
Typing High-Speed Cryptography against Spectre v1

Basavesh Ammanaghatta Shivakumar , Gilles Barthe
Benjamin Grégoire , Vincent Laporte , Tiago Oliveira

Swarn Priya , Peter Schwabe , Lucas Tabary-Maujean

MPI-SP, Bochum, Germany
IMDEA Software Institute, Madrid, Spain

Inria, Sophia Antipolis, France
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

ENS Paris-Saclay, Gif-sur-Yvette, France
Radboud University, Nijmegen, The Netherlands

Abstract—The current gold standard of cryptographic software
is to write efficient libraries with systematic protections against
timing attacks. In order to meet this goal, cryptographic
engineers increasingly use high-assurance cryptography tools.
These tools guide programmers and provide rigorous guarantees
that can be verified independently by library users. However,
high-assurance tools reason about overly simple execution
models that elide micro-architectural leakage. Thus, implemen-
tations validated by high-assurance cryptography tools remain
potentially vulnerable to micro-architectural attacks such as
Spectre or Meltdown. Moreover, proposed countermeasures are
not used in practice due to performance overhead.

We propose, analyze, implement and evaluate an approach
for writing efficient cryptographic implementations that are
protected against Spectre v1 attacks. Our approach ensures
speculative constant-time, an information flow property which
guarantees that programs are protected against Spectre v1.
Speculative constant-time is enforced by means of a (value-
dependent) information flow type system. The type system tracks
security levels depending on whether execution is misspeculating.
We implement our approach in the Jasmin framework for
high-assurance cryptography, and use it for protecting all
implementations of an experimental cryptographic library
that includes highly optimized implementations of symmetric
primitives, of elliptic-curve cryptography, and of Kyber, a lattice-
based KEM recently selected by NIST for standardization. The
performance impact of our protections is very low; for example,
less than 1% for Kyber and essentially zero for X25519.

1. Introduction

Modern applications use cryptographic libraries exten-
sively, generally under the expectation that these libraries
incur minimal performance overhead and provide strong
correctness and security guarantees. While these expectations
are fully reasonable, cryptographic engineering is intrinsically
hard, and principled approaches are required to build better

libraries. High-assurance cryptography [1] is an emerging
approach that emphasizes foundational approaches to cryp-
tographic engineering. To date, high-assurance cryptography
has successfully delivered methods and tools for building
efficient implementations with strong guarantees of functional
correctness, provable security, and protection against cache-
based timing attacks. In turn, these methods and tools have
been used to develop high-assurance cryptographic software
which has been deployed widely in mainstream software [2],
[3].

These successes show the benefits of high-assurance
cryptography at this point of time. However, new standards
emerge, and attacks only get better, which requires to broaden
the scope and the standards of high-assurance cryptography.
In this paper, we consider two major developments:

• micro-architectural attacks: Spectre [4] and Melt-
down [5] demonstrated that micro-architectural side-
channels can have devastating effects;

• post-quantum cryptography: the NIST Post-Quantum
Competition [6] recently selected four cryptographic
algorithms to protect against quantum computers.

Motivated by these developments, we consider the problem
of helping cryptographic engineers write efficient, Spectre-
protected, implementations of post-quantum algorithms se-
lected by NIST, so that migration to these new primitives
also comes with a higher level of protection against imple-
mentation attacks. In this work, we focus specifically on
protecting implementations against Spectre v1 attacks. These
attacks are an instance of Spectre attacks that exploit branch
prediction. In contrast to other forms of Spectre attacks,
it is commonly agreed that critical software must deploy
countermeasures to mitigate against Spectre v1. However,
writing cryptographic implementations that are protected
against Spectre v1 and achieve similar performance is far
from immediate. On the one hand, protections based on
fences incur a significant performance overhead. On the
other hand, more efficient protections based on (value or

address) hardening, including all forms of Speculative Load
Hardening [7], are difficult to apply. The main reason for
this is that high-speed implementations typically use the
available resources as much as possible. This means that
register usage (and registers are available on a limited supply)
is maximized as much as possible to avoid as many loads
and stores from memory as possible. Using as many registers
as possible directly correlates with speed, and it can also be
related to reducing the code size under certain circumstances,
considering that fewer instructions are needed. However, in
order to be compatible with protections based on hardening,
the implementations might need to be rewritten to free one
register for the misspeculation flag, which is used to ensure
that masking is only applied to speculated values.

Problem statement and contributions. The main high-level
contribution of this paper is an approach that provably
protects cryptographic implementations against Spectre v1
attacks with minimal performance overhead. For example, the
cost of protecting a highly-optimized AVX2 implementation
of Kyber768 against Spectre v1 is less than 1%.

To achieve this goal, we make the following technical
contributions:

• We define core primitives that support fine-grained
protection against Spectre v1 attacks. Our primitives
provide an interface to update and use misspeculation
flags. These flags can be used by programmers to track
whether program execution is normal, or misspeculat-
ing. We demonstrate how our primitives can encode
both compiler-level mitigations, including Speculative
Load Hardening [7] and Selective Speculative Load
Hardening [8], and algorithm-specific mitigations.

• We define a type system to track that primitives are cor-
rectly used. Technically, our type system uses a value-
dependent information flow analysis, where security
levels depend on the misspeculation flag. In order to
enforce this dependency, our type system additionally
maintains a misspeculation typestate, which tracks how
the misspeculation flag is stored in registers. We show
that our type system is sound: typable programs are
speculative constant-time, which generalizes constant-
time to the speculative setting [9]. We also show
that our type system is expressive: programs obtained
by compiler-based mitigations are accepted by our
type system. In addition, we also consider a more
precise type system which uses an external checker to
distinguish between safe and unsafe memory accesses.

• We use our approach to protect with minimal per-
formance overhead reference and hand-optimized
vectorized implementations of several cryptographic
algorithms, including symmetric primitives like
ChaCha20 [10] and Poly1305 [11]; the X25519 elliptic-
curve key exchange [12]; and Kyber [13]. Concretely,
we implement our approach in the Jasmin framework
for high-assurance cryptography [14], [15], and modify
existing implementations so that they can be type-
checked by our system. As previously explained,
this modification goes beyond inserting protection

primitives, and is achieved through a combination of
code refactoring, primarily instruction scheduling and
spilling, and ad hoc techniques, notably the use of
mmx registers to keep public values out of the stack.

Limitations. Protecting cryptographic code against Spectre
v1 is necessary, but not sufficient to eliminate leakage of
cryptographic secrets through speculative execution. One
reason is that cryptographic libraries typically live in the
same address space as application code, which means that
Spectre gadgets in that code can also leak secrets. One way
to address this issue is to also protect the application code
against speculative attacks. Another option is to isolate the
cryptographic code, for example, by running it in a separate
“crypto-agent” process.

Furthermore, Spectre v1 is not the only micro-
architectural attack vector beyond traditional timing attacks.
Some of these additional attack vectors—most notably
Meltdown, aka Spectre v3 [5]—are enabled by hardware
or microcode bugs and eliminated by those bugs being
fixed. Others, like Spectre v2, v4, and speculative attacks
related to function returns [16], [17] are due to CPU features
and will require dedicated mitigations. We note that most
cryptographic software, including all code presented in this
paper, does not use any indirect branches. This inherently
protects against Spectre v2. For Spectre v4, the cheapest
mitigation for Intel CPUs that we are aware of is to disable
speculative store bypass [18].
Supplementary material. Our implementation of the type
system and modified libraries are available at https://
artifacts.formosa-crypto.org/data/selslh.tar.bz2.

2. Preliminaries

Constant-time programming. The constant-time (CT) policy
is an information-flow policy to protect against cache-based
timing attacks. The policy mandates that control-flow and
memory accesses be independent of secret data, and can
be enforced by means of an information flow type system.
However, the CT policy only provides guarantees if programs
are executed in simple microprocessors without speculation.
Spectre v1 attacks. Modern microprocessors aggressively
use branch, address and value predictions to proceed with
execution without awaiting for the result of prior compu-
tations. After some time, the real value must have been
computed and must be checked against the guessed value.
In case of an incorrect guess, the results of erroneous
computations are simply discarded and execution is rolled
back to continue with the correct value. However, the effects
of the speculative execution on the micro-architectural state
remain after rollback.

Spectre [4] is a class of cache-based timing attacks which
exploit this persistent effect to retrieve secret data from
program execution. An essential aspect of a practical Spectre
attack is to train the predictor so that it achieves a desired
behavior. However, for the purpose of this work, it suffices
to consider a conservative threat model where attackers have
control over the predictor.

https://artifacts.formosa-crypto.org/data/selslh.tar.bz2
https://artifacts.formosa-crypto.org/data/selslh.tar.bz2

p[10] s[5]

1 if i < 10 {
2 x = p[i];
3 }
4 w[x] = 0; leaks x

(a) v1-read (where i = 10)

s[5] p[10]

1 if i < 5 {
2 s[i] = sec;
3 }
4 x = p[0];
5 w[x] = 0; leaks x

(b) v1-write (where i = 5)

Figure 1: Spectre v1 gadgets. Array p and register x are
public and array s and value sec are secret.

In this paper, we focus on Spectre v1 attacks, which are
based on branch prediction. Figure 1a presents a Spectre
gadget that leaks secret data speculatively via branch mis-
prediction. Suppose that the initial value of i is 10. Under
standard execution, the branch will not be taken, and therefore
the program does not leak. However, the branch may be
taken under speculative execution, if the branch predictor
incorrectly guesses that i < 10 evaluates to true. In this case,
execution will read past the end of the array p: the secret
value contained at position s[0] is loaded into variable x at
line 2; in other words, x becomes transient, i.e., speculatively
depends on a secret. The instruction at line 4 accesses array w
at address x and leaks s[0].

Figure 1b presents another Spectre gadget that leaks se-
cret data speculatively via branch misprediction. Suppose that
the initial value of i is 5. In this case, branch misprediction
will cause execution to write past the end of array p: sec will
be speculatively stored at position p[0] (line 1). Then the
load at line 4 will load sec into x, and the store instruction
at line 5 will leak sec.

Note that both programs are constant-time and that in
both cases, the processor will eventually detect that the wrong
branch was taken and will backtrack. Still, it is too late: the
leak has occurred, concretely, the state of the cache depends
on secret data.
Countermeasures. There are many ways to protect CT
programs against Spectre v1 attacks. One simple counter-
measure is to insert a fence instruction immediately after
each branching instruction. However, this countermeasure
incurs a significant overhead. A more efficient alternative is
to insert enough fence instructions so that there is always
a fence between the moment when a register becomes
transient and the moment when it leaks via control-flow
or memory accesses [19]. This still ensures that programs
are speculative constant-time, but with a lower performance
overhead. However, it is generally better to minimize the
use of fences. The LLVM compiler implements one such
alternative, called Speculative Load Hardening (SLH) [7].
The key idea of SLH is to mask speculatively loaded
values with a constant. This masking is conditioned on
a misspeculation flag which indicates whether or not the
program’s execution is being misspeculated. The flag is
initialized at the beginning of the program’s execution
alongside a lfence instruction to ensure that the program is
initially executed non-speculatively. In addition, the flag is
updated on each branch’s entry and exit points (for instance,

while loops or if statements). Using the misspeculation flag,
SLH masks speculatively loaded values by a default value.
SLH is often (but not always) more efficient than inserting
fences. However, one can further minimize overhead by only
masking transient values that are assigned to public registers.
To our best knowledge, this optimization, called Selective
Speculative Load Hardening [8], has not been implemented
before.

