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1 Written specification

1.1 Overview
NTRU-HRSS is a OWCPA-secure public key encryption scheme that was introduced in [15]. It is a direct
parameterization of NTRUEncrypt as described in [12]. Its constructional novelty lies entirely in the
choice of sample spaces for messages, blinding polynomials, and private keys. These spaces were chosen
so that 1) NTRU-HRSS is correct (decryption never fails), 2) it admits a simple and efficient constant
time implementation, and 3) it avoids the extraneous parameters common to other instantiations of
NTRU.

NTRU-HRSS-KEM is a CCA2-secure KEM that was also introduced in [15]. The construction
uses a generic transformation from a OWCPA-secure public key encryption scheme. As a direct KEM
transform, it avoids the NAEP padding mechanism used in standard NTRUEncrypt [16]. A similar
NTRUEncrypt based KEM was proposed by Martijn Stam in 2005 [21]; the main differences with that
work are the underlying choice of parameters for NTRUEncrypt, and the inclusion of an additional
hash that is appended to the ciphertext. The additional hash allows for a proof of security in the
quantum-accessible random oracle model.

For further justification of design decisions see [15].

1.2 Mathematical definitions
1. (Z/n)× is the multiplicative group of integers modulo n.

2. Φn is the polynomial (xn − 1)/(x− 1) = xn−1 + xn−2 + · · ·+ 1.

3. R is the quotient ring Z[x]/(xn − 1).

4. S is the quotient ring Z[x]/(Φn).

5. R/q is the quotient ring Z[x]/(q, xn − 1).

6. S/2 is the quotient ring Z[x]/(2,Φn).

7. S/3 is the quotient ring Z[x]/(3,Φn).

8. S/q is the quotient ring Z[x]/(q,Φn).

9. Mod_Rq(a) is the canonicalR/q-representative of the polynomial a. The canonicalR/q-representative
of a is the unique polynomial b of degree at most n−1 with coefficients in {−q/2,−q/2+1, . . . q/2−1}
such that a and b are equivalent as elements of R/q.

10. Mod_S2(a) is the canonical S/2-representative of the polynomial a. The canonical S/2-representative
of a polynomial a is the unique polynomial b of degree at most n−2 with coefficients in {0, 1} such
that a and b are equivalent as elements of S/2.

11. Mod_S3(a) is the canonical S/3-representative of the polynomial a. The canonical S/3-representative
of a is the unique polynomial b of degree at most n− 2 with coefficients in {−1, 0, 1} such that a
and b are equivalent as elements of S/3.

12. Mod_Sq(a) is the canonical S/q-representative of the polynomial a. The canonical S/q-representative
of a is the unique polynomial b of degree at most n−2 with coefficients in {−q/2,−q/2+1, . . . q/2−1}
such that a and b are equivalent as elements of S/q.

Implementation notes:

1. It may be more natural, or more efficient, to represent elements of S/3 with coefficients in {0, 1, 2}
and/or elements of R/q with coefficients in {0, 1, . . . , q − 1}. The algorithms below are written
to be independent of the coefficient range for canonical representatives. However, the degree
requirements are strict.
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1.3 Parameters
1.3.1 n

An odd prime integer that satisfies the following two conditions:

− the order of 2 in (Z/n)× is n− 1,

− the order of 3 in (Z/n)× is n− 1.

Recommended value: 701

1.3.2 k

The Sample_T uniformity parameter. Algorithm 1.8.1 uses 2 · k pseudorandom bits to sample a
single value in {−1, 0, 1}.

Recommended value: 2

1.3.3 seed_bits

The length of the seed used by the pseudorandom generator in Algorithm 1.8.1.

Recommended value: 256

1.3.4 coin_bits

The length of random bitstring used in encapsulation.

Recommended value: 256

1.3.5 shared_key_bits

The number of bits of key material produced by the KEM.

Recommended value: 256

1.4 Derived constants
The constants in this section are all functions of n. Descriptions of algorithms in later sections use these
constants without explicit reference to n. Recommended values assume n = 701.

1.4.1 logq

The smallest positive integer such that the key encapsulation mechanism is correct with q = 2logq.
See [15] for the proof of correctness.

Formula: d7/2 + log2(n)e

Recommended value: 13

1.4.2 q

The smallest power of two guaranteeing correctness of the key encapsulation mechanism.

Formula: 2logq

Recommended value: 8192
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1.4.3 s3_packed_bits

Bit-length of the output of S3_to_bits (Section 1.9.3).

Formula: 8 · d(n− 1)/5e

Recommended value: 1120

1.4.4 owcpa_public_key_bits

Bit-length of the output of Rq_to_bits (Section 1.9.1).

Formula: (n− 1) · logq

Recommended value: 9100

1.4.5 owcpa_private_key_bits

Bit-length of two elements of S/3 encoded using S3_to_bits (Section 1.9.3).

Formula: 2 · s3_packed_bits

Recommended value: 2240

1.4.6 owcpa_ciphertext_bits

Bit-length of one elements of R/q encoded using Rq_to_bits (Section 1.9.1).

Formula: (n− 1) · logq

Recommended value: 9100

1.4.7 cca_public_key_bits

Formula: owcpa_public_key_bits

Recommended value: 9100

1.4.8 cca_private_key_bits

Formula: owcpa_private_key_bits + owcpa_public_key_bits

Recommended value: 10220

1.4.9 cca_ciphertext_bits

Formula: owcpa_ciphertext_bits + s3_packed_bits

Recommended value: 10220
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1.5 Summary of recommended parameters and derived constants

n 701

k 2

seed_bits 256

coin_bits 256

shared_key_bits 256

logq 13

q 8192

s3_packed_bits 1120

owcpa_public_key_bits 9100

owcpa_private_key_bits 2240

owcpa_ciphertext_bits 9100

cca_public_key_bits 9100

cca_private_key_bits 10220

cca_ciphertext_bits 10220

Table 1: Recommended parameters and derived constants

1.6 Externally defined algorithms
1.6.1 SHAKE128

Input:

− A bitstring M of arbitrary length.

