, k, and t; they all take positive integer values. These parameters
are summarized as follows:

e n: the security parameter; it is the length of a private key, public key, or signature
element in bytes.

e k: the number of private key sets, trees and indices computed from the input string.

e t: the number of elements per private key set, number of leaves per hash tree and upper
bound on the index values. The parameter ¢t MUST be a power of 2. If ¢ = 2% then the
trees have height a and the input string is split into bit strings of length a.

Inputs to FORS are bit strings of length klogt.

5.2. FORS Private Key (Function fors_SKgen)

In the context of SPHINCS™, a FORS private key is the single private seed SK.seed contained
in the SPHINCS™ private key. It is used to generate the kt n-byte private key values using
PRF with an address. While these values are logically grouped into a two-dimensional array,
for implementations it makes sense to assume they are in a one-dimensional array of length
kt. The jth element of the ith set is then stored at sk[ik + j]. To generate one of these
elements, a FORS address ADRS is used, that encodes the position of the FORS key pair
within SPHINCS™ and has tree height set to 0 and leaf index set to ik + j:
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, FORS Public Key

1.

height a

kt n-byvte private kev values

t = 2 n-byte private key strings
k binary hash trees

Figure 10: FORS trees and PK

#Input: secret seed SK.seed, address ADRS, secret key index idx = ik+j
#0utput: FORS private key sk

fors_SKgen(SK.seed, ADRS, idx) {
ADRS.setTreeHeight (0) ;
ADRS.setTreeIndex(idx) ;
sk = PRF(SK.seed, ADRS);

return sk;

Algorithm 14: fors_SKgen — Computing a FORS private key value.

5.3. FORS TreeHash (Function fors_treehash)

Before coming to the FORS public key, we have to discuss computation of the trees. For the
computation of the n-byte nodes in the FORS hash trees, the subroutine fors_treehash is
used. It is essentially the same algorithm as treehash (Algorithm 7) in Section 4.1. The two
differences are how the leaf nodes are computed and how addresses are handled. However,
as the addresses are similar, an implementation can implement both algorithms in the same
routine easily.

Algorithm fors_treehash accepts a secret seed SK.seed, a public seed PK.seed, an un-
signed integer s (the start index), an unsigned integer z (the target node height), and an
address ADRS that encodes the address of the FORS key pair. As for treehash, the
fors_treehash algorithm returns the root node of a tree of height z with the leftmost leaf
being the hash of the private key element at index s. Here, s is ranging over the whole kt
private key elements. It is REQUIRED that s % 2% = 0, i.e. that the leaf at index s is a
leftmost leaf of a sub-tree of height z. Otherwise the algorithm fails as it would compute
non-existent nodes.

# Input: Secret seed SK.seed, start index s, target node height z, public seed
PK.seed, address ADRS
# Output: n-byte root node - top node on Stack
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fors_treehash(SK.seed, s, z, PK.seed, ADRS) {
if( s % (1 << z) !'=0 ) return -1;
for (i =0; i< 2°z; i++ ) {
ADRS.setTreeHeight (0) ;
ADRS.setTreeIndex(s + 1i);
sk = PRF(SK.seed, ADRS);
node = F(PK.seed, ADRS, sk);
ADRS.setTreeHeight (1) ;
ADRS.setTreelndex(s + 1i);
while ( Top node on Stack has same height as node ) {
ADRS.setTreeIndex ((ADRS.getTreeIndex() - 1) / 2);
node = H(PK.seed, ADRS, (Stack.pop() || node));
ADRS.setTreeHeight (ADRS.getTreeHeight () + 1);
}
Stack.push(node) ;
}
return Stack.pop();

Algorithm 15: The fors_treehash algorithm.

5.4. FORS Public Key (Function fors_PKgen)

In the context of SPHINCS™, the FORS public key is never generated alone. It is only
generated together with a signature. We include fors_PKgen for completeness, a better un-
derstanding, and testing. Algorithm fors_PKgen takes a private seed SK.seed, a public seed
PK.seed, and a FORS address ADRS. The latter encodes the position of the FORS instance
within SPHINCS™. It outputs a FORS public key.

# Input: Secret seed SK.seed, public seed PK.seed, address ADRS
# Output: FORS public key PK

fors_PKgen(SK.seed, PK.seed, ADRS) {
forspkADRS = ADRS; // copy address to create FTS public key address

for(i = 0; i < k; i++){
root[i] = fors_treehash(SK.seed, i*k, a, PK.seed, ADRS);
}
forspkADRS. setType (FORS_ROOTS) ;
forspkADRS. setKeyPairAddress (ADRS. getKeyPairAddress());
pk = T_k(PK.seed, forspkADRS, root);
return pk;

Algorithm 16: fors_PKgen — Generate a FORS public key.

5.5. FORS Signature Generation (Function fors_sign)

A FORS signature is a length k(logt + 1) array of n-byte strings. It contains k private key
values, n-bytes each, and their associated authentication paths, logt n-byte values each.

The algorithm fors_sign takes a (klogt)-bit string M, a private seed SK.seed, a public
seed PK.seed, and an address ADRS. The latter encodes the position of the FORS instance
within SPHINCS™. It outputs a FORS signature SIGroRs.
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#Input: Bit string M, secret seed SK.seed, address ADRS, public seed PK.seed
#0utput: FORS signature SIG_FORS

fors_sign(M, SK.seed, PK.seed, ADRS) {
// compute signature elements
for(i = 0; i < k; i++H){
// get mezt index
unsigned int idx = bits i*t to (i+1)*t - 1 of M;

// pick private key element
ADRS.setTreeHeight (0) ;
ADRS.setTreeIndex(i*t + idx);

SIG_FORS = SIG_FORS || PRF(SK.seed, ADRS);

// compute auth path
for ( j =0; j<a; j++ ) {
s = floor(idx / (273j)) XOR 1;
AUTH[j] = fors_treehash(SK.seed, i * k + s * 27j, j, PK.seed, ADRS);

}

SIG_FORS = SIG_FORS || AUTH;
¥
return SIG_FORS;

}
Algorithm 17: fors_sign — Generating a FORS signature on string M.

The data format for a signature is given in Figure 11.

Private key value (tree 0) (n bytes)

AUTH (tree 0) (logt - n bytes)

Private key value (tree k — 1) (n bytes)

AUTH (tree k — 1) (logt - n bytes)

Figure 11: HT signature

5.6. FORS Compute Public Key from Signature (Function fors_pkFromSig)

SPHINCS™ makes use of implicit signature verification of FORS signatures. A FORS sig-
nature is used to compute a candidate FORS public key. This public key is used in further
computations (message for the signature of the XMSS tree above) and implicitly verified by
the outcome of that computation. Hence, this specification does not contain a fors_verify
method but the method fors_pkFromSig.

The method fors_pkFromSig takes a klogt-bit string M, a FORS signature SIGrogs, a
public seed PK.seed, and an address ADRS. The latter encodes the position of the FORS
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instance within the virtual structure of the SPHINCS™ key pair. First, the roots of the
k binary hash trees are computed using fors_treehash. Afterwards the roots are hashed
using the tweakable hash function Tj. The algorithm fors_pkFromSig is given as Algo-
rithm 18. The method fors_pkFromSig makes use of functions SIGrogrs.getSK(i) and
SIGroRs - getAUTH(i). The former returns the ith secret key element stored in the signature,
the latter returns the ith authentication path stored in the signature.

# Input: FORS signature SIG_FORS, (k lg t)-bit string M, public seed PK.seed,
address ADRS
# Output: FORS public key

fors_pkFromSig(SIG_FORS, M, PK.seed, ADRS){

// compute Toots
for(i = 0; i < k; i++){
// get next index
unsigned int idx = bits i*t to (i+1)*t - 1 of M;

// compute leaf

sk = SIG_FORS.getSK(i);
ADRS.setTreeHeight (0) ;
ADRS.setTreeIndex(i*t + idx);
node[0] = F(PK.seed, ADRS, sk);

// compute root from leaf and AUTH
auth = SIG_FORS.getAUTH(1i);
ADRS.setTreeIndex(idx) ;
for ( j =0; j <a; j+r) {
ADRS.setTreeHeight (j+1);
if ( (floor(idx / (2°j)) % 2) == 0 ) {
ADRS.setTreeIndex (ADRS.getTreeIndex() / 2);
node[1] = H(PK.seed, ADRS, (node[0] || auth[j]1));
} else {
ADRS.setTreeIndex ((ADRS.getTreeIndex() - 1) / 2);
node[1] = H(PK.seed, ADRS, (auth[j] || node[0]));
}
node[0] = nodel[1];
}
root[i] = nodel[0];
}

forspkADRS = ADRS; // copy address to create FTS public key address
forspkADRS. setType (FORS_ROOTS) ;

forspkADRS. setKeyPairAddress (ADRS. getKeyPairAddress());

pk = T_k(PK.seed, forspkADRS, root);

return pk;

}
Algorithm 18: fors_pkFromSig — Compute a FORS public key from a FORS signature.