3. Programming hardened implementations

3.1. Threat model and security notion

Our threat model assumes that the attacker can observe
branching decisions and addresses (not values of) memory
accesses and fully controls the branch predictor, the targets
of all unsafe reads and the values of all unsafe writes. Our
threat model errs on the conservative side; as a result, it may
not always be obvious to mount practical attacks against
programs that are insecure in our model. However, we are
concerned with protecting programs, therefore strong threat
models are to be preferred, as long as they do not overly
affect performance of protected programs.

The security notion attached to our threat model is spec-
ulative constant-time. Informally, a program is speculative
constant time if its leakage does not depend on secrets,
for every attacker’s choice of branch decisions and unsafe
memory accesses.

3.2. Language

Figure 2 presents a core language with instructions for
assignments, loads, stores, conditionals, and loops. The
language additionally features three primitives:
• ms = init_msf () sets the misspeculation flag ms to 0.

This primitive is typically used at the beginning of a
program;

• ms = set_msf (e, ms) updates the misspeculation flag.
This primitive may be used immediately after a
branching instruction conditioned on e. However, it is
sometimes possible to postpone updating the flag, or
even not to update it, without compromising security;

• x = protect (x, ms) conditionally masks the register x
depending on the value of ms. Specifically, the value
of x remains unchanged in a correct execution and is
set to −1 in a misspeculated execution.

Semantics. The behavior of programs is traditionally modeled
using a labeled transition relation of the form c, s −→ c′, s′,
where c and c′ are programs, s and s′ are states. This relation
states that one step of execution of the program c starting
from state s leads to state s′, with continuation c′. This
relation is adequate to reason about functional correctness of
programs under a sequential semantics, but is not appropriate
to reason about leakage of programs under a speculative
semantics. For this purpose, we enrich the classic transition
relation and consider judgments of the form c, 〈s, b〉 o−→

d

e := x | o(~x)
i := x = e | x = a[e] | a[e] = x
| if e then c1 else c2 | while e do c
| ms = init_msf() | ms = set_msf(e,ms)
| x1 = protect(x2,ms)

c := ε | i; c

Figure 2: Core language with protection primitives. x ranges
over registers and a ranges over arrays.

c′, 〈s′, b′〉 where o is an observation, d is a directive, and b
and b′ represent the value of the misspeculation flag.

The misspeculation flag tracks whether execution is
misspeculating. By convention, the flag is set to true when
execution is misspeculating, and false otherwise.

The directive d represents the attacker’s decision be-
fore the instruction is executed, whereas the observation o
represents the knowledge gained by the attacker after the
instruction is executed. Formally, the sets of directives and
observations are defined by the grammars:

d ∈ Dir ::= step | force | load a, i | store a, i
o ∈ Obs ::= • | read a, v | write a, v | branch b

The directive step is used by the attacker to let execution
proceed normally. When such a directive is issued on a
branching instruction, the guard is evaluated w.r.t. the current
state, and the program enters in the correct branch. The
directive force is issued by the attacker to force execution to
enter into a misspeculated branch. The force directive is the
only directive that modifies the misspeculation flag. Finally,
the directives load a, i and store a, i allow the attacker to
read from and write to addresses of its choice in case of a
(speculatively) unsafe memory read or write.

The observation • leaks no information. The observation
read a, v and write a, v leak the address of memory accesses.
Finally, the observation branch b leaks the value of the guard
when executing a branching statement.

The formal definition of states and execution coincides
with [8] and is given in Appendix B. For the purpose of this
section, it suffices to state the formal definition of speculative
constant-time in our setting. We write c, 〈s, b〉 O−→

D
→ c′, 〈s′, b′〉

for the reflexive-transitive closure of one-step execution.

Definition 1 (Speculative constant-time). Let φ be an
equivalence relation on states. A program c is specula-
tive constant-time with respect to φ (or φ-SCT), iff for
every set of directives D, every pair of initial states s1

and s2 such that s1 φ s2, and every pair of executions
c, 〈s1,⊥〉

O1−−→
D
→ c′1, 〈s′1, b′1〉 and c, 〈s2,⊥〉

O2−−→
D
→ c′2, 〈s′2, b′2〉,

we have O1 = O2.

Our definition only requires equality of observations—
which in itself suffices to ensure absence of leakage. However,
our proofs use a stronger notion that additionally enforce
that output configurations are related by a suitable relation.

1 ms = init_msf();
2 b = i < 10;
3 if b {
4 ms = set_msf(b, ms);
5 x = p[i];
6 x = protect(x, ms);
7 } else {
8 ms = set_msf(! b, ms);
9 }

10 w[x] = 0;
11

(a) Protected v1-read

1 ms = init_msf();
2 b = i < 5;
3 if b {
4 ms = set_msf(b, ms);
5 s[i] = secret;
6 } else {
7 ms = set_msf(! b, ms);
8 }
9 x = p[0];

10 x = protect(x, ms);
11 w[x] = 0;

(b) Protected v1-write

Figure 3: Protected v1 Spectre gadgets

Speculative constant-time implies constant-time. The
latter corresponds to the case where D contains no force
directive.

3.3. Examples

We now illustrate how our primitives can be used to im-
plement countermeasures and algorithm-specific protections
which guarantee speculative constant-time.

Speculative Load Hardening. Figure 3a illustrates how to use
the aforementioned primitives to implement Speculative Load
Hardening of the program of Figure 1a. The initialization
instruction at line 1 ensures that the code is entered in normal
execution mode, and with the misspeculation flag ms set to
0. The flag-updating set_msf instructions at lines 4 and 8
ensure that the ms register is maintained up-to-date after
entering the branches. Finally the protect instruction at line 6
ensures that the value of x is speculatively masked. Together
the inserted instructions ensure that the program produces
the expected result under normal execution and do not leak
secret values under speculative execution, since x is set to −1
if execution is misspeculated. Similarly, Figure 3b protects
Figure 1b.

Selective Speculative Load Hardening. Consider the one-time-
pad program Figure 4a, which performs secret loads from
msg and key. Figure 4b and Figure 4c show implementations
protected by SLH and selSLH respectively. SLH protects
all the loads and selSLH does not protect as they are secret
loads. However, both maintain the misspeculation flag by
updating ms for future use.

Algorithm-specific protections. Figure 5a accumulates the
ten first elements of a public array p and stores the result in
a register s, using a local variable t. Note that speculative
execution may cause the load instruction in line 3 to write
secret values into t, and hence the result s is transient,
i.e., it may speculatively depend on secrets. The remaining
programs in Figure 5 are different protected versions which
allow to make s public at the end of the program.

Figure 5b is the protected version obtained by applying
selSLH, i.e., systematically updating the misspeculation flag
and masking public loaded values. Therefore the register ms
is updated according to the control flow (lines 4 and 10) and

1 i = 0;
2 while (i < 8) {
3 t1 = msg[i];
4 t2 = key[i];
5 t1 ^= t2;
6 msg[i] = t2;
7 i += 1;
8 }

(a) unprotected

1 ms = init_ms();
2 i = 0;
3 while (i < 8) {
4 ms = set_msf(i < 8, ms);
5 t1 = msg[i];
6 t1 = protect(t1, ms);
7 t2 = key[i];
8 t2 = protect(t2, ms);
9 t1 ^= t2;

10 msg[i] = t2;
11 i += 1;
12 }
13 ms = set_msf(i >= 8, ms);

(b) SLH

1 ms = init_ms();
2 i = 0;
3 while (i < 8) {
4 ms = set_msf(i < 8, ms);
5 t1 = msg[i];
6 t2 = key[i];
7 t1 ^= t2;
8 msg[i] = t2;
9 i += 1;

10 }
11 ms = set_msf(i >= 8, ms);

(c) selSLH

Figure 4: Protected one-time pad

1 s = 0; i = 0;
2 while (i < 10) {
3 t = p[i];
4 s += t;
5 i += 1;
6 }

(a) Unprotected

1 ms = init_ms();
2 s = 0; i = 0;
3 while (i < 10) {
4 ms = set_msf(i < 10, ms);
5 t = p[i];
6 t = protect(t, ms);
7 s += t;
8 i += 1;
9 }

10 ms = set_msf(i >= 10, ms);

(b) Protect each iteration

1 ms = init_ms();
2 s = 0; i = 0;
3 while (i < 10) {
4 ms = set_msf(i < 10, ms);
5 t = p[i];
6 s += t;
7 i += 1;
8 }
9 ms = set_msf(i >= 10, ms);

10 s = protect(s, ms);

(c) Protect final value

1 ms = init_ms();
2 s = 0; i = 0;
3 while (i < 10) {
4 t = p[i];
5 s += t;
6 i += 1;
7 }
8 ms = set_msf(i == 10, ms);
9 s = protect(s, ms);

(d) Single update of msf

Figure 5: Protected Sum

1 ms = init_ms();
2 if b {
3 ms = set_msf(b, ms);
4 s[i] = pub_v;
5 } else {
6 ms = set_msf(!b, ms);
7 }
8 x = p[5];

(a) write public data

1 ms = init_ms();
2 if b {
3 ms = set_msf(b, ms);
4 s[3] = sec_v;
5 } else {
6 ms = set_msf(!b, ms);
7 }
8 x = p[5];

(b) speculatively safe write

Figure 6: SLH protection not needed

loaded values are protected (line 6) and only public values
flow into s.

Figure 5c is a protected version that uses a single protect.
In this case, s remains transient during execution of the loop.
However, s is never used, so it suffices to protect it at the
end of the function. Note that the ms variable is still updated
at each iteration.

Figure 5d is a protected version that updates the mis-
speculation flag only once at line 8 with the condition i
== 10. This tests suffices to detect misspeculation: since the
loop body does not have control-flow, the only form of
misspeculation is to iterate the while loop for i times, with
i 6= 10.
No protection. Figure 6 shows two programs that do not
need protection. For both programs, we assume that array
p and value pub_v are public, while array s and value sec_v
are secret, and we require that x be public at the end of

the execution. The programs are memory-safe in normal
execution.

Consider the program from Figure 6a. Although specula-
tive execution of the branch at line 4 may result in storing
the value pub_v out-of-bounds, we still know that the value
x at line 8 will be public (it is either the normal value p[5]
or the speculative value pub_v). Moreover the value stored
does not depend on any secret. Hence, x does not need to
be protected.

Now consider the program from Figure 6b. Speculative
execution of the store instruction at line 4 is safe, as the
size of s is assumed to be greater than 3 and this store will
not be speculated as the index is constant. Thus the address
p[5] is unaffected, and the assignment at line 8 does not leak
secret. Hence, x does not need to be protected.

4. Type System

In this section, we introduce a constraint-based type
system which enforces speculative constant-time. We first
present the type system and the typing rules, and state
the soundness. Formal proofs are deferred to the appendix.
Finally, we informally argue about the expressiveness of the
type system.