− The output length parameter d.

Output:

− A bitsring of length d.

Description:

1. Output KECCAK[256](M ||1111, d), as defined in [20].

1.7 Arithmetic Algorithms
Algorithms for integer addition, integer multiplication, polynomial addition, polynomial multiplication,
and modular reduction (Mod_Rq, Mod_S2, Mod_S3, and Mod_Sq) are omitted.

1.7.1 S3_to_R

Input:

− A polynomial a.

Output:

− A polynomial b of degree at most n− 1 that satisfies:

– b ≡ 0 mod (x− 1),
– b ≡ a mod (p,Φn).
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Description:

1. Set v0 = S3_inverse(x− 1) [1.7.6]

2. Set v1 = v0 · a
3. Set v2 = S3_to_Zx(v1) [1.7.2]

4. Set b = (x− 1) · v2
5. Output b

Implementation notes:

1. The result b is of degree at most n− 1 and has coefficients in {−1, 0, 1}.
2. The explicit value of S3_inverse(x− 1) is

v0 = Mod_S3

(
(n− 1) +

n−1∑
i=1

n · (1 + i− n) · xi
)
.

3. Pseudocode for a fast implementation is given in [15].

1.7.2 S3_to_Zx

Input:

− A polynomial a.

Output:

− The unique polynomial b of degree at most n− 2 with coefficients in {−1, 0, 1} such that a
and b are equivalent as elements of S/3.

Description:

1. Output Mod_S3(a).

Implementation notes:

1. The set of canonical S/3-representatives is defined so that S3_to_Zx is trivial. An imple-
mentation that uses a different set of S/3-representatives may replace a call to S3_to_Zx
with a contextually equivalent routine. For example, when a call to S3_to_Zx is followed
by an operation in R/q the implementation may combine the lift to Z[x] and the reduction
modulo q into a single operation.

1.7.3 Sq_to_Zx

Input:

− A polynomial a.

Output:

− The unique polynomial b of degree at most n − 2 with coefficients in {−q/2,−q/2 +
1, . . . , q/2− 1} such that a and b are equivalent as elements of S/q.

Description:

1. Output Mod_Sq(a).
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1.7.4 Rq_to_Zx

Input:

− A polynomial a.

Output:

− The unique polynomial b of degree at most n − 1 with coefficients in {−q/2,−q/2 +
1, . . . , q/2− 1} such that a and b are equivalent as elements of R/q.

Description:

1. Output Mod_Rq(a).

1.7.5 S2_inverse

Input:

− A polynomial a.

Output:

− An S/2-representative b that satisfies Mod_S2(a · b) = 1.

Implementation notes:

1. Inverting an element of S/2 in constant time is nontrivial. Pseudocode for one method is
provided in [15].

1.7.6 S3_inverse

Input:

− A polynomial a.

Output:

− An S/3-representative b that satisfies Mod_S3(a · b) = 1.

Implementation notes:

1. Inverting an element of S/3 in constant time is nontrivial. Pseudocode for one method is
provided in [15].

1.7.7 Sq_inverse

Input:

− A polynomial a.

Output:

− An S/q-representative b that satisfies Mod_Sq(a · b) = 1.

Description:

1. Set v0 = S2_inverse(a) [1.7.5]

2. Set t = 2

3. While t < q

4. Set v0 = Mod_Sq(v0 · (2− a · v0))

5. Set t = t · t

9



6. Endwhile

7. Output Mod_Sq(v0)

Implementation notes:

1. When Sq_inverse is called from Generate_Public_Key [1.10.3] it is safe to replace the calls
to Mod_Sq in Lines 4 and 7 with calls to Mod_Rq.

1.8 Sampling Algorithms
1.8.1 Sample_T

Input:

− A bitstring seed of length seed_bits.

− A bitstring domain of length 64.

Output:

− An S/3-representative.

Description:

1. Set v = 0 (The zero polynomial)

2. Set i = 0

3. Set ` = 2 · k · (n− 1)

4. Set b1b2 . . . b` = SHAKE128(domain ‖seed, `)
5. While i < n− 1

6. Set vi =
∑k

j=1 b2ki+j − b2ki+k+j

7. Set i = i+ 1

8. Endwhile

9. Output Mod_S3(v)

Implementation notes:

1. In this document we use four domain strings domm, domr, domf, domg. In our implementation
domm and domr are the zero string, domf =0x0100000000000000 and domg =0x0200000000000000.
This will likely be changed in a future version.

1.8.2 Sample_Tplus

Input:

− A bitstring seed of length seed_bits.

− A bitstring domain of length 64.

Output:

− The canonical S/3-representative of a polynomial v =
∑n−2

i=0 vix
i where vi ∈ {−1, 0, 1} for

all i and
∑n−2

i=1 vivi−1 ≥ 0.