6. SPHINCS*

We now have all ingredients to describe our main construction SPHINCS™. Essentially,
SPHINCS™ is an orchestration of the methods and schemes described before. It only adds
randomized message compression and verifiable index generation.
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6.1. SPHINCS" Parameters
SPHINCS™ has the following parameters:

n : the security parameter in bytes.

w : the Winternitz parameter as defined in Section 3.1.

h : the height of the hypertree as defined in Section 4.2.1.

d : the number of layers in the hypertree as defined in Section 4.2.1.
k : the number of trees in FORS as defined in Section 5.1.

t : the number of leaves of a FORS tree as defined in Section 5.1.

All the restrictions stated in the previous sections apply. Recall that we use a = logt.
Moreover, from these values the values m and len are computed as

e m: the message digest length in bytes. It is computed as
m = |(klogt+7)/8] + |(h—h/d+T7)/8| + [(h/d+T7)/8].

While only h+ k& log t bits would be needed, using the longer m as defined above simplifies
implementations significantly.

e len: the number of n-byte string elements in a WOTS™ private key, public key, and
signature. It is computed as len = len; + lensy, with

len; = [b;w)w, leny = rog(l{aor;((;u)— 1))J +1

In the following, we assume that all algorithms have access to these parameters.

6.2. SPHINCS" Key Generation (Function spx_keygen)

The SPHINCS™ private key contains two elements. First, the n-byte secret seed SK.seed
which is used to generate all the WOTS™ and FORS private key elements. Second, an n-byte
PRF key SK.prf which is used to deterministically generate a randomization value for the
randomized message hash.

The SPHINCS™ public key also contains two elements. First, the HT public key, i.e. the
root of the tree on the top layer. Second, an n-byte public seed value PK.seed which is
sampled uniformly at random.

As spx_sign does not get the public key, but needs access to PK.seed (and possibly to
PK .root for fault attack mitigation), the SPHINCS™ secret key contains a copy of the public
key.

The description of algorithm spx_keygen assumes the existence of a function sec_rand
which on input ¢ returns i-bytes of cryptographically strong randomness.
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# Input: (none)
# Output: SPHINCS+ key pair (SK,PK)

spx_keygen( ){
SK.seed = sec_rand(n);
SK.prf = sec_rand(n);
PK.seed = sec_rand(n);
PK.root ht_PKgen(SK.seed, PK.seed);
return ( (SK.seed, SK.prf, PK.seed, PK.root), (PK.seed, PK.root) );

Algorithm 19: spx_keygen — Generate a SPHINCS™ key pair.
The format of a SPHINCS™ private and public key is given in Figure 12.

SK.seed (n bytes)

SK.prf (n bytes) PK.seed (n bytes)

PK.seed (n bytes) PK.root (n bytes)

PK.root (n bytes)

Figure 12: Left: SPHINCS™ secret key. Right: SPHINCS™ public key.

6.3. SPHINCS™" Signature

A SPHINCS™ signature SIGgT is a byte string of length (1+k(a+1)+h+dlen)n. It consists
of an n-byte randomization string R, a FORS signature SIGpors consisting of k(a+1) n-byte
strings, and a HT signature SIGuT of (h + dlen)n bytes.

The data format for a signature is given in Figure 9

Randomness R (n bytes)

FORS signature SIGpors (k(a + 1) - n bytes)

HT signature SIGygt ((h + dlen)n bytes)

Figure 13: SPHINCS™ signature

6.4. SPHINCS™ Signature Generation (Function spx_sign)

Generating a SPHINCS™ signature consists of four steps. First, a random value R is pseu-
dorandomly generated. Next, this is used to compute a m byte message digest which is split
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into a [(klogt + 7)/8]-byte partial message digest tmp_md, a |(h — h/d + 7)/8|-byte tree
index tmp_idx_tree, and a |(h/d + 7)/8]-byte leaf index tmp_idx_leaf. Next, the actual
values md, idx_tree, and idx_leaf are computed by extracting the necessary number of
bits. The partial message digest md is then signed with the idx_leaf-th FORS key pair of
the idx_tree-th XMSS tree on the lowest HT layer. The public key of the FORS key pair
is then signed using HT. As described in Section 4.2.3, the index is never actually used as a
whole, but immediately split into a tree index and a leaf index, for ease of implementation.

When computing R, the PRF takes a n-byte string opt which is initialized with zero but
can be overwritten with randomness if the global variable RANDOMIZE is set. This option
is given as otherwise SPHINCS™ signatures would be always deterministic. This might be
problematic in some settings. See Section 9 and Section 11 for more details.

# Input: Message M, private key SK = (SK.seed, SK.prf, PK.seed, PK.root)
# Output: SPHINCS+ signature SIG

spx_sign(M, SK){
// init
ADRS = toByte(0, 32);

// generate randomizer
opt = toByte(0, 32);
if (RANDOMIZE){
opt = rand(n);
}
R = PRF_msg(SK.prf, opt, M);
SIG = SIG || R;

// compute message digest and index

digest = H_msg(R, PK.seed, PK.root, M);

tmp_md = first floor((ka +7)/ 8) bytes of digest;
tmp_idx_tree = next floor((h - h/d +7)/ 8) bytes of digest;
tmp_idx_leaf = next floor((h/d +7)/ 8) bytes of digest;

md = first ka bits of tmp_md;
idx_tree = first h - h/d bits of tmp_idx_tree;
idx_leaf first h/d bits of tmp_idx_leaf;

// FORS sign
ADRS.setLayerAddress(0) ;
ADRS.setTreeAddress(idx_tree);
ADRS . setType (FORS_TREE) ;
ADRS.setKeyPairAddress(idx_leaf);

SIG_FORS = fors_sign(md, SK.seed, PK.seed, ADRS);
SIG = SIG || SIG_FORS;

// get FORS public key
PK_FORS = fors_pkFromSig(SIG_FORS, M, PK.seed, ADRS);

// stign FORS public key with HT

ADRS.setType (TREE) ;

SIG_HT = ht_sign(PK_FORS, SK.seed, PK.seed, idx_tree, idx_leaf);
SIG = SIG || SIG_HT;

return SIG;
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Algorithm 20: spx_sign — Generating a SPHINCS™ signature

6.5. SPHINCS" Signature Verification (Function spx_verify)

SPHINCS™ signature verification (Algorithm 21) can be summarized as recomputing message
digest and index, computing a candidate FORS public key, and verifying the HT signature on
that public key. Note that the HT signature verification will fail if the FORS public key is
not matching the real one (with overwhelming probability). SPHINCS™ signature verification
takes a message M, a signature SIG, and a SPHINCS™ public key PK.

# Input: Message M, signature SIG, public key PK
# Output: Boolean

spx_verify(M, SIG, PK){
// init
ADRS = toByte(0, 32);
R = SIG.getRQ);
SIG_FORS = SIG.getSIG_FORSQ);
SIG_HT = SIG.getSIG_HT();

// compute message digest and index

digest = H_msg(R, PK.seed, PK.root, M);

tmp_md = first floor((ka +7)/ 8) bytes of digest;
tmp_idx_tree = next floor((h - h/d +7)/ 8) bytes of digest;
tmp_idx_leaf = next floor((h/d +7)/ 8) bytes of digest;

md = first ka bits of tmp_md;
idx_tree = first h - h/d bits of tmp_idx_tree;
idx_leaf = first h/d bits of tmp_idx_leaf;

// compute FORS public key
ADRS.setLayerAddress(0) ;
ADRS.setTreeAddress (idx_tree);
ADRS. setType (FORS_TREE) ;
ADRS.setKeyPairAddress(idx_leaf) ;

PK_FORS = fors_pkFromSig(SIG_FORS, md, PK.seed, ADRS);

// verify HT stignature

ADRS.setType (TREE) ;

return ht_verify(PK_FORS, SIG_HT, PK.seed, idx_tree, idx_leaf, PK.root);
}

Algorithm 21: spx_verify — Verify a SPHINCS™ signature SIG on a message M using a
SPHINCS™ public key PK

7. Instantiations

This section discusses instantiations for SPHINCS™. SPHINCS™ can be viewed as a signature
template. It is a way to build a signature scheme by instantiating the cryptographic function
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families used. We consider different ways to implement the cryptographic function families
as different signature systems. Orthogonal to instantiating the cryptographic function fami-
lies are parameter sets. Parameter sets assign specific values to the SPHINCS™ parameters
described in Section 7.1 below.