4.1. Security types

We consider the two-element security lattice {H, L}, with
order L ≤ H; as usual, we use the high-security level (H)

VAR
Γ ` x : Γ(x) | ∅

Γ ` x1 : τ1 | C1 Γ ` x2 : τ2 | C2 τ fresh
OP

Γ ` o(x1, x2) : τ | C1 ∪ C2 ∪ {τ1 ≤ τ, τ2 ≤ τ}

Γ′(ms) = L ∀x 6= ms,Γ′(x) = Γn(x)
INIT

Σ,Γ ` ms = init_msf() : ms,Γ′ | ∅
SET

ms|e,Γ ` ms = set_msf(e,ms) : ms,Γ | ∅

Γ′ = Γ{y ← (Γn(x),Γn(x))}
PROTECT

ms,Γ ` y = protect(x,ms) : ms|y,Γ′ | ∅
Γ ` e : τ | C

ASSIGN
Σ,Γ ` x = e : Σ|x,Γ{x← τ} | C

EMPTY
Σ,Γ ` ε : Σ,Γ | ∅

Σ,Γ ` i : Σi,Γi | Ci Σi,Γi ` c : Σc,Γc | Cc
SEQ

Σ,Γ ` i; c : Σc,Γc | Ci ∪ Cc

Γ ` b : σ | Cb Σ|b,Γ ` c1 : Σ1,Γ1 | C1 Σ|!b,Γ ` c2 : Σ2,Γ2 | C2 Γ′ fresh
IF

Σ,Γ ` if b then c1 else c2 : Σ1 ∩ Σ2,Γ
′ | Cb ∪ C1 ∪ C2 ∪ {σ ≤ L} ∪ {Γ1 ≤ Γ′} ∪ {Γ2 ≤ Γ′}

Γ′ ` b : σ | Cb Σ′|b,Γ
′ ` c : Σ0,Γ0 | C Γ′ fresh Σ′ ⊆ Σ Σ′ ⊆ Σ0

WHILE
Σ,Γ ` while b do c : Σ′|!b,Γ

′ | Cb ∪ C ∪ {σ ≤ L} ∪ {Γ ≤ Γ′} ∪ {Γ0 ≤ Γ′}

Γ ` i : σ | Ci τ fresh
LOAD

Σ,Γ ` x = a[i] : Σ|x,Γ{x← τ} | Ci ∪ {σ ≤ L,Γn(a) ≤ τn,H ≤ τs}

Γ ` i : σ | Ci τ fresh
SAFE-LOAD

Σ,Γ ` ssafe x = a[i] : Σ|x,Γ{x← τ} | Ci ∪ {σ ≤ L,Γ(a) ≤ τ}

Γ ` i : σ | Ci Γ ` e : τ | Ce Γ′ fresh
STORE

Σ,Γ ` a[i] = e : Σ,Γ′ | Ci ∪ Ce ∪ {Γ ≤ Γ′} ∪ {σ ≤ L, τ ≤ Γ′(a)} ∪ { τs ≤ Γ′s(a
′) | a′ ∈ A, a′ 6= a }

Γ ` i : σ | Ci Γ ` e : τ | Ce Γ′ fresh
SAFE-STORE

Σ,Γ ` ssafe a[i] = e : Σ,Γ′ | Ci ∪ Ce ∪ {Γ ≤ Γ′} ∪ {σ ≤ L, τ ≤ Γ′(a)}

Figure 7: Typing rules

for secret data and the low-security level (L) for public data.
Other choices of lattices are possible, but not considered
in this work. Formally, security levels are defined by the
following grammar:

τ := ` | H | L

where ` ranges over level (or type) variables.
A security type is a pair τ = (τn, τs) of security levels.

Intuitively, τn represents the security level under normal
executions and τs represents the security level under all
executions, including misspeculated ones. Throughout this
paper, we require that the inequality τn ≤ τs hold, which
justifies the following terminology:
• (L, L) denotes public data;
• (H,H) denotes secret data;
• (L,H) denotes transient data, i.e. data that is public

under sequential execution but may depend on secrets
under speculative execution.

In the remainder of the paper, we adopt the following
conventions: we let τn and τs represent the first and second
components respectively of a pair τ of security levels. Finally,
we write τ ≤ τ ′ as shorthand for {τn ≤ τ ′n, τs ≤ τ ′s}.

4.2. Constraint sets

A constraint set is a set of inequalities of the form `1 ≤ `2
where `1 and `2 are security levels.

The closure C of a constraint set C is the smallest set of
constraints that contains C and is closed under transitivity. A
constraint set C is consistent if (H ≤ L) /∈ C. A constraint
set is consistent iff there exists a valuation θ mapping level
variables to {L,H} such that for every constraint (`1 ≤ `2) ∈
C, θ(L1) = θ(L2) or θ(L1) = L and θ(L2) = H.

4.3. Misspecultion type (MSF-type)

Our type system assigns different types depending on
whether execution is misspeculating or not. In order to
capture this (specialized) form of value sensitivity, our type
system uses MSF-type. The set of MSF-type is defined by
the following grammar:

Σ = unknown | ms | ms|e

The informal meaning of MSF-type is as follows:
• the type unknown states that we do not know if we are

misspeculating or not, more precisely, that no register
variable is expected to contain this information;

• the type ms states that if execution is misspeculating,
then the register ms is set to −1. The type ms is used
to make sure that values are correctly masked;

• the type ms|e states that if execution is misspeculating,
and the boolean expression e evaluates to true, then
the register ms is set to −1. The type ms|e is used by
the type system to postpone the update of ms after a
branching instruction.

In the remainder of the paper, we use the following notation:

Σ1 ⊆ Σ2 := Σ1 = unknown ∨ Σ1 = Σ2

Σ1 ∩ Σ2 := if Σ1 = Σ2 then Σ1 else unknown
Σ|x := if x ∈ fv(Σ) then unknown else Σ
Σ|b := if Σ = ms then ms|b else unknown

4.4. Typing rules

The type system manipulates judgments of the form

Σ,Γ ` c : Σ′,Γ′ | C

where Γ and Γ′ are security environments, Σ and Σ′ are
MSF-type, and C is a set of constraints.

Figure 7 provides the typing rules for the language
introduced in Section 3. We use the following conventions:
if Γ(x) = (τn, τs), we often write Γn(x) (resp. Γs(x)) for
τn (resp. τs). Moreover we write L for the pair (L, L).

The typing rules VAR and OP are used for typing expres-
sions. They use a simpler auxiliary judgment Γ ` e : τ | C
which does not mention MSF-type. The rule VAR inspects the
type from the context and does not generate any constraint.
The rule OP for binary operators collects constraints from the
first and second arguments and generates a new constraint
that forces the security level of o(x1, x2) to be the maximum
of the security levels of x1 and x2.

The typing rules INIT and SET are used to type the
init_msf and set_msf primitives. The rule INIT ensures that
the MSF-type is set to ms after initialization. Moreover the
security level of ms is set to (L, L)—since it contains the
value 0—and the security level of all remaining variables is
set to (Γn(x),Γn(x))—since transient values are committed
upon initialization. The rule SET requires that the MSF-type
before the update is ms|e, and ensures that the MSF-type
after the update is ms.

The rule PROTECT requires that the MSF-type be ms,
and ensures that the output type of y is (Γn(x),Γn(x)). This
reflects the fact that sequential execution will copy the value
of x to y, and a misspeculated execution will set y to a
default value—we do not set the speculative type of y to L
because we require that τn ≤ τs. Note that in case ms = y,
the output MSF-type is set to unknown.

The rule ASSIGN enforces absence of direct flows. In case
x = ms or x occurs in b the rule also sets the result MSF-
type to unknown. Rules EMPTY and SEQ are straightforward;
notice that SEQ accumulates the constraints.

The rule IF checks that the guard has security type (L, L)
and that both branches can be typed with MSF-type Σ|b and
Σ|!b respectively. The rule (Σ1 ∩ Σ2) ensures that the result
MSF-type is unknown if both branches disagree on their

result MSF-type, and that the output security environment is
the maximum of Γ1 and Γ2. This is done by introducing a
fresh security environment Γ′ and adding constraints Γ1 ≤ Γ′

and Γ2 ≤ Γ′. The rule WHILE follows the same idea; notice
that the constraints on Γ′ ensure that Γ′ is a fixed point.

The rule LOAD ensures that the array is accessed with
an index of type L, L and assigns to the target register
x a fresh output type τ . τ is subject to the constraint
that Γn(a) ≤ τn to prevent direct flows under sequential
execution, and that H ≤ τs to prevent direct flows under
speculative execution, where the instruction is potentially
unsafe. The rule SAFE-LOAD considers the specific case
where the load is speculatively safe, as instructed by the
ssafe annotation, which needs to be checked independently.
In this case the constraint H ≤ τs can be replaced by
Γs(a) ≤ τs.

The rule STORE ensures that the array is accessed with
an index of type L, L and that the stored expression e has
type τ . Because the store can potentially be performed at an
arbitrary address, the type system creates a fresh environment
Γ′ and adds some constraints. Γ ≤ Γ′ ensures that types in
Γ′ are at least the ones in Γ1. τ ≤ Γ′(a) ensures that the
new type associated with a is the least level of the stored
expression. Finally the constraint τs ≤ Γ′s(a

′) captures the
fact that the speculative type of all other arrays should be
at least the speculative type τs of the stored value due to
a speculatively unsafe store. The rule SAFE-STORE relaxes
these constraints, assuming that the store is speculatively
safe. In this case, it is not required to lift the speculative
type of all other arrays.

4.5. Soundness

The type system is sound, i.e. it only accepts speculative
constant-time programs. In this section, we give an informal
statement of soundness. Details, including missing definitions
and proof sketches, are found in Appendix B.

For soundness, we show that if p is safe and

Σ,Γ ` p : Σ′,Γ′ | C

then p is =Σ
Γ,C-SCT. Informally, the partial equivalence

relation =Σ
Γ,C is defined as setting in relation states which

coincide on their public parts, as defined by necessity from
C and Γ, and are furthermore compatible with the MSF
type Σ.

The first step of the proof is to show that for every two
executions

p, s1
o1−→
d
p1, s

′
1

p, s2
o2−→
d
p2, s

′
2

such that s1 =Σ
Γ,C s2, we have o1 = o2 and p1 = p2.

Moreover, we show that there exist Σ0,Γ0, C0 such that

1. Creating fresh environments is not necessary to prove the soundness
of the system. It is, however, the expected behavior in practice, as not
doing so would have negative implications: assigning a variable that was
previously required to be public with a secret value would fail.

Σ0,Γ0 ` p1 : Σ′,Γ′ | C0 and s′1 =Σ0

Γ0,C0
s′2. Using the latter,

we can prove by induction on the length of the executions
that executions started in related states yield equal leakage,
as required.

4.6. Expressiveness

Our type system is expressive and can type all the
examples of the previous section, to the exception of the
program in Figure 5d, which requires ad hoc reasoning. Note
that the rules SAFE-LOAD and SAFE-STORE are required for
typing the programs from Figure 6a and Figure 6b.

A more general expressiveness claim would be to estab-
lish that (Selective) Speculative Load Hardening transform
programs that are typable by a constant-time type system
into programs that are typable by our type system. Assuming
that the constant-time type system manipulates judgments
of the form

Γ ` c : Γ′ | C

we could prove that if Γ ` c : Γ′ | C then there exists Γ0, Γ′0
and C ′0 such that ms,Γ0 ` c′ : ms,Γ′0 | C ′0, where c′ is the
result of applying (Selective) Speculative Load Hardening
to c. Details are omitted.

5. Implementation in Jasmin

We have implemented our approach on top of the latest
(public) version of the Jasmin [14], [15] framework for high-
assurance cryptography. Since this version contains several
unpublished extensions that must be addressed by the type
system, we start with a brief description of the framework
and of these recent extensions.

5.1. The Jasmin framework

The Jasmin framework consists of three main compo-
nents: the Jasmin language, which provides cryptographic
engineers maximal expressivity and control through a com-
bination of high-level constructs and low-level idioms; the
(formally verified) Jasmin compiler which generates efficient
assembly that respects programmers’ intentions; and formal
verification tools for safety, correctness, provable security,
and side-channel protection. For our purposes, only the
Jasmin language is relevant, so we focus on the language
and its recent extensions.