Description:

1. Set v = Sample_T(seed, domain) [1.8.1]

2. Set t =
∑n−2

i=1 vi · vi−1
3. Set s = −1 if t < 0, otherwise set s = 1

10



4. Set i = 0

5. While i < n− 2

6. Set vi = s · vi
7. Set i = i+ 2

8. Endwhile

9. Output Mod_S3(v)

Implementation notes:

1. The value t in Line 2 satisfies −n+ 1 < t < n− 1.

1.9 Encoding Algorithms
The algorithms in this section are specified at the bit level. When converting to octets a bitstring is
padded with zeros until it is of length 8 · ` for some `. The encoding is then order preserving for indices
at distance at least 8, but order reversing within octets. Hence b1, . . . , b7, b8, b9, . . . , b15, b16 is encoded
as b8b7 . . . b1, b16b15 . . . b9.

1.9.1 Rq_to_bits

Input:

− A polynomial a that satisfies a(1) ≡ 0 (mod q).

Output:

− A bitstring b1b2 . . . b` of length ` = (n− 1) · logq.

Description:

1. v = Mod_Rq(a) (Ensure v =
∑n−1

i=0 vix
i)

2. i = 0

3. while i ≤ n− 2

4. Set bilogq+1bilogq+2 . . . bilogq+8 so that
∑logq

j=1 bilogq+j2
logq−j ≡ vi (mod q).

5. i = i+ 1

6. endwhile

7. Output b1b2 . . . b`.

Implementation notes:

1. The coefficient vn−1 is not encoded. The condition a(1) ≡ 0 (mod q) ensures that vn−1
can be recovered from the first n− 1 coefficients.

1.9.2 Rq_from_bits

Input:

− A bitstring b1b2 . . . b` of length ` = (n− 1) · logq.

Output:

− An R/q-representative.

Description:

1. v = 0 (The zero polynomial)

2. i = 0
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3. while i ≤ n− 2

4. Set c =
∑logq

j=1 bilogq+j · 2logq−j .
5. Set vi = c

6. Set vn−1 = vn−1 − c
7. Set i = i+ 1

8. endwhile
9. Output Mod_Rq(v)

1.9.3 S3_to_bits

Input:
− A polynomial a.

Output:
− A bitstring b1b2 . . . b` of length ` = s3_packed_bits. [1.4.3]

Description:
1. v = Mod_S3(a) (Ensure v =

∑n−2
i=0 vix

i)
2. i = 0

3. while i < b(n− 1)/5c
4. Set c1, c2, . . . , c5 ∈ {0, 1, 2} with cj ≡ v5·i+j (mod 3) for 1 ≤ j ≤ 5.
5. Set b8·i+1b8·i+2 . . . b8·i+8 so that

∑8
j=1 b8·i+j2

8−j =
∑5

j=1 cj3
5−j .

6. i = i+ 1

7. endwhile
8. Output b1b2 . . . b`.

Implementation notes:
1. In Line 4 we have cj = 0 if j > n− 2

1.9.4 S3_from_bits

Input:
− A bitstring a1a2 . . . a` of length ` = s3_packed_bits. [1.4.3]

Output:
− An S/3-representative.

Description:
1. b = 0 (The zero polynomial)
2. i = 0

3. while i < b(n− 1)/5c
4. Set c1, c2, . . . , c5 ∈ {0, 1, 2} so that

∑8
j=1 b8·i+j2

8−j =
∑5

j=1 cj3
5−j .

5. Set b5·i+1 = c1

6. Set b5·i+2 = c2

7. Set b5·i+3 = c3

8. Set b5·i+4 = c4

9. Set b5·i+5 = c5

10. i = i+ 1

11. endwhile
12. Output Mod_S3(b).
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1.10 Key Encapsulation Mechanism
The algorithms Generate_Key [1.10.1], Encapsulate [1.10.4], and Decapsulate [1.10.5] are a key encapsu-
lation mechanism that is CCA-secure in the quantum random oracle model. The other functions in this
section are used by these algorithms but are not part of the public API.

1.10.1 Generate_Key

Input:

− The system parameters.

Output:

− A bitstring packed_public_key of length cca_public_key_bits . [1.4.7]

− A bitstring packed_private_key of length cca_private_key_bits . [1.4.8]

Description:

1. Let seed be a string of seed_bits uniform random bits.

2. Set f, fp = Generate_Private_Key(seed) [1.10.2]

3. Set h = Generate_Public_Key(seed, f) [1.10.3]

4. Set packed_public_key = Rq_to_bits(h) [1.9.1]

5. Set packed_private_key = S3_to_bits(f) ‖ S3_to_bits(fp) [1.9.3]

1.10.2 Generate_Private_Key

Input:

− The system parameters.

− A bitstring seed of length seed_bits.

Output:

− S/3-representatives f and fp that satisfy Mod_S3(f · fp) = 1.

Description:

1. Set f = Sample_Tplus(seed, domf) [1.8.2]

2. Set fp = S3_inverse(f) [1.7.6]

3. Output f and fp

1.10.3 Generate_Public_Key

Input:

− The system parameters.

− A bitstring seed of length seed_bits.

− An S/3-representative f .

Output:

− An R/q-representative h that satisfies the following three conditions:

1. h(1) ≡ 0 (mod q),
2. Mod_Rq(h · f) = 3 · (x− 1) · g for some g with coefficients in {−1, 0, 1},
3. Mod_S3(h · f) = 0.
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Description:

1. Set v0 = Sample_Tplus(seed, domg) [1.8.2]

2. Set g = S3_to_Zx(v0) [1.7.2]

3. Set v1 = Sq_inverse(f) [1.7.7]

4. Set fq = Sq_to_Zx(v1) [1.7.3]

5. Set v2 = 3 · (x− 1) · g · fq
6. Set h = Mod_Rq(v2)

7. Output h

Implementation notes:

1. The lifts to Z[x] are trivial when canonical representatives are used. Implementations that
use different sets of representatives may map g and fq directly to the appropriate R/q-
representatives without going through Z[x].