In this section, we first define the requirements on parameters and discuss existing trade-offs
between security, sizes, and speed controlled by the different parameters. Then we propose 6
different parameter sets that match NIST security levels I, I11, and V (2 parameter sets per
security level). Afterwards we propose three different instantiations for the cryptographic func-
tion families of SPHINCS™. These instantiation are indeed three different signature schemes.
We propose SPHINCST-SHAKE256, SPHINCSt-SHA-256, and SPHINCS'-Haraka. The for-
mer two use the cryptographic hash functions defined in FIPS PUB 202, respectively FIPS
PUB 180, to instantiate the cryptographic function families. The latter uses a new crypto-
graphic (hash) function called Haraka, proposed in [11].

7.1. SPHINCS™ Parameter Sets

SPHINCS™ is described by the following parameters already described in the previous sections.
All parameters take positive integer values.

n : the security parameter in bytes.

w : the Winternitz parameter.

h : the height of the hypertree.

d : the number of layers in the hypertree.
k : the number of trees in FORS.

t : the number of leaves of a FORS tree.

Recall that we use a = logt. Moreover, from these values the values m and len are computed
as

e m: the message digest length in bytes. It is computed as m = | (klogt +7)/8] + [(h —
h/d+7)/8] + [(h/d+T7)/8].

e len: the number of n-byte string elements in a WOTS™ private key, public key, and
signature. It is computed as len = len; + lensy, with

We now repeat the roles of, requirements on, and properties of these parameters. After-
wards, we give several formulas that show their exact influence on performance and security.

The security parameter n is also the output length of all cryptographic function families
besides Hy,sg. Therefore, it largely determines which security level a parameter set reaches.
It is also the size of virtually any node within the SPHINCS™ structure and thereby also the
size of all elements in a signature, i.e., the signature size is a multiple of n.

The Winternitz parameter w determines the number and length of the hash chains per
WOTST instance. A greater value for w linearly increases the length of the hash chains
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but logarithmically reduces their number. The number of hash chains exactly corresponds
to the number of n-byte values in a WOTS™ signature. Thereby it largely influences the
size of a SPHINCS™ signature. The product of the number and the length of hash chains
directly correlates with signing speed as essentially all time in HT signature generation is
spent computing WOTS™ public keys. Therefore, greater w means shorter signatures but
slower signing. However, note the exponential gap. The bigger w gets, the more expensive
is the signature size reduction. The Winternitz parameter does not influence SPHINCS™
security.

The height of the hypertree h determines the number of FORS instances. Hence, it de-
termines the probability that a FORS key pair is used several times, given the number of
signatures made with a SPHINCS™ key pair. Hence, the height has a direct impact on secu-
rity: A taller hypertree gives more security. On the other hand, a taller tree leads to larger
signatures.

The number of layers d is a pure performance trade-off parameter and does not influence
security. It determines the number of layers of XMSS trees in the hypertree. Hence, d must
divide h without remainder. The parameter d thereby defines the height of the XMSS trees
used. The greater d, the smaller the subtrees, the faster signing. However, d also controls the
number of layers and thereby the number of WOTS™ signatures within a HT and thereby a
SPHINCS™ signature.

The parameters k and ¢ determine the performance and security of FORS. The number of
leaves of a tree in FORS ¢t must be a power of two while k can be chosen freely. A smaller ¢
generally leads to smaller and faster signatures. However, for a given security level a smaller
t requires a greater k which increases signature size and slows down signing. Hence, it is
important to balance these two parameters. This is best done using the formulas below.

The message digest length m is the output length of Hyyeg in bytes. It is | (klogt+7)/8] +
|(h—h/d+T7)/8] + [(h/d+ T7)/8] bytes.

The number len of chains in a WOTS™ key pair determines the WOTS™ signature size.

7.1.1. Influence of Parameters on Security and Performance

In the following we provide formulas to compute speed, size and security for a given SPHINCS™
parameter set. This supports parameter selection. We also provide a SAGE script in Ap-
pendix A.

Key Generation. Generating the SPHINCS™ private key and PK.seed requires three calls
to a secure random number generator. Next we have to generate the top tree. For the leaves
we need to do 2"/¢ WOTS' key generations (len calls to PRF for generating the sk and
wlen calls to F for the pk) and we have to compress the WOTS™ public key (one call to Tien).
Computing the root of the top tree requires (2h/d — 1) calls to H.

Signing. For randomization and message compression we need one call to PRF, PRF ¢
and Hy,sg. The FORS signature requires £t calls to PRF and F. Further, we have to compute
the root of k binary trees of height log¢ which adds k(¢ — 1) calls to H. Finally, we need one
call to Tp. Next, we compute one HT signature which consists of d trees similar to the key
generation. Hence, we have to do d(2"/?) times len calls to PRF and wlen calls to F as well
as d(2"9) calls to T1en. For computing the root of each tree we get additionally d(2"/¢ — 1)
calls to H.
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Table 1: Overview of the number of function calls we require for each operation. We omit the
single calls to Hysg, PRF msg, and T, for signing and single calls to Hysg and T,
for verification as they are negligible when estimating speed.

F H PRF Tien
Key Generation 2h/dylen oh/d _ 1 2h/d1en oh/d
Signing kt 4+ d(2"wlen k(t—1)+d(2M¢—1) kt+d2"¥)1len+1 d2"/4
Verification kt + dwlen kE(t—1)+h kt d

Table 2: Key and signature sizes
SK PK Sig
Size 4n  2n  (h+k(logt+1)+d-len+ 1)n

Verification. First we need to compute the message hash using Hyysg. We need to do one
FORS verification which requires kt calls to PRF and F, k(¢ — 1) calls to H and one call to
T}, for hashing the roots. Next, we have to verify d XMSS signatures which takes < wlen calls
to F and one call to Tien each for WOTS™ signature verification. It also needs dh/d calls to
H for the d root computations.

The size of the SPHINCS™ private and public keys along with the signature can be deduced
from Section Section 6 as shown in Table 2.

The classical security level, or bit security of SPHINCS™ against generic attacks can be
computed as

(2 (0 (O 03) )

The quantum security level, or bit security of SPHINCS™ against generic attacks can be
computed as

1 1 N\"\* /¢ 1\ 1
o S (- (-8 ) () (-5) ).
Here, we are neglecting the small constant factors inside the logarithm. For details see Sec-
tion 9.

7.1.2. Proposed Parameter Sets and Security Levels

As explained in the previous subsection, even for a fixed security level the design of SPHINCS™
supports many different tradeoffs between signature size and speed. In Table 3 we list 6
parameter sets that—together with the cycle counts given in Table 4— illustrates how these
tradeoffs can be used to obtain concrete parameter sets optimizing for signature size and
concrete parameter sets optimizing for speed. Specifically, we propose parameter sets achieving
security levels 1, 3, and 5; for each of these security levels propose one size-optimized (ending
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Table 3: Example parameter sets for SPHINCS™ targeting different security levels and dif-
ferent tradeoffs between size and speed. The column labeled “bitsec” gives the bit
security computed as described in Section 9; the column labeled “sec level” gives the
security level according to the levels specified in Section 4.A.5 of the Call for Propos-
als. As explained later, for Haraka the security level is limited to 2: i.e., it is
1 for n = 16, and 2 for n = 24 or n = 32.

n h d log(t) k w Dbitsec seclevel sig bytes

SPHINCS™-128s 16 64 8 15 10 16 133 1 8080
SPHINCS™-128f 16 60 20 9 30 16 128 1 16976
SPHINCS™-192s 24 64 8 16 14 16 196 3 17064
SPHINCS™-192f 24 66 22 8 33 16 194 3 35664
SPHINCS™-256s 32 64 8 14 22 16 255 5 29792
SPHINCS-256f 32 68 17 10 30 16 254 5 49216

on ‘s’ for “small”) and one speed-optimized (ending on ‘f’ for “fast”) parameter set. The
parameter sets were obtained with the help of a Sage script that we list in Appendix A. In
the first line of that script, set the “target bit security” to a desired value (in our case, close
to 128 for security level 1, close to 192 for security level 3, and close to 256 for security level
5). The output of the script will be a long list of possible parameters achieving this security
level together with the signature size and an estimate of the performance, using the formulas
from Section 7.1.1 above.

Note that we did not obtain our proposed parameter sets simply by searching this output
for the smallest or the fastest option. The reason is that, for example, optimizing for size
without caring about speed at all results in signatures of a size of ~ 15 KB for a bit security
of 256, but computing one signature takes more than 20 minutes on our benchmark platform.
Such a tradeoff might be interesting for very few select applications, but we cannot think of
many applications that would accept such a large time for signing. Instead, the proposed
parameter sets are what we consider “non-extreme”; i.e., with a signing time of at most a few
seconds in our non-optimized implementation.

The choice of these parameters is orthogonal to the choice of hash function. In Section 7.2
we describe 3 different instantiations of the underlying hash function. Together with the 6
parameter sets listed in Table 3 we obtain 18 different instantiations of SPHINCS™.