The Jasmin language supports “assembly in the head”, a
verification-friendly programming style that mixes structured
control flow and (sugared) assembly-level instructions. In
order to provide programmers with maximal control over
the generated code, the Jasmin language requires that every
variable declaration come with an attribute reg or stack
that determine if the variable will be stored in a register
or on the stack, in which case they will be accessed using
load and store instructions. Stack variables can have type
word or array. A recent extension allows array variables
to have another optional attribute: ptr, which indicates that
the variable contains a pointer to an array. This attribute is

combined with the previous ones, so reg ptr means that the
variable is a pointer stored in a register while stack ptr is a
pointer stored on the stack.

Another recent extension is first-class functions. Previ-
ously, functions were automatically inlined. However such
inlining is not appropriate for implementations with a non-
trivial call-graph. It is worth noting that function calls
commonly use reg ptr as arguments.

Finally, the Jasmin language was extended with a system
call randombytes. Previously, randomness was simply passed
as a parameter. However, this is not viable for implemen-
tations that may need an arbitrary amount of randomness
or to implement widely used cryptographic APIs. A call to
randombytes takes a reg ptr as argument (a pointer to an
array of fixed length), and fills the array with random bytes.
We assume that randombytes is safe.

5.2. Implementation details

We have enriched the Jasmin framework with an intra-
procedural analysis that implements our type system. Below
we briefly mention some of the key aspects.
Functions. In order to enable intra-procedural analysis, our
implementation infers the security levels for function’s inputs
and outputs together with a security effect `. This level is an
upper bound for the speculative stores potentially performed
by the function outside its expected memory scope. The
security effect is used in the rule for function calls to update
the speculative type of the local variables of the caller, in a
similar fashion to what is done by the STORE rule. This is
similar to the handling of effectful functions in information-
flow type systems.

For efficiency and readability reasons, our implementa-
tion performs a simplification phase after inferring the type
and constraint set of a function. For a very simple example
(without security effects), the universally quantified type and
security constraint τx × τy → τz | {τx ≤ τz, τy ≤ τz} is
replaced by the equivalent but more readable universally
quantified type and constraint set τ × τ → τ | ∅.
Pointer variables. The implementation associates two types,
i.e. two pairs of security levels, to ptr variables. The first
type is for the pointer while the second type is for the pointed
data. The use of two types can be exploited by programmers
when spilling pointers into stack memory. Again, having two
security types for pointers is common in information-flow
type systems for pointer languages.
System calls. The type system requires that the pointer and
the length argument of randombytes be public L, and considers
that the output is secret H. The type system assumes that the
stack effect of the system call is high, which has the effect of
setting to secret H the speculative types of all arrays—similar
to a speculatively unsafe store.
Declassification. The type system implements a declassify
construct that can be used by the programmer to declare
intended leakage. Although our guarantees only hold for
programs without declassification, we are confident that the

techniques of [8] apply to this setting and yield a proof of
relative non-interference for typable programs.
Constraint generation. Recall that a constraint is an inequality
l1 ≤ l2 between security levels. So a set of constraints can
be represented with a directed graph where there is an edge
between l1 and l2 iff l1 ≤ l2.

Constraint generation can be implemented efficiently
using a union-find data structure. Each time a constraint is
added, the constraint generation algorithm checks if it creates
a cycle. If a cycle is found, either it contains L and H and
an error is immediately reported (providing a relatively good
location error); or all the variables of the cycle are merged,
allowing us to reduce the size of the graph.

5.3. Integration in Jasmin

We have extended the Jasmin language with our primi-
tives, and security annotations to tag variables and arrays with
security levels. Once written, programs are checked for safety
using the Jasmin safety checker to guarantee that programs
are safe. We could similarly extend the speculative safety
checker from [20] to verify speculative safety annotations.
However, our current implementation uses a naive (but
generally sufficient) heuristics: all array accesses of the form
a[n] where n is a constant within the bounds of the array
are considered annotated as speculatively safe.

Our implementation of the type system is typically used
for checking speculative constant-time before compiling
programs. Typing source programs generally simplifies anal-
ysis, but may occasionally cause a loss of precision due to
the inability to verify side-conditions such as speculative
safety or variable conditions on MSF-type. This is easily
compensated by using compilation passes such as inlining,
loop unrolling and constant propagation to reveal which
array accesses have constant indices and can be marked
as speculatively safe, or to make sure that information on
MSF-type is not lost.

We also extend the lowering pass of the compiler to emit
valid assembly code:
• ms = init_msf () is compiled into lfence; ms=0;
• ms = set_msf (e, ms) into a branchless conditional

move ms = -1 if !e, where !e is the negation of e, and
thus is not subject to speculation on x86 architectures;

• x = protect (x, ms) is compiled into x |= ms, where x
is updated with bitwise OR operation between x and
ms.

6. Application to crypto software

In this section we explain how we use the type sys-
tem described in Section 5 to protect high-performance
implementations of cryptographic primitives. We start with
a detailed description of how we protect different imple-
mentations of the ChaCha20 [10] stream cipher to explain
different techniques and performance trade-offs. We then
briefly explain how we protect optimized implementations
of Poly1305 [11], authenticated encryption using NaCl’s

“secretbox” operation built from XSalsa20 [21] and Poly1305,
the X25519 elliptic-curve Diffie-Hellman key exchange [12]
and finally the lattice-based key-encapsulation mechanism
Kyber [13]. Protecting these primitives was part of a bigger
effort of protecting a whole cryptographic library; we report
more on the effort of protecting the full library in Section 7.

6.1. Protecting ChaCha20

The internal state of the ChaCha20 stream cipher is
a 4 × 4 matrix of 32-bit values (64 bytes in total) that
contains the secret key (32 bytes), the nonce (8 bytes or 12
bytes), a counter (8 or 4 bytes), and a 16-byte constant. The
encryption of an input message m implementation goes as
follows: 1) the internal state s is initialized with the secret
key, nonce, counter, and public constant; 2) a copy of the
state, k, is initialized; 3) k is transformed 10 times (while
loop) by a DoubleRound function (2 rounds each, 20 rounds
in total); 4) each element of k is added (modulo 232) to the
corresponding element of s; 5) the first 64 bytes of m are
xor-ed with k. For subsequent blocks of m, the counter is
incremented by one, and the described process starts over
(while loops over the message length). If the length of m
is not a multiple of 64, then k is computed as usual, and
only the necessary keystream bytes from k are consumed.
DoubleRound consists of a sequence of additions (modulo
232), xors, and rotations, and it does require any temporary
values (registers).

To implement Chacha20 in Jasmin for AMD64 using
standard instructions and registers, first, we need to consider
that we only have 15 registers available – the stack pointer
is reserved for the Jasmin compiler. Given that most of the
CPU-time is spent on DoubleRound (which is called 10
times for every 64 bytes of keystream data) and that fully
unrolling the loop is not viable as it would significantly
increase the resulting machine-code size, this loop must be
preserved as a loop in assembly, and there should be one
free register at the time the loop’s comparison execution to
load the rounds counter. Considering this, DoubleRound
expects 14 values of k to be in registers at the entry and exit
of this function (k[14] and k[15] are in the stack). Internally,
DoubleRound can use 1 more. The state s is in the stack.
Ciphertext and plaintext pointers are also in the stack, along
with the message length (used on an outer loop). These are
loaded when needed, and, sometimes, it is necessary to store
elements of k in the stack to make up space for these values.
Since the pointers and the message length are public and
copied into the stack for performance reasons, they might
need to be protected when loaded.

The remaining of the section describes different imple-
mentations of ChaCha20 starting from a reference implemen-
tation and how a developer can protect against Spectre v1
using the three primitives introduced in Section 3. Figure 8
presents percentage overhead timing of the different versions
compared to the reference implementation, the original
libjade code, where all the available registers are used and
spills are minimized for maximum performance. Table 1
provides some metadata over the different implementations.

TABLE 1: Hardening ChaCha20 implementations

Version SCT A I L F P U M

Ref × 3.40 435 103 0
Ref one × 3.47 457 114 0
SLH � 3.86 551 114 1 75 12 0
Selective � 3.51 482 114 1 6 12 0
MMX/stack � 3.43 436 96 1 0 0 13
MMX/MMX � 3.56 436 84 1 0 0 37
Reordered � 3.40 438 104 1 0 0 0

For each variant, this shows whether it is secure (SCT), the asymptotic
per-byte cost of the primitive (A; in CPU cycles), the numbers of assembly
instructions (I), loads (L), fences (F), protect (P), set_msf (U), and MMX
operations (M).

Figure 8: Run-time overhead for various implementations of
ChaCha20

Measurements have been performed on an Intel Core i7-
8665U running NixOS 22.05 (Linux 5.15.58). Relative
overhead is computed as the base-two logarithm of the
ratio between execution times; the base of the logarithm
is arbitrary and chosen so that a 100 % overhead means that
execution time is twice as long.

The first thing to do to be able to protect a reference
implementation using SLH is to free a register. The freed
register will be dedicated to allocate the misspeculation

Figure 9: Performance of ChaCha20 implementations on
small messages

flag, and it will be alive during the entire program. This
implementation corresponds to the version one free register,
Figure 8 shows an almost constant overhead (close to 2.8 %)
compared to reference. This can be easily explained as the
implementation needs to perform more spilling. Table 1
shows that the reference and one free register are not SCT.

SLH version corresponds to an implementation where
SLH has been systematically applied: the code starts by
initializing the misspeculation flag using init_msf, updates
it after each branching instructions (the loop) using set_msf,
and every load is protected using protect. Notice that the
role of initial init_msf is not only to initialize the MSF,
it also guarantees that initially plain, output and len do
not speculatively depends on secret (H) data. While this
version is accepted by the type checker and is secure, the
overhead is important (25 % for small messages, 18 % for
large ones). This is not acceptable for implementations that
have been designed for high performance. As for all the
other protected versions, the highest performance overhead
for small messages come from the initial lfence. Figure 9
highlights that for small messages, although the relative
overhead seems important (between 10 % and 25 %), the
absolute overhead is of the order of a dozen of cycles, which
is arguably little.

Selective SLH is the version where SLH has been applied
selectively. The MSF is initialized and maintained as in the
previous version, but only loaded data that leak are protected.
This implementation can be driven by the type checker. An
easy method to follow is to run the type-checker iteratively
and fix the issues it complains, continue the process till it
stops complaining. This time the overhead is more acceptable,
less than 5 %, but we can do better.

Our first idea is based on the use of mmx registers, those
registers was introduced 1997 by Intel for single instruction,
multiple data (SIMD) instruction set architecture. In the
reference implementation, there are three public variables that
need to be spilled on the stack: plain, output, and len. k[15]
and k[14] are also moved into and from the stack frequently.
The first three contain public data (L) while k[15] and k[14]
contain secret (H) data. The idea is to move them into mmx
register instead of spilling them into the stack. Thus they will
not be subject to out-of-bound misspeculative store. The main
advantage of doing that is that no load (unspilling) need to
be protected and so the MSF is not needed anymore, this free
a register compared to the one free register and no set_msf
instruction is needed. Since k variables are H they can remain
on the stack. This leads to two new implementations. The
first is mmx/mmx where the public variables and k variables
are spilled into mmx registers, the second mmx/stack where
only the public variables are. The overhead for mmx/stack
version is good (1 % for large messages) which is better
than what we obtain for the selective SLH version. For
mmx/mmx the overhead is more important, less efficient
than selective SLH version. This can be explained by the
fact that k[15] and k[14] are intensively spilled/unspilled
during the loop body. Moving a register to an mmx register
and vise versa is typically more expensive than moving
data between a register and the stack. The reason is that

instructions moving data between integer and mmx registers
are issued to execution units in the CPU rather than load/store
units. As cryptographic code is typically bottlenecked by
arithmetic rather than memory access, additional instructions
going to execution units are more expensive than load/store
instructions.