1.10.4 Encapsulate

Input:

− The system parameters.

− A bitstring packed_public_key of length cca_public_key_bits . [1.4.7]

Output:

− A bitstring shared_key of length shared_key_bits.

− A bitstring packed_cca_ct of length cca_ciphertext_bits . [1.4.9]

Description:

1. Let seed be a string of seed_bits uniform random bits.

2. Set m = Sample_T(seed, domm) [1.8.1]

3. Set packed_m = S3_to_bits(m) [1.9.3]

4. Set hashes = SHAKE128(packed_m, coin_bits + shared_key_bits + s3_packed_bits) [1.6.1]

5. Parse hashes as coins ‖ shared_key ‖ qrom_hash with

− coins of length coin_bits,
− shared_key of length shared_key_bits, and
− qrom_hash of length s3_packed_bits . [1.4.3]

6. Set packed_owcpa_ct = NTRU_OWF_Public(packed_m, packed_public_key, coins). [1.10.6]

7. Set packed_cca_ct = packed_owcpa_ct ‖ qrom_hash

1.10.5 Decapsulate

Input:

− The system parameters.

− A bitstring packed_key_pair of length cca_private_key_bits . [1.4.8]

− A bitstring packed_cca_ct of length cca_ciphertext_bits . [1.4.9]

Output:

− A bitstring shared_key of length shared_key_bits. [1.3.5]

Description:
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1. Parse packed_key_pair as packed_private_key ‖ packed_public_key with

− packed_private_key of length owcpa_private_key_bits and [1.4.5]
− packed_public_key of length owcpa_public_key_bits . [1.4.4]

2. Parse packed_cca_ct as packed_owcpa_ct ‖ qrom_hash with

− packed_owcpa_ct of length owcpa_ciphertext_bits and [1.4.6]
− qrom_hash of length s3_packed_bits . [1.4.3]

3. Set packed_m = NTRU_OWF_Private(packed_private_key, packed_owcpa_ct) [1.10.7]

4. Set hashes = SHAKE128(packed_m, coin_bits + shared_key_bits + s3_packed_bits) [1.6.1]

5. Parse hashes as coins ‖ shared_key ‖ re_qrom_hash with

− coins of length coin_bits,
− shared_key of length shared_key_bits, and
− re_qrom_hash of length s3_packed_bits . [1.4.3]

6. Let re_packed_owcpa_ct = NTRU_OWF_Public(n, packed_m, packed_public_key, coins) [1.10.6]

7. If re_packed_owcpa_ct ‖ re_qrom_hash is bitwise equal to packed_owcpa_ct ‖ qrom_hash

8. Output shared_key.

9. Else

10. Output the zero string of length shared_key_bits.

11. Endif

1.10.6 NTRU_OWF_Public

Input:

− The system parameters.

− A bitstring packed_m of length s3_packed_bits . [1.4.3]

− A bitstring packed_public_key of length owcpa_public_key_bits . [1.4.4]

− A bitstring coins of length coin_bits.

Output:

− A bitstring packed_owcpa_ct of length owcpa_ciphertext_bits . [1.4.6]

Description:

1. Set h = Rq_from_bits(packed_public_key) [1.9.2]

2. Set v0 = Sample_T(coins, domr) [1.8.1]

3. Set r = S3_to_Zx(v0) [1.7.2]

4. Set v1 = S3_from_bits(packed_m) [1.9.4]

5. Set m = S3_to_R(v1) [1.7.1]

6. Set e = Mod_Rq(r · h+m)

7. Set packed_owcpa_ct = Rq_to_bits(e) [1.9.1]
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1.10.7 NTRU_OWF_Private

Input:

− A bitstring packed_private_key of length owcpa_private_key_bits.

− A bitstring packed_owcpa_ct of length owcpa_ciphertext_bits.

Output:

− A bitstring packed_m of length s3_packed_bits.

Description:

1. Parse packed_private_key as packed_f ‖ packed_fp with

− packed_f of length s3_packed_bits , and [1.4.3]
− packed_fp of length s3_packed_bits . [1.4.3]

2. Parse packed_owcpa_ct as packed_owcpa_ct ‖ qrom_hash with

− packed_owcpa_ct of length owcpa_ciphertext_bits , and [1.4.6]
− qrom_hash of length s3_packed_bits . [1.4.3]

3. Set e = Rq_from_bits(packed_owcpa_ct) [1.9.2]

4. Set v0 = S3_from_bits(packed_f) [1.9.4]

5. Set f = S3_to_Zx(v0) [1.7.2]

6. Set fp = S3_from_bits(packed_fp) [1.9.4]

7. Set v1 = Mod_Rq(e · f)

8. Set v2 = Mod_S3(v1 · fp)

9. Set packed_m = S3_to_bits(v2) [1.9.3]

10. Output packed_m

2 Performance analysis
The results in this section are with respect to the parameters listed in Table 1.5.

2.1 Description of platform
In order to obtain benchmarks, we evaluate our reference implementation on a machine using the Intel
x64-86 instruction set. In particular, we use a single core of a 3.5 GHz Intel Core i7-4770K CPU. We
follow the standard practice of disabling TurboBoost and hyper-threading. The system has 32KiB L1
instruction cache, 32KiB L1 data cache, 256KiB L2 cache and 8192KiB L3 cache. Furthermore, it has
32GiB of RAM, running at 1333MHz. When performing the benchmarks, the system ran on Linux
kernel 4.9.0-4-amd64, Debian 9 (Stretch). We compiled the code using GCC version 6.3.0-18, with the
compiler optimization flag -O3.