7.2. Instantiations of Hash Functions

In this section we define three different signature schemes which are obtained by instantiating
the cryptographic function families of SPHINCS™' with SHA-256, SHAKE256, and Haraka.
To instantiate the tweakable hash functions, all proposals first use PRF to generate pseudo-
random bitmasks which are then XORed with the input message. The masked messages are
denoted as M®.
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7.2.1. SPHINCS™-SHAKE256
For SPHINCST-SHAKE256 we define

F(PK.seed, ADRS, M;) = SHAKE256(PK.seed| ADRS||M{", 8n),
H(PK.seed, ADRS, M;, M) = SHAKE256(PK.seed||ADRS||M{?|| M, 8n),
Hphse (R, PK.seed, PK.root, M) = SHAKE256(R||PK.seed||[PK.root||M, 8m), (1)
PRF(SEED, ADRS) = SHAKE256(SEED||ADRS, 8n),
PRFs¢ (SK.prf, OptRand, M) = SHAKE256(SK.prf||OptRand||M, 8n).

Generating the Masks. SHAKE256 can be used as an XOF which allows us to generate the
bitmasks for arbitrary length messages directly. For a message M with [ bits we compute

M® = M @& SHAKE256(PK.seed||ADRS, ().

7.2.2. SPHINCS"-SHA-256
In a similar way we define the functions for SPHINCST-SHA-256 as
F(PK.seed, ADRS, M;) = SHA-256(PK.seed||ADRS|| M),

)
H(PK.seed, ADRS, M, M) = SHA-256(PK.seed||ADRS|| M7 || M),
H;se (R, PK.seed, PK.root, M) = MGF1-SHA-256(SHA-256(R||PK.seed||PK.root||M), m),
)=
)=

PRF(SEED, ADRS) = SHA-256(SEED||ADRS),

PRFnsg(SK.seed, OptRand, M) = HMAC-SHA-256(SK.prf, OptRand||M).

)
which uses MGF1 as defined in RFC 2437 and HMAC as defined in FIPS-198-1. Note that
MGF1 takes the as last input the output length in bytes.

Generating the Masks. SHA-256 can be turned into a XOF using MGF1 which allows us to
generate the bitmasks for arbitrary length messages directly. For a message M with [ bytes
we compute

M® = M ® MGF1-SHA-256(PK .seed||ADRS, [).

Shorter Outputs. If a parameter set requires an output length n < 32-bytes for F, H, PRF,
and PRF g we take the first n bytes of the output and discard the remaining.

7.2.3. SPHINCS™-Haraka

Our third instantiation is based on the Haraka short-input hash function. Haraka is not
a NIST-approved hash function, and since it is new it needs further analysis. We specify
SPHINCS™-Haraka as third signature scheme to demonstrate the possible speed-up by using
a dedicated short-input hash function.

As the Haraka family only supports input sizes of 256 and 512 bits we extend it with a
sponge-based construction based on the 512-bit permutation 7. The sponge has a rate of 256-
bit respectively a capacity of 256-bit and the number of rounds used in 7 is 5. The padding
scheme is the same as defined in FIPS PUB 202 for SHAKE256.
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We denote this sponge as HarakaS(M,d), where M is the padded message and d is the
length of the message digest in bits. A 256-bit message block M; is absorbed into the state S
by

Absorb(M, S) : S = 7(S @ (M||toByte(0, 32))). (3)

The d-bit hash output h is computed by squeezing blocks of r bits

Squeeze(S) : h = h||Truncase(.S)

S = 7(S). 4)

For a more efficient construction we tweak the round constants of Haraka using PK.seed.!
As PK.seed is the same for all hash function calls for a given key pair we expand PK.seed
using HarakaS and use the result for the round constants in all instantiations of Haraka used
in SPHINCS™. In total there are 40 128-bit round constants defined by

RCy, ..., RC39 = HarakaS(PK.seed, 5120). (5)

This only has to be done once for each key pair for all subsequent calls to Haraka hence the
costs for this are amortized. We denote Haraka with the round constants tweaked by PK.seed
as Harakapi seeq. We can now define all functions we need for SPHINCS'-Haraka as
F(PK.seed, ADRS, M;) = Haraka512pk scea(ADRS||M;?),
H(PK.seed, ADRS, M, M) = HarakaSpk seea(ADRS||M{"|| M5, 8n),
Hpse (R, PK.seed, PK.root, M) = HarakaSpk seeda (R||PK.root||M, 8m), (6)
PRF(SEED, ADRS) = Haraka256gggp (ADRS),
PRF sg (SK.prf, OptRand, M) = HarakaSpk seed (SK.prf||OptRand||M, 8n).

For F we pad Mfe with zero if n < 32. Note that H and Hpysg will always have a different
ADRS and we therefore do not need any further domain separation.

Generating the Masks. The mask for the message used in F is generated by computing
M = M; @ Haraka256(ADRS) (7)
respectively for H
MP||MS = (M ||Ms) @& Haraka512(ADRS)||toByte(0, 32)). (8)

For all other purposes the masks are generated using HarakaS. For a message M with [
bytes we compute
M® = M @ HarakaSpk seea(ADRS, [).

Shorter Outputs. If a parameter set requires an output length n < 32-bytes for F and PRF,
we take the first n bytes of the output and discard the remaining.

Security Restrictions. Note that our instantiation using Haraka employs the sponge con-
struction with a capacity of 256-bits. Hence, in contrast to SPHINCS™-SHA-256 and SPHINCS™-
SHAKE256, SPHINCS'-Haraka reaches security level 2 for 32- and 24-byte outputs and se-
curity level 1 for 16-byte outputs.

'This is similar to the ideas used for the MDx-MAC construction [16].
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8. Design rationale

The design rationale behind SPHINCS™ is to follow the original SPHINCS construction and
apply several results from more recent research. The idea behind SPHINCS was as follows.
One can build a stateless hash-based signature scheme using a massive binary certification
tree and selecting a leaf at random for each message to be signed. The problem with this
approach is that the tree has to be extremely high, i.e., a height of about twice the security
level would be necessary. This leads to totally unpractical signature sizes. Using a hypertree
instead of a binary certification tree allows to trade speed for signature size. However, this is
still not sufficient to get practical sizes and speed.

The main new idea in SPHINCS was to not use the leaves directly to sign messages but
to use the leaves to certify FTS key pairs. This allowed to massively reduce the total tree
height (by a factor about 4). This is due to the fact that the security of an FTS instance
degrades with every signature a key pair is used for. Hence, the height of the tree does not
have to be such that collisions do only occur with negligible probability anymore. Instead, it
has to be ensured that the product of the probability of a y-times collision on a leaf and the
forging probability of an adversary after seeing v FTS signatures (with the same key pair) is
negligible.

From this, it is mainly a question of balancing parameters to find a practical scheme. For
the full original reasoning see [4].

In the following we give a more detailed reasoning regarding the changes made to SPHINCS
in SPHINCS™, and changes that were discussed by the SPHINCS™ team but got discarded.

8.1. Changes Made
We changed several details of SPHINCS leading to SPHINCS™. The reasoning behind those

changes is discussed in the following.

8.1.1. Multi-Target Attack Protection

SPHINCS was designed to be collision-resilient i.e., to not be vulnerable to collision attacks
against the used hash function. This had two reasons. First, it allowed to choose a smaller
output length at the same security level which led to smaller signatures. Second, collision
resistance is a far stronger assumption than the used (second-)preimage resistance and pseu-
dorandomness assumptions.

However, the use of (second-)preimage resistance introduced a new issue as pointed out in [9]:
Multi-target attacks. Preimage resistance properties are targeted properties. An adversary
is asked to invert the function on a given target value, or to find a second-preimage for a
given target value. If it suffices to break the given property for one out of many targets, the
adversarial effort is reduced by a factor of the number of targets. To prevent this e apply the
mitigation techniques from [9] using keyed hash functions. Each hash function call is keyed
with a different key and applies different bitmasks. Keys are derived from, and bitmasks are
pseudorandomly generated from a public seed and an address specifying the context of the
call. For this we introduce the notion of tweakable hash functions which take in addition to
the input value a public seed and an address.

This pseudorandom generation of bitmasks comes at the cost of introducing a random
oracle assumption for the PRF used to generate the bitmasks. However, this only applies to
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the pseudorandom generation of the bitmasks. I.e., if all bitmasks would be stored in the
public key, the scheme would have a standard model security proof (even if these bitmasks
where generated using exactly the same way but without giving away the seed). Hence, the
security reduction in [9] is in the quantum-accessible random oracle model.

One difference to |9] is that in all instantiations of SPHINCS™, keys are not pseudorandomly
generated. Instead, the concatenation of public seed and address is used to practically key
the functions. Given how the tweakable hash functions are instantiated, this means that we
assume that there do not exist any (exponentially large) subsets of the domain on which
second-preimage finding is easy. This assumption holds for any hash function based on the
sponge or Merkle-Damgard construction, assuming the block or compression function behaves
like a random function.