Finally, we provide a last protected version: reordered.
The key idea of this version is to remark that the public
variables need to be protected after unspilling because some
potentially speculatively unsafe store are done while the
variables are spilled on the stack (store performed when
writing the output ciphertext). So the idea was to reorder the
instruction to unspill the public variables before writing the
output. This is not always possible to do, but it is possible
for the ChaCha20 reference version. The resulting overhead
is now negligible (< 0.3% for large messages). There is
still an overhead for small messages due to the initial lfence
performed at the beginning of the function. In fact it is
slightly better for large message, this can be explained by
reordering of the instructions.

6.2. Protecting Poly1305

Three Jasmin implementations of Poly1305, a message
authentication code, are available: the reference implementa-
tion that uses standard AMD64 instructions and vectorized
implementations, AVX, and AVX2. These implementations
of libjade define two functions: 1) given a message m, the
corresponding length mlen, and a 32-byte key k, a 16-byte
authentication tag t is computed; 2) a function to allow the
verification, in constant-time, of a given tag t for a given
m, mlen, and the corresponding key k. Informally, and as
an intuition, Poly1305 performs a series of multiplications
(modulo 2130 − 5) between the first half of k and each
16 bytes of m, while accumulating the result to be later
added to the second half of k. Let k = (r, s). In the context
of the reference implementation, and considering that the
accumulator has 130 bits and r has 128 bits, these can be
represented using just three and two 64-bits registers. For
this reason, this implementation does not need to perform
any spill for either public or private data, given that it is
possible to keep all variables on registers at all times. All
15 available registers are used. One init_msf instruction is
enough to achieve Spectre v1 protection. AVX and AVX2
implementations use the reference implementation for small
messages (faster) and can also be protected with just one
init_msf.

6.3. Protecting secretbox

The secretbox operation provides an interface for au-
thenticated encryption. In this context, we protected three
implementations of XSalsa20Poly1305: reference, AVX, and
AVX2. XSalsa20 is similar to the previously discussed
ChaCha20 motivating example. The main difference that
is most relevant for the context of this discussion is that
more spills are required because one temporary variable is
needed during the rounds computation. These additional spills

are done over secret data (k) and, as such, maintaining the
misspeculation flag is unnecessary if mmx registers are used.
One init_msf on each implementation is needed to protect
the encryption in XSalsa20Poly1305, which produces a tag
and the corresponding ciphertext. Briefly, the decryption
occurs as follows: the authentication tag of the ciphertext is
computed and compared with the tag given as an argument. If
the computed and received tags are equal, then the decryption
happens; otherwise, it does not, and the return value is set ac-
cordingly. Hence, the control flow depends on secret data: the
result of verifying if the tag is valid or not. For this reason, the
verification results must be declassified using declassify, and
then, to prevent misspeculation on this value, one init_msf is
used. The alternative would be to update the misspeculation
flag and use protect. All XSalsa20Poly1305 implementations
then require two init_msf and one declassify.

6.4. Protecting X25519

X25519 is, in its core, elliptic-curve scalar multiplication.
It takes two inputs: a 32-byte scalar s and the x-coordinate
of a point P on an elliptic curve, also encoded as a 32-
byte string. Constant-time implementations use a fixed
sequence of instructions to compute the x-coordinate of
sP . This sequence of instructions is free of input-dependent
memory access and free of input-dependent branches. As a
consequence, the only modification required to add Spectre v1
protection is the fence (i.e., init_msf) right after entering the
function.

While X25519 may not look like a very interesting case, it
illustrates how the type system avoids enforcing unnecessary
protect operations: Essentially all X25519 implementations,
including ours, employ a fixed-length loop over the scalar
bits to keep code-size within reasonable limits. The local
loop-counter variable has to be public, so one might expect
that spilling it to the stack requires a protect and that
consequently we would need to add an set_msf to the
branch. As state-of-the-art X25519 implementations targeting
modern Intel CPUs typically do not use vector instructions,
but work with standard 64-bit integer registers, register
pressure is high and spilling the loop counter is very common
practice. However, as the loop counter is spilled and retrieved
without any branch in between, we can be sure that even
in speculative execution we retrieve the (public) value we
spilled before and that no protect is required.

6.5. Protecting Kyber

The high-speed implementation of Kyber is the most
complex primitive in libjade in terms of lines of code and
required protections. One reason is that Kyber uses multiple
functions from the Keccak family [22] as subroutines. While
the core of Kyber does not make heavy use of integer
registers, the Keccak permutation does. This means that
before calling into these routines we need spills of input
and output pointers to free those registers. Retrieving those
pointers later requires a protect and we need to use set_msf
at each branch in between to update the misspeculation flag.

Another reason is that during key generation, encap-
sulation, and decapsulation, Kyber expands a public seed
through SHAKE-128 and runs rejection sampling on the
output to sample values that are uniform modulo q = 3329.
In encapsulation the seed is provided as part of the public
key and in decapsulation as part of the secret key. As values
loaded from external memory (i.e., not jasmin-managed
stack space) are considered secret, this requires declassifying
the seed. Furthermore, the rejection-sampling loop requires
set_msf and the actual rejection decision requires a protect.

7. Benchmarking and results

In this section we evaluate the cost of protecting cryp-
tographic software against Spectre v1. We first evaluate
cost in terms of developer effort, then consider the cost
of type-checking Jasmin software with our protections, and
finally measure cost in terms of computational overhead. As
a starting point for all these cost metrics we consider code
written in Jasmin that is already protected against traditional
timing attacks.

More specifically, we target libjade, a cryptographic
library that is currently in development and that is written
entirely in Jasmin. It implements multiple symmetric prim-
itives (hash functions, stream ciphers, and authenticators);
elliptic-curve scalar multiplication using X25519 [12]; and
lattice-based key encapsulation using Kyber [13].

The original libjade library2 consists of about 16 k lines of
Jasmin code and provides 72 entry points. For most primitives
it has multiple implementations, including reference imple-
mentations and optimized implementations using different
instruction-set extensions (e.g., the AVX2 vector-instruction
extension). At the moment, Jasmin only supports AMD64
as target architecture, so all implementations are targeting
this architecture.

7.1. Developer effort

We have adapted the complete library so that each
entry point is protected against Spectre v1. In total this
required inserting 79 init_msf, 74 set_msf, and 73 protect
primitives. Insertion of init_msf is rather straight-forward:
we need one such primitive for each entry point before
performing any leaking operation (e.g., a load, store or
branch) on any data. Additionally we need one init_msf
after each call to randombytes; libjade has a total of 4 such
calls, all in the implementations of Kyber. The remaining
3 init_msf primitives are in 3 different implementations of
secretbox; as explained in Section 6 we choose to not track
the misspeculation flag up to the declassification, but place an
init_msf right after declassify instead. Insertion of set_msf
and protect is not quite as straight-forward, but guided by
the type system and corresponding compiler errors. Overall
the developer effort is remarkably low. We emphasize that
this efficiency is made possible by the enhanced type system

2. Publicly available on the web: https://github.com/formosa-crypto/
libjade/tree/ece99a3bbd8ebd831f285da0c909daba1ce2972d.

Primitive Impl. Op. CT SCT overhead [%]

ChaCha20

avx2 32 B 314 352 12.10
avx2 32 B xor 314 352 12.10
avx2 128 B 330 370 12.12
avx2 128 B xor 338 374 10.65
avx2 1 KiB 1190 1234 3.70
avx2 1 KiB xor 1198 1242 3.67
avx2 1 KiB 18872 18912 0.21
avx2 16 KiB xor 18970 18994 0.13

Poly1305

avx2 32 B 46 78 69.57
avx2 32 B verif 48 84 75.00
avx2 128 B 136 172 26.47
avx2 128 B verif 140 170 21.43
avx2 1 KiB 656 686 4.57
avx2 1 KiB verif 654 686 4.89
avx2 16 KiB 8420 8450 0.36
avx2 16 KiB verif 8416 8466 0.59

secretbox

avx2 32 B 1104 1138 3.08
avx2 32 B open 1862 1950 4.73
avx2 128 B 1198 1234 3.01
avx2 128 B open 1960 2044 4.29
avx2 1 KiB 3066 3110 1.44
avx2 1 KiB open 3886 3950 1.65
avx2 16 KiB 31298 31376 0.25
avx2 16 KiB open 32146 32208 0.19

X25519 mulx smult 98352 98256 -0.098
mulx base 98354 98262 -0.094

Kyber512
avx2 keypair 25694 25912 0.848
avx2 enc 35186 35464 0.790
avx2 dec 27684 27976 1.055

Kyber768
avx2 keypair 42768 42888 0.281
avx2 enc 54518 54818 0.550
avx2 dec 43824 44152 0.748

TABLE 2: Benchmark results of the fastest implementations
of select primitives in libjade without Spectre v1 protections
(“constant-time”, CT) and with Spectre v1 protections (“spec-
ulative constant-time”, SCT) on an Intel Core i7-10700K
(Comet Lake) CPU

in Jasmin. Without the help of this type system, insertion
of protections would be much more cumbersome and, more
importantly, error-prone.

7.2. Performance of the type-checker

Type-checking for SCT all implementations from the
whole libjade library takes a total of a few seconds on a
developer’s laptop. For reference, the complete compilation
of libjade from Jasmin to assembly takes a couple of minutes
on the same laptop.

7.3. Computational overhead

To assess the run-time impact of our Spectre v1 pro-
tections added to libjade, we have measured the execution
time of each primitive; for primitives with variable-length
input we consider a sample of representative message sizes.
All measurements were performed on a single core of a
machine featuring an Intel Core i7-10700K (Comet Lake)
CPU with hyperthreading and TurboBoost turned off. Each

https://github.com/formosa-crypto/libjade/tree/ece99a3bbd8ebd831f285da0c909daba1ce2972d
https://github.com/formosa-crypto/libjade/tree/ece99a3bbd8ebd831f285da0c909daba1ce2972d

reported cycle count is the median of 8192 runs for primitives
with fixed input length and of 1024 runs for each input
length for primitives with variable input length. We followed
the standard practice of carrying out the benchmarks on an
otherwise idle machine. While this helps to reduce variance in
cycle counts, it also means that the cost of fence instructions
is measured on the optimistic side and may be larger on
systems under full load.

Table 2 reports the measurements for the fastest imple-
mentation of each of the primitives we considered also in
Section 6. We focus on the fastest implementation of each
primitive here because this is the most relevant number for
performance-critical applications. More extensive benchmark
results (i.e., covering more primitives and more implementa-
tions of the same primitives) are generated by the artifact
included with this submission.

The first thing we notice in these benchmark results is
that the relative overhead for symmetric primitives decreases
dramatically with increasing message length. As explained
already in Section 6.1, the reason is the constant overhead
caused by the initial init_msf. We comment that this cost is
more due to the call from unprotected C code into Jasmin
code than from the actual application of selective SLH.
It would in principle be possible to eliminate this cost
by compiling the calling code with SLH protection and
forwarding the misspeculation flag to Jasmin. However, this
would require an extension to the C function-call ABI to
standardize how this flag is passed across function calls.

The central result though is that for sufficiently long
cryptographic computations in Jasmin (i.e., when the constant
overhead of the init_msf becomes negligible), the perfor-
mance impact is extremely low; typically less than 1%. The
benchmark numbers that require explanation is the slightly
negative overhead for X25519. We started investigating the
reasons for these numbers and preliminary results suggest that
they are due to different code alignment. We will continue
to look into this.