We used the same platform described above to evaluate our AVX2 implementation. For the AVX2
implementation, we included the additional compiler flags ‘-march=native’ and ‘-mtune=native’.

2.2 Time
The median resulting cycle counts are listed in the table below.

key generation encapsulation decapsulation
reference C 18 151 998 1 208 946 3 578 538

optimized AVX2 294 874 38 456 68 458
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2.3 Space
The public key consists of 1138 bytes, and the secret key takes 1418 bytes. The transmitted ciphertext
consists of 1278 bytes. Of the ciphertext size, 140 bytes are a direct result of the transformation from
the underlying OW-CPA secure scheme to the CCA2 secure KEM.

Our reference implementation uses almost 11KiB of stack space and our AVX2 software uses just
over 43KiB, but this was not a target of optimization and should not be considered to be a lower bound.

2.4 How parameters affect performance
As the main arithmetic operations are (sub-)quadratic, we would expect that doubling n would lead to at
most a factor of 4 overhead in time. Indeed, preliminary tests with our reference implementation suggest
that n = 1373 would be less than a factor of 4 times slower. Likewise we would expect memory (and
communication cost) to roughly double. Given that these parameters span an large range of relevant
security levels (See Table 5), it is fair to say that parameters have only a modest impact on performance.

2.5 Optimizations
We refer to [15] for a detailed discussion of the optimizations used in our AVX2 implementation.

3 Known Answer Test values
All KAT values are included in subdirectories of the directory KAT/ntruhrss701 of the submission
package. The KAT values were generated by the PQCgenKAT_kem program provided by NIST. The
complete list of KAT files is:

− KAT/ntruhrss701/PQCkemKAT_1418.req,

− KAT/ntruhrss701/PQCkemKAT_1418.rsp.

4 Expected security strength

4.1 Security definitions
NTRU-HRSS-KEM meets the standard IND-CCA2 security definition for a key encapsulation mecha-
nism. Parameters have been chosen so that decryption failure is impossible, and a key can be reused
at least 264 times without compromising security. This follows from Dent’s proof of security for the
transform in [8, Table 5.], and from the presumed one-wayness of the underlying encryption scheme,
NTRU-HRSS.

4.2 Rationale
Based on the analysis in Section 5.1, we expect that violating the one-wayness of NTRU-HRSS would
require computational resources greater than those required to perform a key search on AES-128.

Our security claim is based primarily on Table 4, which costs the best known classical attack at 2136

operations and 2136 space. These operations mask large factors that put the true cost of the attack well
above the 2145 bit operations required to attack AES-128, even in a RAM model.

Our security claim is also based on Table 5, which costs the best known quantum attack at 2123

Grover iterations. This attack is in the quantum RAM model and requires quantum-accessible classical
memory of size 2123. Again, large factors are ignored and it is unlikely that this attack maintains its
advantage over the classical variant when it is instantiated in a quantum circuit model.
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5 Analysis with respect to known attacks

5.1 Lattice attacks
Some background on lattices is assumed. In this section we denote the degree of Φn by n′ = n− 1.

Each element of S can be uniquely represented by a polynomial of the form v =
∑n′−1

i=0 vix
i. The

correspondence between these representatives and their coefficient vectors, v 7→ (v0, . . . , vn′−1) ∈ Rn′ ,
allows one to view S as a euclidean lattice. Lattice attacks on NTRU begin from the observation that
for any h ∈ S the set

Lh :=
{

(a, b) ∈ S2 : b ≡ a · h (mod q)
}

is, likewise, a lattice in R2·n′ . A basis for Lh is given by the rows of the 2n′ × 2n′ matrix

[Lh] =

(
In′ H

0 q · In′

)
, (1)

where the i-th row of H for 0 ≤ i ≤ n′ − 1 is the coefficient vector of Mod_Sq(xi · h). If h is an NTRU
public key then, by construction1, the secret key corresponds to a vector (f, g) in Lh. Since (f, g) is
known to have small norm, one might hope to recover it using lattice reduction.

Attacks involving Lh have gone through several reformulations. The earliest such attack, due to
Hoffstein, Pipher, and Silverman, was framed as an exact key recovery problem [11]. Coppersmith and
Shamir later observed that any short vector in Lh, not just (f, g), could be used to invert the NTRU
one way function [7]. It was this reformulation, as an approximation problem, that initiated the first
serious efforts to understand the difficulty of finding short vectors in Lh [12, 18].

Two additional observations, which appear as early as May’s work on the cryptanalysis of NTRU-
107 [18], bring us to the modern attack strategy. The first is that the ratio of successive minima
λ2(Lh)/λ1(Lh) is a parameter of interest in assessing the difficulty of finding a short vector in Lh. That
is to say that the NTRU problem reduces to unique SVP. Surprisingly, this brings us back to an exact
search for (f, g), or one of a few related vectors, but unique SVP is known to be easier than approximate
SVP in practice [9]. The second observation is that, when lattice reduction is expensive, it may be
fruitful to guess a subset of the coefficients of (f, g). May’s dimension reduction technique [18] and May
and Silverman’s pattern method [19] trade success probability in guessing coefficients of (f, g) against
the cost of solving unique SVP in a sublattice of Lh.

The most effective lattice attacks in the literature treat NTRU key recovery as a unique shortest
vector problem. Depending on the assumed non-asymptotic cost of lattice reduction, these attacks
make use of guessing (or ignoring) coefficients to reduce the lattice dimension. Recently introduced
sieve algorithms have single exponential cost that is small enough to call into question the effectiveness
of guessing coefficients, however it is not clear that combinatorial techniques are irrelevant in realistic
models of computation.