8.1.2. Tree-less WOTS™ Public Key Compression

SPHINCS™ compresses the end nodes of the WOTS™ hash chains with a single call to a
tweakable hash function, while SPHINCS used a so called L-tree. The reason to use L-trees in
SPHINCS was that this required only two n-byte bitmasks per layer, i.e., 2[log 1len| bitmasks.
A single call to a tweakable hash requires len n-byte bitmasks. As the bitmasks were stored
in the public key, this meant smaller public keys. Now, that bitmasks are pseudorandomly
generated anyway and hence are not stored in the public key anymore, this argument does
not apply. On the opposite, tree based compression is slower than using a single call to a
tweakable hash with longer input.

8.1.3. FORS

FORS was used to replace HORST. HORST, as its predecessor HORS, had the problem
that weak messages existed as recently independently pointed out in [1]. More specifically,
in HORST the message is also split into k& indexes as for FORS. However, these indexes all
selected values from the same single set of secret key values. Hence, if the same index appeared
multiple times in a signature, still only a single secret value would be required. In extreme
cases this means that for the signature of a message only a single secret value has to be know.
FORS prevents this using separate secret value sets per index obtained from the message.
Even if a message maps k-times to the same index, the signature now contains k different
secret values.

For the same parameters k£ and t this would mean an increase in signature size and worse
speed as now k trees of height log ¢ have to be computed instead of one and for each signature
value an authentication path of length (logt) — 1 is needed. However, due to the strengthened
security, we can choose different values for k£ and ¢. This in the end leads to smaller signatures
than for HORST.

We also considered a method similar to Octopus |2]. The idea is that authentication paths in
HORST largely overlap. Hence, it becomes possible to reduce the signature size removing any
redundancy in the authentication paths. This comes at the cost of a rather involved method
to collect the right nodes as well as variable size signatures. In practice this means that one
still has to prepare for the worst case. This worst case indeed still has smaller signatures than
HORST. We decided against this option as the FORS signature size matches that of Octopus’
worst case signature size. At the same time, FORS gives more flexibility in the choice of k
and ¢, and comes with a far simpler signature and verification method that Octopus.
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8.1.4. Verifiable Index Selection

In SPHINCS the index of the HORST instance to be used was pseudorandomly selected. This
had the drawback that the index appeared random to a verifier and it was impossible to verify
that the index was indeed generated that way. This allowed an adversary a multi-target attack
on HORST (similarly for FORS in SPHINCS™). An adversary could first map a message to
an index set and then check if the necessary secret values were already uncovered for some
HORST key pair. Then it would just select the index of that HORST key pair as index and
succeed in forging a signature.

To prevent this attack, we decided to make index generation verifiable. More specifically,
we generate the index together with the message digest:

We compute message digest and index as

(md|fidx) = Hmeg(R, PK, M)

where PK = (PK.seed||PK.root) contains the top root node and the public seed.

This way, an adversary can no longer freely choose an index. Indeed, selecting a message
immediately also fixes the index. This method has another advantage in addition to avoiding
the multi-target attack against FORS/HORST. We can omit the index in the SPHINCS
signature as it would be redundant.

8.1.5. Making Deterministic Signing Optional

The pseudorandom generation of randomizer R now allows to use additional randomness. It
takes a n-byte value OptRand. Per default OptRand is set to O but it can be filled with random
bits e.g. taken from a TRNG. The randomizer is then computed as

R = PRF(SK.prf, OptRand, M).

That way, deterministic signing becomes optional. Deterministic signing can be a problem
for devices which are susceptible to side-channel attacks as it allows to collect several traces
for the exactly same computation by just asking for a signature on the same message multiple
times.

We could of course also have replaced R by a truly random value on default. This would
have caused the scheme to become susceptible to bad randomness. The new method prevents
this. If OptRand is a high entropy string, R has as much entropy as that string. If OptRand is
left as zero or has only little entropy, R is just a pseudorandom value as in SPHINCS.

8.2. Discarded Changes

In Section 8.1.3, we already explained that we discarded the use of an Octopus-like method
as we found a better alternative.

One more idea which we discarded on the way was a signature - secret key size trade-off. To
further shrink the SPHINCS™ signature size, the top z layers of the hypertree can be merged
together into a a single tree of height zh’. That way an SPHINCS™ signature includes z — 1
less WOTS™ signatures. This decreases the signature size by n-len(z — 1) bytes, but typically
comes at the cost of speed as now a tree of height zh' has to be computed for each signature
generation. This can be prevented by storing the nodes at height ¢h’, where 0 < ¢ < z, as
part of the secret key. These nodes (auxiliary data) can be used to build the authentication
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paths to the root of the merged tree without actually computing the whole tree. Indeed,
authentication path computation in this case gets faster than computing the authentication
paths for z tree layers in the original hypertree. The size of the auxiliary data is n Zf;ll 2ih’
While this already grows extremely fast, the real problem turned out to be key generation
time. As the full tree still has to be computed once during key generation, key generation
time increases. Key generation would now take 2:h" WOTS™ key generations.

Initial experiments suggested that key generation time easily moves into the order of minutes
already for z = 2 while the benefit in signature size is 1KB or 2KB for w = 256 and w = 16
respectively. In addition, this optimization significantly complicates implementations as the
top tree has to be handled differently than the remaining trees. Hence, this idea was discarded.

9. Security Evaluation (including estimated security strength
and known attacks)

The security of SPHINCS™ is based on standard properties of the used function families and
the assumption that the PRF used within the instantiations of the tweakable hash functions
(to generate the bitmasks) can be modeled as a random oracle. We want to emphasize again
that this assumption about the random oracle is limited to the pseudorandom generation of
bitmasks.

In this section we give a security reduction for SPHINCS™ underpinning the above claim.
The security reduction essentially combines the original SPHINCS security reduction from [4],
the XMSS-T security reduction from [9], and a new security analysis for multi-instance FORS.

In our technical specification of SPHINCS™ we used the abstraction of tweakable hash
functions to allow for different ways of keying a function and generating bitmasks. In the
security reduction we will remove this abstraction and assume that each call to the hash
function used to instantiate the tweakable hash is keyed with a different value and inputs
are XORed with a bitmask before being processed. Moreover, we assume that the bitmasks
are generated using a third PRF called PRFgn. The PRF PRFg is the single function
assumed to behave like a random oracle. Finally, we make a statistical assumption on the
hash function F. Informally we require that every element in the image of F has at least two
preimages, i.e.,

(Vk € {0,1}7)(Vy € IMG(Fy,)) 3z, 2’ € {0,1}") : 2 # 2/ A Fy(z) = fula'). 9)

Informally, we will prove the following Theorem where F, H, and T are the cryptographic
hash functions used to instantiate F and H, respectively.

Theorem 9.1 For security parameter n € N, parameters w,h,d, m,t,k as described above,
SPHINCSY is existentially unforgeable under post-quantum adaptive chosen message attacks

if

e F, H, and T are post-quantum distinct-function multi-target second-preimage resistant
function families,

o | fulfills the requirement of FEqn. 9,

o PRF,PRF sz are post-quantum pseudorandom function families,
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e PRFgn\ is modeled as a quantum-accessible random oracle, and

o H, g is a post-quantum interleaved target subset resilient hash function family.

More specifically, the insecurity function InSect @ FU-CMA (SPHINC’S+;§, 2h) describing the
maximum success probability over all adversaries running in time < & against the PQ-EU-CMA

security of SPHINCS™ is bounded by

InSec”¥*VMA (SPHINCSY; €) < 2(InSec”¥™™ (PRF; £) + InSec™® ™ (PRF mgg; &)

+InSec”d " (Hppeg: €) +InSec?@PMSPR (F; ) 4+ InSec”@ "M PR (H; €) + InSecP ¥ PM5PF (T; ¢))
(10)

9.1. Preliminaries

Before we start with the proof, we have to provide two definitions. In general, we refer the
reader to [9] for formal definitions of the above properties with two exceptions. First, we
use a variant of post-quantum multi-function multi-target second-preimage resistance called
post-quantum distinct-function multi-target second-preimage resistance. The distinction here
is that the targets are given for distinct but predefined functions from the family while for
the multi-function notion, the functions are sampled together with the target, uniformly at
random.

Second, we define a variant of subset-resilience which captures the use of FORS in SPHINCS™
which we call (post-quantum) interleaved target subset resilience. The idea is that from a the-
oretical point of view, one can think of the 2" FORS instances as a single huge HORS-style
signature scheme. The secret key consists of 2 key-sets which in turn consist of k key-subsets
of t secret n-byte values, each. The message digest function Hy,sg maps a message to a key-set
(by outputting the index) and a set of indexes such that each index is used to select one secret
value per key-subset of the selected key-set.

Formally, the security of this multi-instance FORS boils down to the inability of an adversary

e to learn actual secret values which were not disclosed before,
e to replace secret values by values of its choosing, and

e to find a message which is mapped to a key-set and a set of indexes such that the
adversary has already seen the secret values indicated by the indexes for that key-set.