8. Related work

There is a large body of work on enforcing and mitigating
Spectre attacks. Following [23], this work can be classified
according to its target policy. Typically, the target policy
is some variant of speculative constant-time (SCT) [9],
or relative constant-time (RCT) [24], a weaker property
which ensures that speculative execution does not leak more
than sequential execution—note that RCT is also called
speculative non-interference in the literature.

Spectector [24] and Pitchfork [9] use symbolic execu-
tion to enforce RCT and SCT for programs with fences.
Their symbolic semantics over-approximates the behavior of
programs and cannot be used to verify programs that use
Speculative Load Hardening. BinsecRel [25] uses relational
symbolic execution to enforce SCT for programs with fences
and index masking. In principle, the relational symbolic
execution of BinsecRel is sufficiently precise to verify
programs that are protected by Speculative Load Hardening.

However, BinSecRel does not support all the language
features required for high-speed cryptography.

Blade [19] is an automated tool that enforces SCT using
fence and index masking—the latter can be more efficient
than fencing, but requires that the size of arrays is known
statically, which excludes algorithms that take arbitrary-
length inputs as parameters. Blade is sound, i.e. it transforms
every program that is typable with a constant-time system is
transformed into a speculative constant-time program. The
salient feature of Blade is that it carefully minimizes the
number of protections. Precisely, Blade constructs a data-flow
graph where nodes can be annotated as sources, i.e. they
create a transient value, or sinks, i.e. they use a transient
value in a leaking instruction. Blade then uses a classic min-
cut algorithm to ensure that every path from sources to sinks
is protected. However, the protected programs obtained by
Blade are less efficient than programs based on Selective
Speculative Load Hardening.

[20] defines an information-flow type system to protect
Jasmin programs against Spectre attacks. Their type system
enforces a stronger form of SCT that covers against v1 and
a very limited form of v4 attacks. However, their approach
is based on fences, which imposes a high performance
overhead, and requires programs to be speculatively safe,
which also incurs some performance overhead. In contrast,
our type system is significantly more elaborate and accepts
programs that are protected using (Selective) Speculative
Load Hardening. Finally, our type system is implemented
for the latest version of Jasmin, which includes many new
challenging features.

[8] formalizes Selective Speculative Load Hardening.
They also define a constant-time type system for a core
language with fences and a declassify construct, and show
that selSLH transforms typable programs into programs that
satisfy RCT—it also follows from their results that typable
programs without declassify are transformed into programs
that satisfy SCT. In contrast, we offer mechanisms that can
implement but are not limited to selSLH, and we prove that
typable programs satisfy SCT. We do not consider declassifi-
cation, but are confident that our analysis can be extended to
prove RCT for a language with declassification. In addition,
[8] uses Pitchfork to estimate the performance benefits of
Selective Speculative Load Hardening on three examples:
ChaCha, donna and Ed25519. Our implementations are better
than their predicted overhead.

9. Conclusion

We have designed an approach for protecting crypto-
graphic software against Spectre v1 attacks at extremely
low cost both in terms of developer time and computational
overhead. We have used our approach for protecting multi-
ple cryptographic primitives, including a highly optimized
implementation of Kyber. We hope that our work will be
a starting point to upgrade the gold standard of constant-
time cryptography, and will help deliver new post-quantum
implementations that are not only protected against attacks

by future large quantum computers, but also against the most
common classes of speculative attacks.

On a more foundational side, it would be interesting to
prove that the Jasmin compiler preserves our protections, i.e.
that typable programs are compiled to speculative constant-
time assembly code. We hope that recent techniques for
proving preservation of constant-time [26], [27], [28] can
serve as a starting point to achieve this goal.

Acknowledgments

This research was supported by Deutsche Forschungs-
gemeinschaft (DFG, German research Foundation) as part
of the Excellence Strategy of the German Federal and State
Governments – EXC 2092 CASA - 390781972; by the
European Commission through the ERC Starting Grant
805031 (EPOQUE); and by the Agence Nationale de la
Recherche (French National Research Agency) as part of the
France 2030 programme – ANR-22-PECY-0006;

References

[1] M. Barbosa, G. Barthe, K. Bhargavan, B. Blanchet, C. Cremers,
K. Liao, and B. Parno, “Sok: Computer-aided cryptography,” in IEEE
S&P, 2021, pp. 777–795.

[2] J. K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche,
“HACL*: A verified modern cryptographic library,” in ACM CCS,
2017, pp. 1789–1806.

[3] A. Erbsen, J. Philipoom, J. Gross, R. Sloan, and A. Chlipala, “Simple
high-level code for cryptographic arithmetic - with proofs, without
compromises,” in IEEE S&P, 2019, pp. 1202–1219.

[4] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in IEEE S&P,
2019, pp. 1–19.

[5] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in USENIX
Security, 2018, pp. 973–990.

[6] G. Alagic, D. Apon, D. Cooper, Q. Dang, T. Dang, J. Kelsey,
J. Lichtinger, C. Miller, D. Moody, R. Peralta, R. Perlner, A. Robinson,
D. Smith-Tone, and Y.-K. Liu, “Status report on the third round of
the NIST post-quantum cryptography standardization process,” NIST,
Tech. Rep. NISTIR 8413, 2022.

[7] C. Carruth, “Speculative load hardening – a Spectre variant #1
mitigation technique,” LLVM documentation, https://llvm.org/docs/
SpeculativeLoadHardening.html.

[8] B. A. Shivakumar, J. Barnes, G. Barthe, S. Cauligi, C. Chuengsatiansup,
D. Genkin, S. O’Connell, P. Schwabe, R. Q. Sim, and Y. Yarom,
“Spectre declassified: Reading from the right place at the wrong time,”
in IEEE S&P, 2023 (to appear).

[9] S. Cauligi, C. Disselkoen, K. von Gleissenthall, D. M. Tullsen,
D. Stefan, T. Rezk, and G. Barthe, “Constant-time foundations for
the new Spectre era,” in PLDI, 2020, pp. 913–926.

[10] D. J. Bernstein, “ChaCha, a variant of Salsa20,” in Workshop record
of SASC, 2008, https://cr.yp.to/chacha/chacha-20080120.pdf.

[11] ——, “The Poly1305-AES message-authentication code,” in FSE,
2005, pp. 32–49.

[12] ——, “Curve25519: new Diffie-Hellman speed records,” in PKC, 2006,
pp. 207–228.

[13] J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M.
Schanck, P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS – Kyber:
A CCA-secure module-lattice-based KEM,” in IEEE EuroS&P, 2018,
pp. 353–367.

[14] J. B. Almeida, M. Barbosa, G. Barthe, A. Blot, B. Grégoire, V. Laporte,
T. Oliveira, H. Pacheco, B. Schmidt, and P. Strub, “Jasmin: High-
assurance and high-speed cryptography,” in CCS, 2017, pp. 1807–1823.

[15] J. B. Almeida, M. Barbosa, G. Barthe, B. Grégoire, A. Koutsos,
V. Laporte, T. Oliveira, and P.-Y. Strub, “The last mile: High-assurance
and high-speed cryptographic implementations,” in IEEE S&P, 2020,
pp. 965–982.

[16] G. Maisuradze and C. Rossow, “ret2spec: Speculative Execution Using
Return Stack Buffers,” in ACM CCS, 2018, pp. 2109–2122.

[17] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer,” in
WOOT, 2018.

[18] Intel, “Speculative store bypass / CVE-2018-3639 / INTEL-SA-00115,”
2018, https://www.intel.com/content/www/us/en/developer/articles/
technical/software-security-guidance/advisory-guidance/speculative-
store-bypass.html.

[19] M. Vassena, C. Disselkoen, K. v. Gleissenthall, S. Cauligi, R. G.
Kıcı, R. Jhala, D. Tullsen, and D. Stefan, “Automatically eliminating
speculative leaks from cryptographic code with Blade,” in POPL,
2021.

[20] G. Barthe, S. Cauligi, B. Grégoire, A. Koutsos, K. Liao, T. Oliveira,
S. Priya, T. Rezk, and P. Schwabe, “High-assurance cryptography in
the Spectre era,” in IEEE S&P, 2021, pp. 1884–1901.

[21] D. J. Bernstein, “Extending the Salsa20 nonce,” in Workshop record
of Symmetric Key Encryption Workshop, 2011, https://cr.yp.to/snuffle/
xsalsa-20081128.pdf.

[22] M. J. Dworkin, SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions, NIST Std. FIPS PUB 202, 2015.

[23] S. Cauligi, C. Disselkoen, D. Moghimi, G. Barthe, and D. Stefan,
“SoK: Practical foundations for Spectre defenses,” 2022.

[24] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez,
“Spectector: Principled detection of speculative information flows,” in
IEEE S&P, 2020, pp. 1–19.

[25] L. Daniel, S. Bardin, and T. Rezk, “Hunting the haunter – efficient
relational symbolic execution for Spectre with haunted RelSE,” in
NDSS, 2021.

[26] G. Barthe, B. Grégoire, and V. Laporte, “Secure compilation of side-
channel countermeasures: The case of cryptographic "constant-time",”
in CSF, 2018, pp. 328–343.

[27] G. Barthe, S. Blazy, B. Grégoire, R. Hutin, V. Laporte, D. Pichardie,
and A. Trieu, “Formal verification of a constant-time preserving C
compiler,” Proc. ACM Program. Lang., vol. 4, no. POPL, pp. 7:1–7:30,
2020.

[28] G. Barthe, B. Grégoire, V. Laporte, and S. Priya, “Structured leakage
and applications to cryptographic constant-time and cost,” in ACM
CCS, 2021, pp. 462–476.

Appendix

1. Semantics

Thus far, we have used s, b to represent the state of
a program, without making the register map and memory
explicit. From now on, we make these explicit and consider a
state s as a triplet 〈ρ, µ, b〉 where the register map ρ assigns
values to registers, and the memory map µ assigns values to
valid addresses, i.e. pairs of array names and indices such

https://llvm.org/docs/SpeculativeLoadHardening.html
https://llvm.org/docs/SpeculativeLoadHardening.html
https://cr.yp.to/chacha/chacha-20080120.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-store-bypass.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-store-bypass.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-store-bypass.html
https://cr.yp.to/snuffle/xsalsa-20081128.pdf
https://cr.yp.to/snuffle/xsalsa-20081128.pdf

that the index lies in the range of the array, and b is the
misspeculation flag. Judgments are of the form p, s

o−→
d
p′, s′

and state that a single step of execution of the program
p, under the directive d, updates the state s to a state s′

producing the observation o, with a remaining program p′.
The rules are given in Figure 10. The rules are taken from
[8], [20].

The ASSIGN rule is standard. Our language only manipu-
lates computations on registers, which implies no leakage
may occur. The same applies for the SET and INIT rules,
which use an assign instruction at their core, with specific
values assigned: SET updates the value ms based on the
evaluation of the boolean expression e; INIT sets ms to 0
and only works for non-speculative executions (it acts like a
fence operator), as indicated by the MSF set to ⊥.

The PROTECT is similar to an ASSIGN one, with the
difference that it works by OR-masking the operand with
ms. Here this masking operation is simplified to an equality
test to −1 for the mask, which is the absorbing element for
the OR operator.

The LOAD and STORE rules have safe and unsafe versions.
Note that in all four cases, the address is leaked. The behavior
of the unsafe versions remains more controlled than in other
approaches [20], as they are not considered to leak the whole
stack memory µ. Because of the assumption that all given
programs are safe, these unsafe executions can only happen
under speculative execution (b = >). This also means that
speculatively-unsafe programs can be executed, and that these
programs are not prevented to be speculative constant-time.
In both unsafe rules, the attacker is also given the initiative
to access any desired memory location.