In Section 5.3.1 we estimate the cost of solving unique SVP in Lh in the Core-SVP cost model from
the NewHope paper [3]. We do not aim to provide a complete description of the cost model, or of unique
SVP methods in general. Background and references on solving unique SVP, as well as substantial
discussion of the Core-SVP cost model, can be found in Albrecht–Göpfert–Virdia–Wunderer [1]. While
Albrecht et al. focus on LWE, their analysis of LWE with short secrets applies directly to NTRU. In
fact, the attack described in [1, Section 5.1] is identical2 to May’s “dimension reduction” attack applied

1The output of Generate_Public_Key is the R/q-representative of 3 · (x − 1) · g/f , but h here should be thought of as
the S/q-representative of g/f . Since 3 · (x− 1) is a unit in S/q this change is purely syntactic.

2The attack in [1, Section 5.1] uses a lattice generated by the rows of νIn′ −AT 0

0 q · Im 0

0 c 1


where (A, c) is an instance of the LWE problem. By replacing −AT by H and c by an NTRU ciphertext we get a message
recovery attack on NTRU. By replacing −AT by H and omitting the row containing c we get May’s attack. Taking m < n′

corresponds to dimension reduction. The use of the parameter ν is a standard lattice reduction trick that also appears in
[7] and [18].
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to [Lh], despite being developed independently and in a different context.
In Section 5.4, we consider Howgrave-Graham’s hybrid attack [13] in the Core-SVP cost model. The

hybrid attack is a unique SVP attack that uses a meet-in-the-middle strategy for guessing coefficients.

Both analyses require the following fact, which is easily derived by series multisection of (1 + x)2·k.

Fact 1. Let Y be a random variable distributed according to the centered binomial distribution of pa-
rameter k. Then

Pr [Y ≡ 0 (mod 3)] = 1
3

(
1 + 2

22·k

)
,

Pr [Y ≡ ±1 (mod 3)] = 1
3

(
1− 1

22·k

)
.

For the recommended parameter, k = 2, this gives a distribution on (−1, 0, 1) of ( 5
16 ,

6
16 ,

5
16 ). The

expected euclidean length of m coefficients is therefore
√
m · 10/16, and the entropy per coefficient is

≈ 1.579 bits.

5.2 Cost of SVP Algorithms.
In the following sections we use four different cost estimates for SVP-b. The cost of the List-Decoding
Sieve from [4] is summarized in Table 2. The cost of the List-Decoding Sieve when Grover search is used
to answer nearest-neighbor queries is summarized in Table 3.

We estimate the cost of solving SVP by enumeration in dimension b using a quasilinear fit to the
experimental data of Chen and Nguyen [6]. Following [2] we use the trend line:

enum(b) = 0.18728 · b log2(b)− 1.0192 · b+ 16.10. (2)

The cost of using an enumeration algorithm for SVP−b is then estimated as 2enum(b).
Finally we consider a hypothetical square-root speedup in the cost of enumeration on a quantum

computer, for a cost of 2enum(b)/2. While this is a purely hypothetical improvement, it is no less
hypothetical than a quantum variant of the List-Decoding Sieve which maintains its asymptotic cost in
a quantum circuit model. As we shall see, even this dramatic speedup in enumeration is unlikely to be
competitive with the classical List-Decoding sieve, especially if a restriction is imposed on the depth of
quantum computations.

Pre-quantum cost of List-Decoding Sieve
Metric Time Space
Balanced 20.292·b 20.292·b

Min. Space 20.368·b 20.208·b

Table 2: Cost of the List-Decoding Sieve as a function of the dimension, with all subexponential factors
suppressed [4].

Post-quantum cost of List-Decoding Sieve
Metric Grover Iterations Space
Balanced 20.265·b 20.265·b

Min. Space 20.2975·b 20.208·b

Table 3: Cost of the List-Decoding Sieve, as a function of the dimension, when Grover search is used to
answer nearest neighbor queries [17]. Again subexponential factors are suppressed, but we have units of
Grover iterations rather than time. This is because it is not clear that the algorithm can be instantiated
in a quantum circuit model without re-evaluating its asymptotic cost.
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5.3 Core-SVP Cost Estimates.
The Core-SVP estimate was introduced in the security evaluation of NewHope [3]. A thorough descrip-
tion can be found in [1]. Success criteria for the primal and hybrid attacks are given in the following
sections.

5.3.1 Primal Attack.

The primal attack has two parameters: b, the blocksize used for lattice reduction, and m, the dimension
reduction parameter3. The primal attack attempts to solve unique SVP in a sublattice Λprimal ⊆ Lh

of rank d = n′ + m and volume qm. A BKZ-b reduced basis V = {v1, . . . , vd} for Λprimal is computed.
Following this, a single call to an SVP-b routine is made on {v′d−b+1, v

′
d−b+2, . . . v

′
d}, where v′i is vi

projected orthogonally to the first d − b vectors of V . The parameters b and m are chosen so that a
short vector in this projected sublattice is likely to be mapped to a short vector in Λprimal by Babai’s
nearest plane algorithm.

The success condition is with respect to the length of the first vector in the last block of the reduced
basis, vd−b+1. The Gram-Schmidt vectors of the reduced basis, v∗1 , v∗2 , . . . , v∗d, are expected to satisfy
||vi+1|| ≤ δd−2i · qm/d where δ = ((π · b)1/b · b/(2π · e))1/(2(b−1)) . The assumption that this is the case is
known as the Geometric Series Assumption.