The former two points will be shown to follow from the properties of F, H, and T as well
as those of PRF. The latter point is exactly what (post-quantum) interleaved target subset
resilience captures.

We define those properties in the following.

Post-quantum distinct-function, multi-target second-preimage resistance (PQ-DM-SPR).
In the following let A € N be the security parameter, « = poly(\),x = poly()), and

Hx = {Hg : {0,1}* — {0,1}*} keqo.1}« be a family of functions. We define the success
probability of any (quantum) adversary A against PQ-MM-SPR. This definition is parameter-

ized by the number of targets
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Succh NS (A) = Pr[(V{K;}T C ({0,13%)7), M; & {0,1}%,0 <i < p;

(G, M) & A((Ky, M), .. (Kp, My)) -
M’ # M; ANHg, (M;) = Hg,(M')] . (11)

(Post-quantum) interleaved target subset resilience. In the following let A € N be the
security parameter, a« = poly(\),x = poly(}A), and Hy = {Hx : {0,1}* — {0, 1})‘}KE{071}N
be a family of functions. Further consider the mapping function MAP,; : {0,1}* —
{0,1}" x [0, — 1]¥ which for parameters h,k,t maps an A-bit string to a set of k indexes
((I,1,.1),...,(I,k,Ji)) where I is chosen from [0, 2" — 1] and each .J; is chosen from [0, ¢ — 1].
Note that the same I is used for all tuples (1,1, J;).

We define the success probability of any (quantum) adversary A against PQ-MM-SPR of H.,.
Let G = MAPy, .+ o Hy. This definition uses an oracle O(-) which upon input of a a-bit

message M; samples a key K; & {0,1}" and returns K; and G(K;, M;). The adversary may
query this oracle with messages of its choosing. The adversary would like to find another G
input whose output is covered by the G outputs produced by the oracle, without the input
being one of the inputs used by the oracle. Note that the adversary knows the description of
G and can evaluate it on randomizer-message pairs of its choosing. However, these queries do
not count into the set of values which need to cover the adversary’s output.

q
Succh ™ (A) = Pr[(K, M)+ A°D(1Y st G(K, M) C | G(K;, M)
j=1

A (K, M) & {(Kj, Mj)}]

where ¢ denotes the number of oracle queries of A and the pairs {(Kj, M;)}{ represent the
responses of oracle O.

Note that this is actually a strengthening of (post-quantum) target subset resilience in the
multi-target setting. In the multi-target version of target subset resilience, A was able to
freely choose the common index [ for its output. In interleaved target subset resilience, I is
determined by G and input M.

9.2. Security Reduction

The security reduction is essentially an application of techniques used especially in [9]. Hence,
we will only roughly sketch it here.

We want to bound the success probability of an adversary A against the PQ-EU-CMA se-
curity of SPHINCS'. We start with GAME.O which is the original PQ-EU-CMA game.
Now consider a second game GAME.1 where all outputs of PRF are replaced by truly
random values. The difference in success probability of any forger A must be bound by
InSec” @™ (PRF; ) otherwise we could use A to break the pseudorandomness of PRF with
a success probability greater InSec™* ™™ (PRF;¢) which would contradict the definition of
InSec”* "™ (PRF;€).

Next, consider a game GAME.2 which is the same as GAME.1 but all outputs of PRF ¢
are replaced by truly random values. Following the same reasoning as above, the difference
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in success probability of any adversary A playing in the two games must be bounded by
InSec”* ™ (PRF msg; §).

Next, we consider GAME.3 where we consider the game lost if A outputs a valid forgery
(M, SIG) where the FORS signature part of SIG differs from the signature which would be
obtained by signing M with the secret key of the challenger. The difference of any A in
winning the two games must be bounded by InSec”® "M% (F: ¢) + InSec”*PMSFF (H; ¢) +
InSecP@PM=SPR (T £). Otherwise, we could use A to break the post-quantum distinct-function,
multi-target second-preimage resistance of F', H, or T. A detailed proof of this follows exactly
along the lines of the security reduction for XMSS-T in [9]. Given distinct challenges for each
call to F, H or T for the key-set defined by PK.seed and the address space, we program
PRFpgM to output bitmasks which are the XOR of the input to the according tweakable hash
function and the given challenge. That way we program the actual input to the hash function
to be the challenge value. This allows us to extract a second preimage if a collision happens
between the forgery and the honestly generated signature. A pigeon hole argument can be
used to show that such a collision must exist in this case.

Next, we consider GAME.4 which differs from GAME.3 in that we are considering the game
lost if an adversary outputs a valid forgery (M, SIG) where the FORS signature part of SIG
contains a secret value which is the same as that of an honestly generated signature of M but
was not contained in any of the signatures obtained by A via the singing oracle. The difference
of any (unbounded) A in the two games is bounded by 1/2 times the success probability of
A in GAME.3. The reason is that the secret values which were not disclosed to A before still
contain 1 bit of entropy, even for an unbounded A.

Finally, we have to bound the success probability of A in GAME.4. But GAME.4 can
be viewed as the (post-quantum) interleaved target subset resilience game. Because, if A
returns a valid signature and succeeds in the GAME, the FORS signature must be valid and
consist only of values that have been observed by A in previous signatures. Hence, the success
probability of A in GAME.4 is bounded by InSecPditst (Hmsg; &) per definition.

Putting things together we obtain the claimed bound. (|

9.3. Security Level / Security Against Generic Attacks

As shown in Theorem 9.1, the security of SPHINCS™ relies on the properties of the functions
used to instantiate all the cryptographic function families (and the way they are used to
instantiate the function families). In the following we assume that there do not exist any
structural attacks against the used functions SHA-256, SHAKE256, and Haraka. In later
sections we justify this assumption for each of the function familes.

For now, we only consider generic attacks. We now consider generic classical and quantum
attacks against distinct-function multi-target second-preimage resistance, pseudorandomness
(of function families), and interleaved target subset resilience. Runtime of adversaries is
counted in terms of calls to the cryptographic function families.

9.3.1. Distinct-Function Multi-Target Second-Preimage Resistance

To evaluate the complexity of generic attacks against hash function properties the hash func-
tions are commonly modeled as (family of) random functions. Note, that for random functions
there is no difference between distinct-function multi-target second-preimage resistance and
multi-function multi-target second-preimage resistance. Every key just selects a new ran-
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dom function, independent of the key being random or not. In [9] it was shown that the
success probability of any classical gnash-query adversary against multi-function multi-target
second-preimage resistance of a random function with range {0,1}®" (and hence also against

distinct-function multi-target second-preimage resistance) is exactly (1“;587‘“”“. For qnasn-query

2
quantum adversaries the success probability is @((qh‘"‘;%l)). Note that these bounds are
independent of the number of targets.

9.3.2. Pseudorandomness of Function Families

The best generic attack against the pseudorandomness of a function family is commonly
believed to be exhaustive key search. Hence, for a function family with key space {0,1}%"
the success probability of a classical adversary that evaluates the function family on gyey keys
is again bounded by q“;gj L For Jrey-query quantum adversaries the success probability of

2
exhaustive search in an unstructured space with {0, 1}5" elements is @((qkzy%l)) as implicitly

shown in [9] (just consider this as preimage search of a random function).

9.3.3. Interleaved Target Subset Resilience

To evaluate the attack complexity of generic attacks against interleaved target subset resilience
we again assume that the used hash function family is a family of random functions.

Recall that there are parameters h, k,t where t = 2% These parameters define the fol-
lowing process of choosing sets: generate independent uniform random integers I, Jy, ..., Jk,
where I is chosen from [0,2" — 1] and each J; is chosen from [0,¢ — 1]; then define S =
{(I,1,.1),(I,2,J2),...,(I,k,Jg)}. (In the context of SPHINCS™, S is a set of positions of
FORS private key values revealed in a signature: I selects the FORS instance, and J; selects
the position of the value revealed from the ith set inside this FORS instance.)

The core combinatorial question here is the probability that Sy C S; U---U.S,, where each
S; is generated independently by the above process. (In the context of SPHINCS™ | this is the
probability that a new message digest selects FORS positions that are covered by the positions
already revealed in ¢ signatures.) Write Sy as {(Ia, 1, Ja,1), 10y 2, Ja,2)s - -+, (Tas By Ja i) }-

For each a, the event I, = Iy occurs with probability 1/2", and these events are independent.
Consequently, for each v € {0,1,...,¢q}, the number of indices a € {1,2,...,q} such that
I, = Iy is v with probability (3)(1 —1/2M)ya= ol

Define DarkSide, as the conditional probability that (lo,i,Jo;) € S U---U Sy, given
that the above number is . In other words, 1 — DarkSide, is the conditional probability
that (o, 4, Jos) & {(L1,9, J14), (I2,%, J2,i), ..., (Ig,%,Jq,i)}. There are exactly « choices of a €
{1,2,...,q} for which I, = Iy, and each of these has probability 1 — 1/t of J,; missing Jy ;.
These probabilities are independent, so 1 — DarkSide, = (1 — 1/¢)7.