Finally, the flow-control rules COND and WHILE have
different behaviors based on the directive used. As a result,
these rules are the only ones where the MSF is subject to
change, which depends on whether the directive is force.
The leakage consists of the executed branch.

Our proof of soundness assumes that all annotations of
speculative safety are correct.

Definition 2 (Speculative safety). A load or store instruction
of the form c(a, e) = x := a[e] or c(a, e) = a[e] := x is
speculatively safe in a program-state configuration p, s if:

∀ p, s
`−→
D
→ ssafe c(a, e); p′, 〈ρ, µ, b〉 =⇒ JeKρ ∈ |a| .

All ssafe c annotations in the input program are assumed
to verify this property.

2. Soundness

We first introduce state indistinguishability. Recall that in
a classic information-flow setting, two states are indistinguish-
able if they coincide their public variables. In our setting, the
definition of state indistinguishability depends on the mis-
speculation flag. Informally, if the misspeculation flag is set
to false, then two states are indistinguishable if their public
variables coincide. In contrast, if the misspeculation flag is set
to true, then two states are indistinguishable if their transient

values coincide. In order to make this intuition formal, we
parameterize the definition of state indistinguishability by
a typing environment Γ which associates type variables to
variables, and a valuation θ which associates a security level
to each variable `, and a speculative type Σ. The latter is
used to determine if the misspeculation flag is set to true or
not. Naturally, we need to restrict state indistinguishability
w.r.t. Σ to pairs of states that are compatible with Σ, and in
particular have their misspeculation flag to the same value.

Definition 3 (Indistinguishability relationship). For every
Γ, θ,Σ and every ρ1, ρ2, µ1, µ2, b1, b2, the binary relation-
ship =Σ

θΓ is defined by:

〈ρ1, µ1, b1〉 =Σ
θΓ 〈ρ2, µ2, b2〉 ≡



b1 = b2
ρ1 =θΓs

ρ2

¬b1 =⇒ ρ1 =θΓn
ρ2

µ1 =θΓs µ2

¬b1 =⇒ µ1 =θΓn µ2

ρ1, b1 � Σ

ρ2, b2 � Σ

where:

x =τ y ≡ τ = L =⇒ x = y

ρ =f σ ≡ ∀x ∈ dom(ρ), ρ(x) =f(x) σ(x)

µ =f ν ≡ ∀(a, n) ∈ dom(µ), µ(a, n) =f(a) ν(a, n)

and the MSF state correspondence is defined as follows:

ρ, b � ⊥ is always valid
ρ, b � ms ≡ b ⇐⇒ JmsKρ = −1
ρ,> � ms|e ≡ JeKρ = > =⇒ JmsKρ = −1
ρ,⊥ � ms|e ≡ JeKρ = > ∧ JmsKρ 6= −1

.

Given Σ,Γ, C, we let =Σ,Γ,C denote the union of =Σ
θΓ

over all θ such that θ |= C.

We establish several simple lemmas which we use in the
soundness proofs.

Lemma 1. ∀ f ≤ g ∧ ρ =f σ =⇒ ρ =g σ, where ρ and
σ are register memory functions or stack memory functions.

Proof. There are only three possibilities for the function
argument, and all of them yield the result trivially.

The lemma entails that two indistinguishable states with
respect to a certain level of privacy remain indistinguishable
with respect to a level of privacy where more variables are
considered high:

Lemma 2 (Lifting lemma).

∀ f ≤ g ∧ Σ′ ⊆ Σ ∧ s1 =Σ
f s2 =⇒ s1 =Σ′

g s2,

where s1 and s2 are program states and f and g functions
returning pairs of types.

We now turn to soundness.

0-STEP
S

ε−→
ε
→ S

S
o−→
d
S′ S′

O−→
D
→ S′′

S-STEP
S

o::O−−−→
d::D
→ S′′

ASSIGN
x := e; c, 〈ρ, µ, b〉 •−−→

step
c, 〈ρ{x← JeKρ}, µ, b〉

JeKρ = n ∈ |a| µ(a, n) = v
LOAD

x := a[e]; c, 〈ρ, µ, b〉 addr(n)−−−−→
step

c, 〈ρ{x← v}, µ, b〉

JeKρ = n ∈ |a|
STORE

a[e] := e′; c, 〈ρ, µ, b〉 addr(n)−−−−→
step

c, 〈ρ, µ{(a, n)← Je′Kρ}, b〉

JeKρ = n 6∈ |a| m ∈ |α| , µ(α,m) = v
U-LOAD

x := a[e]; c, 〈ρ, µ,>〉 addr(n)−−−−−−→
load(α,m)

c, 〈ρ{x← v}, µ,>〉

JeKρ = n 6∈ |a| α ∈ A,m ∈ |α|
U-ST

a[e] := e′; c, 〈ρ, µ,>〉 addr(n)−−−−−−→
store(α,m)

c, 〈ρ, µ{(α,m)← Je′Kρ},>〉

m = if (JeKρ = >) then JmsKρ else −1
SET

ms = set_msf(e,ms); c, 〈ρ, µ, b〉 •−−→
step

c, 〈ρ{ms← m}, µ, b〉
ρ′ = ρ{ms← 0}

INIT
ms = init_msf(); c, 〈ρ, µ,⊥〉 •−−→

step
c, 〈ρ′, µ,⊥〉

v = if (JmsKρ = −1) then −1 else JxKρ
PROTECT

y = protect(x,ms); c, 〈ρ, µ, b〉 •−−→
step

c, 〈ρ{y ← v}, µ, b〉

e = if (d = force) then ¬JtKρ else JtKρ
COND

if t then c> else c⊥; c, 〈ρ, µ, b〉 branch(e)−−−−−→
d

ce; c, 〈ρ, µ, b ∨ d = force〉

e = if (d = force) then ¬JtKρ else JtKρ c> = c0;while t do c0; c c⊥ = c
WHILE

while t do c0; c, 〈ρ, µ, b〉 branch(e)−−−−−→
d

ce, 〈ρ, µ, b ∨ d = force〉

Figure 10: Operational semantics

Theorem 1 (Soundness). If p is safe and Σ,Γ ` p : Σ′,Γ′ |
C, then for all valuations θ such that θ � C, p is =Σ

θΓ-SCT.

The remaining of this section is devoted to a proof of
the theorem. Note that for convenience of reasoning, notably
for dealing with conditionals and loops, we consider an
augmented type system with a WEAK rule:

Σ0,Γ0 ` c : Σ′0,Γ
′
0 | C Σ0 ⊆ Σ,Σ′ ⊆ Σ′0 WEAK

Σ,Γ ` c : Σ′,Γ′ | C ∪ {Γ ≤ Γ′} ∪ {Γ′0 ≤ Γ0}

We first prove soundness for expressions.

Lemma 3 (Soundness for expressions).

∀ Γ ` e : (τn, τs) | C ∧ θ � C ∧ ρ1 =θΓi
ρ2

=⇒ JeKρ1 =θ(τi) JeKρ2 ,wherei = n ∨ i = s.

Proof. By induction on the expression e.

Next, we prove prove soundness for one-step execution.
Note that our proof establishes additional conclusions, which
correspond to premises which will fit appropriately in a proof
by induction for multi-step executions.

Theorem 2 (One-step soundness).

∀ p, s1
o1−→
d
p1, s

′
1 ∧ p, s2

o2−→
d
p2, s

′
2 ∧

Σ,Γ ` p : Σ∗,Γ∗ | C ∧ θ � C ∧ s1 =Σ
θΓ s2

=⇒ o1 = o2 ∧ p1 = p2

∧ (∃Σ0,Γ0, C0 Σ0,Γ0 ` p1 : Σ∗,Γ∗ | C0

∧ s′1 =Σ0

θΓ0
s′2 ∧ θ � C0)

Proof. Let p,Γ,Γ∗, s1, s2, . . . be all variables universally
bound in the expression, satisfying the hypotheses. More
precisely, si = 〈ρi, µi, b〉 and s′i = 〈ρ′i, µ′i, b′〉 (for i = 1, 2).
Because the program p has a one-step execution, it cannot
be ε. It is thus of the form p = i; p′. This means the typing
derivation either ends with a WEAK or a SEQ. In the first
case, we shall proceed by induction on the typing judgment.
It is of the form

Σ′,Γ′ ` p : Σ∗′,Γ∗′ | C ′′ Σ′ ⊆ Σ,Σ∗ ⊆ Σ∗′
WEAK

Σ,Γ ` p : Σ∗,Γ∗ | C ′′ ∪ {Γ∗′ ≤ Γ∗} ∪ {Γ ≤ Γ′}
However, by assumption, θ � {Γ ≤ Γ′}, which entails
θΓ ≤ θΓ′. This implies, in addition to Σ′ ⊆ Σ via Lemma 2,
that s1 =Σ′

θΓ′ s2. Besides, θ � C ′′. One can now apply
the induction hypothesis and obtain corresponding values
Σ0,Γ0, C0, with θ � C0. This allows us to write:

Σ0,Γ0 ` p1 : Σ∗′,Γ∗′ | C0 Σ∗ ⊆ Σ∗′
WEAK

Σ0,Γ0 ` p1 : Σ∗,Γ∗ | C0 ∪ {Γ∗′ ≤ Γ∗}

with θ � C0 ∪ {Γ∗′ ≤ Γ∗} by assumption. The rest of the
conclusions follow, which finishes the case.

Else, the last rule is a SEQ:

Σ,Γ ` i : Σ′,Γ′ | C ′ Σ′,Γ′ ` p′ : Σ∗,Γ∗ | Cp
SEQ

Σ,Γ ` i; p′ : Σ∗,Γ∗ | C ′ ∪ Cp
and c is an instruction. We now proceed by induction on the
typing derivation of i. This induction only has one inductive
case, that of the WEAK rule. In that case, we have:

Σi,Γi ` i : Σ′i,Γ
′
i | C ′i Σi ⊆ Σ,Σ′ ⊆ Σ′i WEAK

Σ,Γ ` i : Σ′,Γ′ | C ′i ∪ {Γ ≤ Γi} ∪ {Γ′i ≤ Γ′}
which can then be used to produce a new, shorter, typing

derivation for i; p′, as shown in Figure 11. It is now necessary
to verify the other premises of the induction hypothesis, in
order to apply it. We know that θ � C ′i ∪ Cp ∪ {Γ′i ≤ Γ′}.
Besides θ � {Γ ≤ Γi}, which entails θΓ ≤ θΓi. Hence,
Lemma 2 ensures that, also knowing that Σi ⊆ Σ, s1 =Σi

θΓi

s2, and we now apply the induction hypothesis with a shorter
typing derivation for i, which finishes the case.

The remaining base cases will be discussed based on
the semantic rules being applied (this rule is the same for
both executions), which effectively filters which typing rule
can be used with it. In all these cases but the last two, it
is observed that p′i = p′. Thus, the sought-after existential
variables can be set to Σ0 = Σ′, Γ0 = Γ′ and C0 = C ′. And
these cases will only consist in showing that s′1 =Σ′

θΓ′ s′2,
and o1 = o2. It is easy to prove that misspeculation flags
remain identical through both executions, and it will not be
detailed further in the rest of the proof.