In [3], it was suggested that an attacker could expect to recover (f, g) from its projection orthogonal
to the first d− b vectors of V if√

b/d · ||(f, g)|| ≤ ||v∗d−b+1|| ≈ δ2b−d · qm/d. (3)

Further evidence for this claim was given in [1].
From Fact 1 we have

√
b/d · ||(f, g)|| ≈

√
b ·
√

10/16. The Core-SVP cost of the attack is found by
minimizing the cost of one call to an algorithm for SVP-b over all choices of m and b for which (3) is
satisfied.

In Tables 4 and 5 we give optimal parameters for the primal attack in the Core-SVP model. The
main entries of interest are for n′ = 700, corresponding to our recommended parameter set. We also list
the cost for n′ = 940 and n′ = 1372, as these give some indication for how security scales with n and
may be useful in comparisons with other proposals.

Primal Attack with List-Decoding Sieve
n′ m b Metric Operations Vectors

700 626 465
Balanced 2136 2136

Min. Space 2171 296

940 824 616
Balanced 2180 2180

Min. Space 2226 2127

1372 1150 969
Balanced 2283 2283

Min. Space 2357 2201

Table 4: Optimal parameters for the primal attack when the cost of SVP−b is as given in Table 2.
3In the LWE context m is the number of LWE samples used by the attacker.
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Primal Attack with List-Decoding Sieve and Grover Search
n′ m b Metric Grover Iterations Iteration Depth Vectors

700 626 465
Balanced 2123 226 2123

Min. Space 2138 241 296

940 824 616
Balanced 2163 235 2163

Min. Space 2183 255 2127

1372 1150 969
Balanced 2257 255 2257

Min. Space 2288 287 2201

Table 5: Optimal parameters for the primal attack when the cost of SVP−b is as given in Table 3.

Cost of quantum queries The quantum cost of the list decoding sieve depends, crucially, on the
use of the quantum RAM model of computation. Determining its cost in a circuit model is an open
problem of considerable interest. Each Grover iteration accesses a block of memory of size roughly equal
to the square of the figure given in the “Iteration Depth” column. If quantum RAM requires active error
correction, then the advantage over the Table 4 cost would be lost.

Size of vectors Even assuming just b bits per vector, the Table 4 cost of attacking our recommended
parameter set would inflate to 2145 bits. Merely populating this memory would already be as expensive
than a key search on AES-128.

Effect of MAXDEPTH The List Decoding Sieve allows for a large degree of parallelization and can
be tuned to avoid reasonable MAXDEPTH bounds in a classical RAM model. To a lesser extent, this
is also true when Grover search is used to perform individual near-neighbor searches. We have listed
the “Iteration Depth” of these searches, i.e. the number of Grover iterations required to perform each
near-neighbor query, in Table 5.

Depending on the circuit cost of one Grover iteration, it is plausible that a small MAXDEPTH could
be saturated. For example, the time optimal parameterization in dimension 465 has iteration depth
226. This would saturate a 240 limit on MAXDEPTH if the circuit for a Grover iteration had depth 214

quantum gates. For comparison, the circuit for one round of AES-128 given in [10] has depth 213.4 logical
quantum gates. That said, limiting MAXDEPTH to 264 would likely have no impact on the Core-SVP
security estimate for our n = 701 parameter set.

5.4 Hybrid attack
The hybrid attack targets a sublattice Λhybrid ⊆ Lh of rank d = n′ + m. A BKZ-b reduced basis
V = {v1, . . . , vd−s} for a rank d − s sublattice of Λhybrid is computed. Suppose w is a short vector in
Lh. The attacker attempts to guess s coefficients of the projection of w orthogonal to V . If the guess
is correct, then it can be lifted to a short vector in Λhybrid using Babai’s nearest plane algorithm. The
success condition is with respect to the length of the last Gram-Schmidt vector in the last block of the
reduced basis, v∗d−s. Heuristically, one can expect the attack to work when

||v∗d−s|| = δ2s−d+2 · qm/d ≥ 2 · ||w||∞ = 2.

We have found that the hybrid attack is not competitive with the primal attack when both attacks
use the List-Decoding Sieve with cost given by Table 3. However there are still some interesting trade-
offs to consider. Recall that the costs in Table 3 depend on the use of the quantum RAM model. It is
not clear whether quantum RAM is less expensive than general purpose quantum circuitry. This leads
us to consider parallel hybrid attacks that use less quantum circuitry than would be required to run the
List-Decoding Sieve on a quantum computer.
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In Table 6 we see that the hybrid attack can outperform the classical List-Decoding Sieve if Grover
iterations are inexpensive. However this is only true when MAXDEPTH = ∞. Reasonable limits on
MAXDEPTH eliminate the advantage of the hybrid attack.

Hybrid Attack with List-Decoding Sieve
n′ MAXDEPTH m b s Grover Iterations Iteration Depth Processors

700

∞ 626 459 169 2133 2133 20

2128 621 461 167 2134 2128 26

296 641 482 150 2140 296 244

264 660 502 134 2146 264 282

940 ∞ 822 614 227 2179 2179 20

1372 ∞ 1164 980 363 2286 2286 20

Table 6: Cost of the hybrid attack using the List-Decoding Sieve with cost given by Table 2. The
coefficient guessing stage of the attack is done with Grover search. The classical time and space required
for the list-decoding sieve is matched to the number of Grover iterations. The MAXDEPTH limit only
affects the coefficient guessing stage.