The conditional probability that Sy C S1 U ---US,, again given that the above number is
7, is the kth power of the DarkSide, quantity defined above. Hence the total probability e
that S()CSlLJ--'USq is

omsad () (-2 S (-)) ( -)7

~

For example, if ¢t = 24, k = 22, h = 64, and ¢ = 254, then € ~ 272601 (with most of
the sum coming from ~ between 7 and 13). The set Sy thus has probability 272°6-01 of being
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covered by 24 sets S, ..., S,. (In the SPHINCS™ context, a message digest chosen by the
attacker has probability 2729601 of selecting positions covered by 264 previous signatures.)

Hence, for any classical adversary which makes gn.sn queries to function family H, the
success probability is

a2 (-0 O 5

5

As this for random H,, is search in unstructured data, the best a quantum adversary can do
is Grover search. This leads to a success probability of

ofowrr (- (- () 04)7)

For computations, note that the O is small, and that (1—1/t)7 is well approximated by 1—~/t.

9.3.4. Security Level of a Given Parameter Set

If we take the above success probabilities for generic attacks and plug them into Theorem 9.1
we get a bound on the success probability of SPHINCS™ against generic attacks of classical
and quantum adversaries. Let g denote the number of adversarial signature queries. For
classical adversaries that make no more than gn,s, queries to the cryptographic hash function
used, this leads to

1 1
InSecEv-cMA (SPHINCS+; Qhash) < 2(qhash + Qhash +

itsr Ghash +1 | Ghash 1 Ghash +1
+ InSecP4 ts (Hmsg; Qhash) + a;sn + a;sn + a;Sn )
k q—
— Ghash + 1 1y a ! .
_10W+2(Qhash+1);<1_<l_t> I\ Tw)
k q="
. Ghash 1’ q L !
=0 ( o5 T (dnash) ; <1 - (1 - t) > <7> <1 - 2h> o |- (12

Similarly, for quantum adversaries that make no more than gn.sn, queries to the cryptographic
hash function used, this leads to

(Qhash + 1)2 (Qhash + 1)2
28n + 28n

InSec” @™V M (SPHINCS™; ghash) < 2(

(Qhash + 1)2 + (Qhash + 1)2 + (Qhash + 1)2

+ IIlSeCpq_itsr (Hmsg; Qhash) + 28n 28n 28n )
o (Ghash + 1)? 2 N\ (a L)
=102 10 2(qhash+1); =17 I\ Tw)
_ (Qhash)2 2 1\” ¢ q L) 1
=0 ( o8 + 2(Qhash) ; IL—{1- E vy 1- 27}1 QT'Y ’ (13)

To compute the security level also known as bit security one sets this bound on the success
probability to equal 1 and solves for gpash.
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9.4. Implementation Security and Side-Channel Protection

Timing attacks. Typical implementations of SPHINCS™ are naturally free of any secret-
dependent branches or secretly indexed loads or stores. SPHINCS™ implementations are
thus free of the two most notorious sources of timing variation. An exception is potentially
SPHINCS"-Haraka, because Haraka is based on AES, which is well known to exhibit timing
vulnerabilities in software implementations [3, 15, 5, 14]. Clearly, SPHINCS"-Haraka should
only be used in environments that support AES in hardware (like almost all modern 64-bit
Intel and AMD and many ARMv8a processors). On some processors also certain arithmetic
instructions do not run in constant time; examples are division instructions on Intel proces-
sors and the UMULL multiplication instruction on ARM Cortex-M3 proceesors. Again, typical
implementations of SPHINCS™ naturally do not use these instructions with secret data as
input — secret data is only processed by symmetric cryptographic primitives that are designed
to not make use of such potentially dangerous arithmetic.

Differential and fault attacks. We expect that any implementation of SPHINCS™ without
dedicated protection against differential power or electromagnetic radiation (EM) attacks or
against fault-injection attacks will be vulnerable to such attacks. Deployment scenarios of
SPHINCS™ in which an attacker is assumed to have the power to mount such attacks re-
quire specially protected implementations. For protection against differential attacks this will
typically require masking of the symmetric primitives; for protection against fault-injection
attacks countermeasures on the hardware level. One additional line of defense against such
advanced implementation attacks is included in the specification of SPHINCS™, namely the
option to randomize the signing procedure via the value OptRand (see Subsection 8.1.5).

9.5. Security of SPHINCS"-SHAKE256

NIST has standardized several applications of the Keccak permutation, such as the SHA3-256
hash function and the SHAKE256 extendable-output function, after a multi-year Crypto-
graphic Hash Algorithm Competition involving extensive public input. All of these standard-
ized Keccak applications have a healthy security margin against all attacks known.

Discussions of the theory of cryptographic hash functions typically identify a few important
properties such as collision resistance, preimage resistance, and second-preimage resistance;
and sometimes include a few natural variants of the attack model such as multi-target attacks
and quantum attacks. It is important to understand that cryptanalysts engage in a much
broader search for any sort of behavior that is feasible to detect and arguably “non-random”.
NIST’s call for SHA-3 submissions highlighted preimage resistance etc. but then stated the
following:

Hash algorithms will be evaluated against attacks or observations that may threaten
existing or proposed applications, or demonstrate some fundamental flaw in the
design, such as exhibiting nonrandom behavior and failing statistical tests.

It is, for example, non-controversial to use Keccak with a partly secret input as a PRF: any
attack against such a PRF would be a tremendous advance in SHA-3 cryptanalysis, even
though the security of such a PRF is not implied by properties such as preimage resistance.
Similarly, a faster-than-generic attack against the interleaved-target-subset-resilience property,
being able to find an input with various patterns of output bits, would be a tremendous
advance.
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The particular function SHAKE256 used in SPHINCST-SHAKE256 has an internal “capac-
ity” of 512 bits. There are various attack strategies that search for 512-bit internal collisions,
but this is not a problem even at the highest security category that we aim for. There is
also progress towards showing the hardness of generic quantum attacks against the sponge
construction. Of course, second-preimage resistance is limited by the n-byte output length
that we use.

9.6. Security of SPHINCS"-SHA-256

NIST’s SHA-2 family has been standardized for many more years than SHA-3. The stan-
dardization and popularity of SHA-2 mean that these functions are attractive targets for
cryptanalysts, but this has not produced any attacks of concern: each of the members of this
family has a comfortable security margin against all known attacks.

The broad cryptanalytic goal of finding non-random behavior (see above) is not a new
feature of SHA-3. For example, the security analysis of the popular HMAC-SHA-256 message-
authentication code is based on the security analysis of NMAC-SHA-256, which in turn is based
on a pseudorandomness assumption for SHA-256.

The particular function SHA-256 used in SPHINCST-SHA-256 has a “chaining value” of
only 256 bits, making it slightly weaker in some metrics than SHAKE256 with 256-bit output.
However, it is still suitable for all of our target security categories.

9.7. Security of SPHINCS"-Haraka

Both Haraka-256 and Haraka-512 provide a (second)-preimage resistance of 256-bit in the
pre-quantum setting and the best known quantum attack is Grover’s search on 256-bit. How-
ever, the sponge construction we use for HarakaS has a capacity of 256-bit which allows at
most security level 2. The best attack breaking any of the security properties required for
SPHINCST™ is a preimage attack which corresponds to a collision search on 256-bit for the
sponge construction we use. Instances with larger output size are limited by this and provide
a less efficient trade-off between security and efficiency.

Another aspect is that we pseudo-randomly generate round constants derived from a seed.
An attacker cannot influence the values of the constants for one instance, but can search for
instances having weak constants. As shown by Jean [10], a weak choice of round constants
can lead to more efficient preimage attacks. In general, a bad choice of round constants does
not break the symmetry of a single round. In the case of Haraka, which combines several
calls of two rounds of AES-128 per round to create bigger blocks, the round constants have
to break the symmetry within two rounds of AES, but also between the different calls of the
two rounds. Let us first focus on Haraka-256.

To break the symmetry within one round of AES, we require that the value of the round con-
stant is not the same for each column. For round constants generated via an extendable-output
function from a random 256-bit seed, we consider this event to happen with a probability of
279 Moreover, that the symmetry of two rounds of AES is not broken by round-constants
happens with 27192, In other words, since one instance of Haraka-256 uses 10 times 2-round
AES, only for a fraction of 10-27192 instances/keys, we expect that the symmetry within one
call of 2 rounds of AES is not broken. Even if this happens, all other 2 round AES calls used
in Haraka-256 have with a high probability constants that break the symmetry of 2 rounds of
AES for all other calls. Hence, we do not expect any negative consequences for the security.
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Haraka-256 processes two 2-round AES-calls in parallel per round. So, we also do not want
to have the same round constants in these calls. This condition happens with probability
5 - 27256 Furthermore, the probability that two rounds have the same round constants is
10 - 27512, Similar observations are also valid for Haraka-512. Hence, we conclude that it is
very unlikely, that a pseudo-random generation of the round constants per instance leads to
weak round constants.