Unless stated otherwise, each case uses the same nota-
tions as the ones in the definition of the type system. Let us
start the case discussion:

ASSIGNi = x := e. The typing rule is necessarily ASSIGN.
For y 6= x, Γ′s(y) = Γs(y), and, for i = 1, 2, ρ′i(y) =
ρi{x ← JeKρi}(y) = ρi(y), but ρ1(y) =θ(Γs(y)) ρ2(y) by
assumption; thus ρ′1(y) =θΓ′

s(y) ρ
′
2(y). As for x, Γ′s(x) = τ

and ρ′1(y) = JeKρ1 =τ JeKρ2 = ρ′2(y), by lemma 3.
Consequently, ρ′1 =θ,Γ′

s
ρ′2. The same applies for Γ′n, if

b = ⊥. Stack memory remains unchanged.
As for MSF, if y ∈ fv(Σ), then Σ′ = ⊥ and the condition
is trivial. Else, it is easy to substitute ρi by ρ′i (i = 1, 2) in
the MSF predicate, as all memory evaluations in it remain
identical. Thus s′1 =Σ′

θΓ′ s′2. Leakage is trivially identical.
LOADi = x := a[i], d = step. The typing rule can

correspond to either a LOAD or a SAFE-LOAD rule; this proof
only uses constraints that are parts of both. Let σ be the
type attributed to i. First, θ(σs) = L thus n = JiKρ1 = JiKρ2
by lemma 3, which entails o1 = o2. Just like in the previous
case, for y 6= x, ρ′1(y) =θΓ′

s(y) ρ′2(y). If θΓ′s(x) = L,
then θΓs(a) = L by constraint, however by assumption
µ1 =θΓs

µ2; together with the previous type equality, this
entails: ∀n ∈ |a| , µ1(a, n) = µ2(a, n). Thus ρ′1(x) = ρ′2(x).
Consequently ρ′1(x) =θΓ′

s(x) ρ
′
2(x), and ρ′1 =θΓ′

s
ρ′2. The

same applies for Γ′n if b = ⊥.
Regarding MSF, the reasoning is the same as in the previous
case. Thus s′1 =Σ′

θΓ′ s′2.

U-LOADi = x := a[i], d = load(α,m). The typing rule
can only correspond to a LOAD, for we assume all ssafe c
annotations are correct (and an unsafe load would contradict
this). As before, n = JiKρ1 = JiKρ2 and o1 = o2. Just
like in the previous case, for y 6= x, ρ′1(y) =θΓ′

s(y) ρ
′
2(y).

Besides, θΓ′s(x) = H, thus ρ′1(x) =θΓ′
s(x) ρ

′
2(x). Hence,

ρ′1 =θΓ′
s
ρ′2. Finally, there is no need to check for Γn, since

necessarily b = >. Indeed, one could otherwise derive from
this execution a non-speculative execution with an out-of-
bound addressing, which contradicts the assumption that all
programs are safe. MSF works the same as before. Thus
s′1 =θΓ′ s′2.

STOREi = a[i] := e. The typing rule is either STORE or
SAFE-STORE. This case only uses constraints that are parts of
both. Let τ be the type of e. As before, n = JiKρ1 = JiKρ2
and o1 = o2. The constraints and the assumptions allow
the use of lemma 1, which entails ρ′1 = ρ1 =θΓ′

s
ρ2 =

ρ′2 (and the same holds for Γ′n if needed) and µ1
.
=θΓ′

s

µ2. As for the proof that µ′1 =θΓ′
s
µ′2, the result is also

straightforward: For any array b 6= a, and any index j ∈ |b|,
µ′1(b, j) = µ1(b, j) =θΓ′

s
µ2(b, j) = µ′2(b, j). As for a, if

θΓ′s(a) = L, then θ(τs) = L by constraint. Which means
µ′1(a, n) = JeKρ1 = JeKρ2 = µ′2(a, n). Hence for every
j ∈ |a|, µ′1(a, n) =θΓ′

s
µ′2(a, n). Finally, µ′1 =θΓs

µ′2. The
proof of µ′1 =θΓ′

s
µ′2 is similar.

The MSF predicates remain unchanged: Σ′ = Σ, and so
do the register memories, which easily entails ρ′i, b � Σ′

(i = 1, 2). This concludes this case: s′1 =Σ′

θΓ′ s′2.
U-STOREi = a[i] := e, d = store (b, j). This case has the

same structure as the one before, using a different array
name. It is worth noting that the set of additional constraints
{ τs ≤ Γ′s(a

′) | a′ ∈ A, a′ 6= a } contains the adequate con-
straint for b, but only its speculative type. Indeed, there is
no need to prove µ′1 =θΓ′

n
µ′2 because, as in the case of

U-LOAD, the speculative state is set (b = >).
INITi = ms = init_msf(), b = ⊥. Assumption gives ρ′1 =

ρ1 =θΓn
ρ2 = ρ′2 then ρ′1 =θΓ′

s
ρ′2, and so on for all four

equality. This first equality has to be further justified by
the fact that, knowing that θΓ′s(ms) = L: 0 = JmsKρ′1 =L

JmsKρ′2 = 0. The same applies to the register maps. The
MSF predicate is as straightforward to verify. This finishes
the case, s′1 =θΓ′ s′2.

SETi = ms = set_msf(e,ms). Throughout the paragraph,
j = 1, 2. We know ρj , b � Σ. If JeKρj = >, then, ρ′j(ms) =
ρj(ms). Then, either b = >, in which case the value of
ms remains -1, which validates ρ′j ,> � ms. Or b = ⊥, and
because of ρj ,⊥ � ms|e, ms remains different from -1, which
also validates the predicate. Else, JeKρj = ⊥, in which case,
b must be set. The semantics indicates that JmsKρ′j = −1,
which validates the predicate as well.
Either ms is changed identically in both executions or left
as it was. This easily leads to ρ′1 =θΓ′

s
ρ′2, and ρ′1 =θΓ′

n
ρ′2

when it is required. Finally, s′1 =ms
θΓ′ s′2.

PROTECTi = y = protect(x,ms). The only type which
differs is Γ(y), and it will be the only one to be examined.
If Γn(x) = H, the result is trivial. Else, if b is set, then
because of ρ1, b � ms, we have JmsKρ1 = −1, which implies
that ρ′1(y) = −1 = ρ′2(y) and further ensures ρ1 =θΓ′

s
ρ2.

Σi,Γi ` i : Σ′i,Γ
′
i | C ′i

Σ′,Γ′ ` p′ : Σ∗,Γ∗ | Cp Σ′ ⊆ Σ′i WEAK
Σ′i,Γ

′
i ` p′ : Σ∗,Γ∗ | Cp ∪ {Γ′i ≤ Γ′}

SEQ
Σi,Γi ` i; p′ : Σ∗,Γ∗ | C ′i ∪ Cp ∪ {Γ′i ≤ Γ′}

Figure 11: Shorter typing derivation for i; p′ in the WEAK case.

Else b is unset, hence ρ1(ms) 6= −1, and ρ′1(y) = ρ1(x).
But because Γn(x) = L, it means that ρ1(x) = ρ2(x) and
thus ρ′1(y) = ρ′2(y). This leads to ρ′1 =θΓ′

n
ρ′2. The equality

ρ′1 =θΓ′
s
ρ′2 also follows. The case of MSF is treated as in

the ASSIGN rule. This finishes the case.
CONDi = if b then c1 else c2. Let i also denote the

chosen branch, and ci be the chosen command. Let also
bi = if i = 1 then b else ¬b. This case requires a different
proof. We shall prove that Γ0 = Γ, C0 = Ci∪Cp∪{Γi ≤ Γ′}
and Σ0 = Σ|bi are satisfactory choices.
First, θ(σs) = L and thus JbKρ1 = JbKρ2 , which implies
the equality of leakage (after having discussed whether the
directive is force or not). We have p′j = ci; p

′, for j = 1, 2.
The typing predicate is found as follows. The constraints
ensure Γi ≤ Γ′. Besides, a small case discussion leads to
the following fact: for j = 1, 2, Σ1 ∩ Σ2 ⊆ Σj . This allows
to use a WEAK rule in order to type ci; p′ directly, which is
not shown here.
As for state equivalence, the predicates on memory are
trivially verified, since the memory is left unchanged. MSF
predicates are also easy: if Σ 6= ms, then Σ0 = ⊥ and the
result is trivial. Else, Σ = ms for some register ms, and
Σ0 = ms|bi . Then, let’s do the case d = force, and the
other case is similar. This implies b′j = >. Regardless the
value of i, it is easy to notice that in that case JbiKρj = >.
Then, ρ′j ,> � ms|bi is verified. This ensures s′1 =Σ0

θΓ0
s′2,

and finishes the case.
WHILEi = while t do c0. By Lemma 2, because s1 =θΓ s2

and Γ ≤ Γ′, we have s1 =Σ
θΓ′ s2. Consequently, by lemma 3,

JtKρ1 = JtKρ2 . Equality of leakage follows from this. Besides,
this also provides s′1 =Σ′

θΓ′ s′2 since, as in COND, there is no
change in the memory, and also, Σ′ ⊆ Σ. MSF predicates
are verified just as in the previous case.
There are two cases two consider, based on whether execution
leaves the loop or not (depends on the value of e, as described
in the semantics):

• the execution is leaving the loop (e = ⊥): p′i = p′.
This, together with the fact that s′1 =

Σ|!t
θΓ′ s′2 yields the

result (as in the first cases), that is, Γ0 = Γ′, C0 =
Cp,Σ0 = Σ|!t is satisfactory.

• the body of the loop is executed (e = >): The idea
is now to type c0;while t do c0; p′. This requires to
choose other values, namely: Γ0 = Γ,Σ0 = ms|t
and C0 = C = C ∪ C ′ ∪ {Γ′ ≤ Γ′}. The typing
derivation itself is not shown here; please note that
typing it requires building a new typing derivation for
the while-loop itself.

Theorem 3 (Multi-step soundness).

∀ p, s1
O1−−→
D
→ p1, q1 ∧ p, s2

O2−−→
D
→ p2, q2 ∧

Σ,Γ ` p : Σ∗,Γ∗ | C ∧ θ � C ∧ s1 =Σ
θΓ s2

=⇒ O1 = O2 ∧ p1 = p2

∧ (∃Σ0,Γ0, C
′ Σ0,Γ0 ` p1 : Σ∗,Γ∗ | C ′

∧ s′1 =Σ0

θΓ0
s′2 ∧ θ � C ′)

Proof. The proof is by induction on the size |D| of the list
of directives (which is also the number of step of executions).
If |D| = 0, only the 0-STEP rule is possible, which yields
the result trivially, with Γ0 = Γ,Σ0 = Σ, C0 = C.

Else, we write:

p, s1
o1−→
d
p′1, s

′
1
O′

−−→
D′
→ p1, q1

p, s2
o2−→
d
p′2, s

′
2
O′

−−→
D′
→ p2, q2

and we apply theorem 2 to the two one-step executions thus
exhibited. The corresponding Γ0,Σ0, C0 can now serve in the
premises of the induction hypothesis on the two remaining
executions. This yields the result and finishes the proof.

	Introduction
	Preliminaries
	Programming hardened implementations
	Threat model and security notion
	Language
	Examples

	Type System
	Security types
	Constraint sets
	Misspecultion type (MSF-type)
	Typing rules
	Soundness
	Expressiveness

	 Implementation in Jasmin
	The Jasmin framework
	Implementation details
	Integration in Jasmin

	Application to crypto software
	Protecting ChaCha20
	Protecting Poly1305
	Protecting secretbox
	Protecting X25519
	Protecting Kyber

	Benchmarking and results
	Developer effort
	Performance of the type-checker
	Computational overhead

	Related work
	Conclusion
	References
	Appendix
	Semantics
	Soundness