In Table 7 we consider the cost of the hybrid attack when enumeration is used to solve SVP−b. This
is an attractive option as it requires only polynomial space. However, as the table indicates, reasonable
limits on MAXDEPTH force one to use massive amounts of parallelism. Even with MAXDEPTH = 2128

it is clearly better to use a space optimized (classical) List-Decoding Sieve.

Hybrid Attack with Enumeration and Grover Search
n′ MAXDEPTH m b s Grover Iterations Iteration Depth Processors

700

∞ 508 345 264 2208 2208 20

2128 546 383 232 2241 2128 2110

296 558 396 221 2252 296 2156

264 574 411 208 2265 264 2200

940 ∞ 654 446 373 2294 2294 20

1372 ∞ 860 653 626 2494 2494 20

Table 7: Optimal parameters for the hybrid attack when SVP−b is solved by enumeration of cost
2enum(b). The formula for enum(b) is Equation (2). The coefficient guessing stage of the attack is done
with Grover search. The MAXDEPTH limit only affects the coefficient guessing stage.

Finally in Table 8 we consider the effect of a hypothetical square-root speedup in the cost of enu-
meration. We assume that this speedup is due to a quantum algorithm, so it is limited by MAXDEPTH.
Even with this massive speedup, it seems that reasonable limits on MAXDEPTH force a high degree of
parallelism. The entry with MAXDEPTH = 296 is interesting, but it seems likely that the attack in Table
4 is better.
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Hybrid Attack with
√
Enumeration and Grover Search

n′ MAXDEPTH m b s Grover Iterations Iteration Depth Processors

700

∞ 602 440 184 2145 2145 20

2128 602 440 184 2163 2128 234

296 602 440 184 2195 296 298

264 602 440 184 2227 264 2162

940 ∞ 781 572 263 2207 2207 20

1372 ∞ 1060 866 453 2357 2357 20

Table 8: Optimal parameters for the hybrid attack when SVP−b is solved by enumeration of cost
2enum(b)/2. The formula for enum(b) is Equation (2). The coefficient guessing stage of the attack is done
with Grover search. The MAXDEPTH limit only affects all parts of the computation.

5.5 Attacks on symmetric primitives
The only symmetric primitive we use is SHAKE128. This also meets the Category 1 security level. We
note that the KEM can, in principle, be used to exchange close to n · log 3 bits of key material. A more
secure symmetric primitive can be substituted without changing any other details of the construction.

6 Advantages and limitations
We focus on comparisons with other lattice based systems.

6.1 Compared with Standard NTRU.
Some advantages and disadvantages of NTRU-HRSS compared with Standard NTRU (as defined in [16])
are as follows.

Advantages.

− No decryption failures. NTRU EES parameter sets have small but non-zero decryption failure
probability.

− No padding mechanisms. By using a direct construction of a KEM, we have avoided the need
for a padding mechanism like NAEP [14].

− No fixed weight distributions. NTRU EES parameter sets use fixed weight coefficient vectors
to ensure that information about secret keys (resp. messages) is not revealed through h(1) (resp
c(1)). This is more difficult to implement in constant time than the combination of Sample_T and
S3_to_R used in NTRU-HRSS.

− No rejection sampling. NTRU EES uses fixed length strings of uniform random bits to sample
uniform random trits and uniform values in {0, 1, . . . , n−1}. In order for these processes to succeed
with all but negligible probability, many bits must be sampled.

− Secret keys are always invertible. The restrictions on n listed in Section 1.3.1 ensure that
f is always invertible modulo 2. NTRU EES parameters are chosen so that the probability of
generating a non-invertible f is small but not necessarily zero.
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Disadvantages.

− Large modulus. NTRU-HRSS needs a comparatively large modulus to eliminate decryption
failure. This decreases security and increases communication cost. The n = 701 parameter set for
NTRU-HRSS would gain an estimated 20 bits of security by using modulus q = 2048 instead of
q = 8192. Ciphertext length would also drop by 175 bytes.

− Inverses mod p. NTRU EES takes f ≡ 1 (mod p) and thereby avoids multiplying by f−1

(mod p) during decryption. Doing the same in NTRU-HRSS would require an even larger modulus.

6.2 Compared with Streamlined NTRUPrime.
Some advantages and disadvantages of NTRU-HRSS compared with Streamlined NTRUPrime (as de-
fined in [5]) are as follows.

6.2.1 Advantages.

− No fixed weight distributions. Streamlined NTRUPrime uses relies on fixed weight distribu-
tions for its proof of correctness.

− Private keys are always invertible. It is possible to pick an f that is not invertible modulo 3
in Streamlined NTRUPrime.

− Power of 2 modulus. Streamlined NTRUPrime requires a prime modulus. Some arithmetic
operations are faster when q is a power of 2.

6.2.2 Disadvantages.

− Cyclotomic ring. NTRUPrime was designed to avoid “worrisome structure” of cyclotomic rings.
While algebraic structure does not figure into the cost of the best known attacks on NTRU-HRSS,
it is conceivable that better algebraic attacks exist. It is also conceivable that such attacks would
not apply to the rings used by NTRUPrime.

− Probabilistic encryption. Streamlined NTRUPrime is constructed as a deterministic public key
encryption scheme.

− No “LWR”-style rounding. Streamlined NTRUPrime ciphertexts can be compressed.

6.3 Compared with LWE systems.
Advantages.

− No decryption failures. Most practical LWE schemes opt for a small decryption failure rate
rather than for a narrow coefficient distribution or a large modulus.

Disadvantages.

− Larger dimension for equal security. In order to eliminate decryption failure, NTRU-HRSS
uses trinary secret keys and messages. This results in a lower level of security than could be had
with the same dimension and modulus but larger noise.
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