10. Performance

In order to obtain benchmarks, we evaluate our reference implementation on a machine using
the Intel x86-64 instruction set. In particular, we use a single core of a 3.5 GHz Intel Core i7-
4770K CPU. We follow the standard practice of disabling TurboBoost and hyper-threading.
The system has 32 KiB L1 instruction cache, 32 KiB L1 data cache, 256 KiB L2 cache and
8192 KiB L3 cache. Furthermore, it has 32GiB of RAM, running at 1333 MHz. When per-
forming the benchmarks, the system ran on Linux kernel 4.9.0-4-amd64, Debian 9 (Stretch).
We compiled the code using GCC version 6.3.0-18, with the compiler optimization flag -03.

10.1. Runtime

For the defined parameter sets, the resulting cycle counts are listed in Table 4.

For Haraka, it is especially relevant to also examine platforms that have the AES-NI in-
struction set available. We used the same system as described above, this time including the
march=native compiler flag. Performance results are listed in Table 5.

10.2. Space

In Table 6, we list the key and signature sizes (in bytes) for the defined parameter sets. In
terms of memory consumption, we remark that the reference implementation tends towards
low stack usage. This shows for example in procedures such as computing authentication
paths and tree roots, which is done using the treehash algorithm (which requires stack usage
linear in the tree height, rather than the naive exponential approach of first computing the
entire tree and then cherry-picking the relevant nodes).

11. Advantages and Limitations

The advantages and limitations of SPHINCS™ can be summarized in one sentence: On the
one hand, SPHINCS™ is probably the most conservative design of a post-quantum signature
scheme, on the other hand, it is rather inefficient in terms of signature size and speed. In the
following we discuss disadvantages and advantages in some more detail.

Disadvantage: Signature size and speed. The clear drawback of SPHINCS™ is signing
speed and signature size. SPHINCS™ is clearly not competing to be the smallest or fastest
signature scheme. However, as shown in Section 7.1.1 there exists a magnitude of possible
trade-offs allowing to tweak SPHINCS™ as long as one can tolerate at least one of the two,
i.e., somewhat slow signing or somewhat large signatures.

Advantage: “Minimal Security Assumptions”. In contrast to other post-quantum crypto
schemes (including signatures as well as public-key encryption schemes), SPHINCS™ does not
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key generation

signature generation

verification

SPHINCST-SHAKE256-128s 617619732 8610599 004 10222936
SPHINCST-SHAKE256-128f 19348784 580904 788 24 826 884
SPHINCST-SHAKE256-192s 907 587 276 17586416 344 15036 680
SPHINCST-SHAKE256-192f 28200 752 757001640 40338224
SPHINCST-SHAKE256-2565s 1210939 356 13842403104 20889 204
SPHINCST-SHAKE256-256f 75031996 1664510764 41469276
SPHINCS™-SHA-256-128s 307425484 4606958 168 5514124
SPHINCST-SHA-256-128f 9625644 302 359 220 12901012
SPHINCS'-SHA-256-192s 576 727832 12239247980 10740192
SPHINCS'-SHA-256-192f 17902 436 487388724 26 456 352
SPHINCS™-SHA-256-256s 1095050 628 12893 347 756 19141296
SPHINCS™-SHA-256-256f 68 819 608 1558148 364 38316192
SPHINCS'-Haraka-128s 917405 356 16992635 344 19360272
SPHINCS"-Haraka-128f 28 814020 1056 761 824 45964 624
SPHINCS™'-Haraka-192s 1244530184 38062259 596 27243200
SPHINCS-Haraka-192f 42782 840 1276 694 620 69 760 728
SPHINCS™-Haraka-256s 1817324180 28 860 355 888 42380420
SPHINCS"-Haraka-256f 113876 252 3172247452 76 203 004
Table 4: Runtime benchmarks for SPHINCS™

key generation  signature generation  verification
SPHINCS™-Haraka-128s 49744640 894 895 320 1008 528
SPHINCS"-Haraka-128f 1571136 56112652 2416 584
SPHINCS'-Haraka-192s 77210192 2215515952 1605220
SPHINCS"-Haraka-192f 2438 644 71288464 3815048
SPHINCS™-Haraka-256s 99650 528 1461 553 268 2160040
SPHINCS"-Haraka-256f 6255 152 164 592 828 3975960

Table 5: Runtime benchmarks for SPHINCST-Haraka on AES-NI

public key size

secret key size

signature size

SPHINCS™-128s
SPHINCS™-128f
SPHINCS™-192s
SPHINCS™-192f
SPHINCS™-256s
SPHINCS™-256f

32
32
48
48
64
64

64
64
96
96
128
128

8080
16976
17064
35664
29792
49216

Table 6: Key and signature sizes in bytes
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introduce a new intractability assumption. The security of SPHINCS™ is solely based on
assumptions about the used hash function. A secure hash function is required by any efficient
signature scheme that supports arbitrary input lengths.

Moreover, a collision attack against the hash function does not suffice to break the security
of SPHINCS™. We consider this an important feature given the successful collision attacks
on MDb5 and SHA1. Especially given that even for MD5 second-preimage resistance has not
been broken, yet.

Finally, the cryptographic community has a good understanding of (exact) hash-function
security, especially after the recent SHA3 competition. This is in contrast to the relatively
new problems used in other areas of post-quantum cryptography. Even though some of those
problems are known already for a long time, estimating the hardness of solving specific problem
instances is far less understood.

Advantage: State-of-the-art attacks are easily analyzed. The most efficient attacks
known against SPHINCS™ are easy to state and analyze, such as searching for a hash input
that has a particular pattern of output bits. The analogous quantum attacks are also easy to
state and analyze, such as using Grover’s algorithm to accelerate the same search. This allows
precise quantification of the security levels provided by SPHINCS™.

Advantage: Small key sizes. Another advantage of SPHINCS™ is the small size of the keys,
in particular the public-key size. In many applications public keys are transmitted frequently;
almost as frequently as signatures. This is typically the case for certificates (or certificate
chains) as used, for example, in TLS.

Advantage: Overlap with XMSS. One more feature of SPHINCS™ is the large overlap
with the stateful hash-based signature scheme XMSS. Especially the verification code of XMSS
is almost entirely contained within the SPHINCS™ verification code. Hence, in scenarios like
virtual private networks where clients authenticate towards a gateway using signatures it is
easy to combine these two. While every client that actually can support to handle a state
can use XMSS, every other client can use SPHINCS™. Only the gateway has to support
verification of both, XMSS and SPHINCS™ signatures. This becomes especially interesting
as SPHINCS™ is not particularly well suited for resource-constrained devices (although it was
shown that it is in principle possible to implement SPHINCS™ on such devices [8]). However,
most resource-constrained devices can deal with a state and XMSS is far better suited for
these devices.

Advantage: Reuse of established building blocks. SPHINCS™ uses the basic hash func-
tion as building block many times. Any speedup to implementations of SHA-256, SHAKE256
or Haraka directly benefits the SPHINCS™ speed. In particular hardware support for hash
functions in the CPU, cryptographic coprocessors, or via instruction-set extensions instantly
leads to faster SPHINCS™ signatures (or to smaller SPHINCS™ signatures via tuning w).
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A. Parameter-evaluation Sage script

#tsec,hashbytes = 125,16
#tsec,hashbytes = 189,24
tsec,hashbytes = 253,32

F = RealField(100)

def 1d(r):
return F(log(r)/log2)

def pow(p,e):
return F(p)**e

def ghitprob(gs,r):
p = F(1/leaves)
return binomial(gs,r)*(pow(p,r))*(pow(l-p,qs-r))

def la(m,w):
return ceil(m / log(w,2))

def 1b(m,w):
return floor( log(la(m,w)*(w-1), 2) / log(w,2)) + 1

def lc(m,w):
return la(m,w) + 1lb(m,w)

for h in range(60,74,2):
leaves = 2%*h
for b in range(4,17):
for k in range(5,40):
sigma=0
for r in range(1,300):
r = F(r)
p = min(1,F((r/F(2%*Db)))**k)
sigma += ghitprob(2°64,long(r))*p
if (sigma<2**-tsec):
for d in range(4,h):
if(h % d == 0 and h <= 64+(h/d)):
for w in [16,256]:
wots = lc(8+*hashbytes,w)
sigsize = ((b+1)*k+h+wots*d+1)*hashbytes
if (sigsize < 50000):
print h,
print d,
print b,
print k,
print w,
print int(ld(sigma)),
print sigsize,
# Speed estimate based on (rough) hash count
print (k*2**(b+1) + d*x(2x*x(h/d)*(wots*w+1)))
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