
Full-Size High-Security ECC Implementation on

MSP430 Microcontrollers

Gesine Hinterwälder1,2, Amir Moradi1, Michael Hutter3, Peter Schwabe4, and
Christof Paar1,2 ?

1 Horst Görtz Institute for IT Security, Ruhr-University Bochum, Germany
{gesine.hinterwaelder,amir.moradi,christof.paar}@rub.de

2 Department of Electrical and Computer Engineering, University of Massachusetts
Amherst

3 Institute for Applied Information Processing and Communications (IAIK), Graz
University of Technology, Austria
Michael.Hutter@iaik.tugraz.at

4 Digital Security Group, Radboud University Nijmegen, The Netherlands
peter@cryptojedi.org

Abstract. In the era of the Internet of Things, smart electronic devices
facilitate processes in our everyday lives. Texas Instrument's MSP430
microcontrollers target low-power applications, among which are wire-
less sensor, metering and medical applications. Those domains have in
common that sensitive data is processed, which calls for strong security
primitives to be implemented on those devices. Curve25519, which builds
on a 255-bit prime �eld, has been proposed as an e�cient, highly-secure
elliptic-curve. While its high performance on powerful processors has
been shown, the question remains, whether it is suitable for use in embed-
ded devices. In this paper we present an implementation of Curve25519
for MSP430 microcontrollers. To combat timing attacks, we completely
avoid conditional jumps and loads, thus making our software constant
time. We give a comprehensive evaluation of di�erent implementations of
the modular multiplication and show which ones are favorable for di�er-
ent conditions. We further present implementation results of Curve25519,
where our best implementation requires 9.1 million or 6.5 million cycles
on MSP430Xs having a 16× 16-bit or a 32× 32-bit hardware multiplier
respectively.

Keywords: MSP430, Carry-save representation, Karatsuba, operand-caching
multiplication, Curve25519

? This work was supported in part by the German Federal Ministry for Economic
A�airs and Energy (Grant 01ME12025 SecMobil), by the Netherlands Organisation
for Scienti�c Research (NWO) through Veni 2013 project 13114, and by the Austrian
Science Fund (FWF) under the grant number TRP251-N23. Permanent ID of this
document: 0b3f1ea83d48e400ad1def71578c4c66. Date: 2014-10-01

1 Introduction

Implantable medical devices execute services essential for a patient's well-being.
Their power consumption must be very low, as they operate either entirely based
on harvested power, or contain a battery, which can only be replaced by surgery.
Many of them communicate wirelessly over an RF channel, which allows for
con�guration of those devices without surgical intervention. However, the wire-
less channel also poses potential attack possibilities, as shown by Halperin et
al. in [12]. This calls for strong security mechanisms to be implemented on those
very constrained devices.

Texas Instruments designed MSP430 microcontrollers to target low-power
applications, and advertises the application of MSP430s in the domain of med-
ical devices [16]. MSP430s can be operated at low voltages (1.8 to 3.3 Volts).
Newer devices of the MSP430 family have AES hardware accelerators that sup-
port 256-bit AES. Yet, many security services that are desirable for wireless
communication, especially in the domain of medical devices, rely on public-
key cryptography. This naturally raises the question about the performance of
public-key cryptography on MSP430 microcontrollers.

Bernstein introduced the Curve25519 elliptic-curve Di�e-Hellman key ex-
change protocol in 2006 [2]. It uses a Montgomery curve de�ned over a 255-bit
prime �eld and achieves a security level of 128 bits. Montgomery curves are
known to allow for very e�cient variable-base-point single-scalar multiplication,
which makes this curve attractive for elliptic-curve key-agreement schemes.

Our contribution. In this paper, we present a full implementation of the
Curve25519 Di�e-Hellman key-agreement scheme on MSP430X microcontrollers1.
We di�erentiate those MSP430Xs with a 16×16-bit and those with a 32×32-bit
hardware multiplier and developed our code for both platforms. As all previous
implementations of Curve25519, we use projective coordinates for the elliptic-
curve point representation. The main performance bottleneck of the variable-
base-point single-scalar multiplication are thus modular multiplications in the
underlying prime �eld. We hence put our focus on optimizing the modular mul-
tiplication on the MSP430 architecture, and give a comprehensive evaluation of
di�erent implementation techniques for MSP430 microcontrollers.

We use the Montgomery powering ladder [24] to implement the scalar mul-
tiplication on the elliptic curve, since this is a highly regular algorithm, making
the executed computation independent of the scalar. Our software completely
avoids input-dependent loads and branches, thus executing in constant time and
thus inherently protecting against timing attacks such as [1] or [31].

We evaluate our implementation by executing it on Texas Instrument's MSP-
EXP430FR5969 LaunchPad Evaluation Kit. This board integrates an MSP430-
FR5969 microcontroller [28] with a 32 × 32-bit hardware multiplier, which is
built into the WISP 5.0 UHF computational RFID tag2, a device that operates

1 The software is available at http://emsec.rub.de/research/publications/

Curve25519MSPLatin2014/.
2 http://wisp.wikispaces.com/WISP%205.0

http://emsec.rub.de/research/publications/Curve25519MSPLatin2014/
http://emsec.rub.de/research/publications/Curve25519MSPLatin2014/
http://wisp.wikispaces.com/WISP%205.0

based on harvested power from the RF �eld. With a price of a few dollars, this
microcontroller is a suitable target for wireless sensor and medical applications.

Related work. Curve25519 has been implemented on several platforms. In the
paper introducing Curve25519 [2], Bernstein presented implementation results
for several Intel Pentium and an AMD Athlon processor. In 2009, Costigan and
Schwabe presented Curve25519 software for the Cell Broadband Engine [7]. In
2012, Bernstein and Schwabe presented an implementation for ARM processors
with NEON vector instructions [5]. Recently, Sasdrich and Güneysu presented
an implementation on recon�gurable hardware in [26]. Another recent publica-
tion shows an implementation of Curve25519, that �ts into 18 tweets [20,6]. So
far, only one implementation shows performance results of Curve25519 on con-
strained devices, namely the implementation for 8-bit AVR microcontrollers by
Hutter and Schwabe presented in [13]. No previous work has yet shown imple-
mentation results of Curve25519 for 16-bit microcontrollers.

There exist many publications on Elliptic Curve Cryptography (ECC) im-
plementations on the MSP430 microcontroller architecture. One of the �rst pub-
lications of asymmetric cryptography on the MSP430 is by Guajardo, Blümel,
Krieger, and Paar in 2001 [11]. They presented an implementation of an el-
liptic curve with a security level of 64 bits and show that a scalar multipli-
cation can be performed within 3.4 million clock cycles. In 2007, Scott and
Szczechowiak presented optimizations for underlying ECC �nite-�eld multipli-
cations [27]. Their 160 × 160-bit (hybrid) multiplication method requires 1746
cycles. In 2009, Szczechowiak, Kargl, Scott, and Collier presented pairing-based
cryptography on the MSP430 [29]. Similar results have been reported by Gouvêa
and López in the same year [9]. They reported new speed records for 160-bit and
256-bit �nite-�eld multiplications on the MSP430 needing 1586 and 3597 cycles,
respectively. They further presented an implementation of a 256-bit elliptic curve
random scalar multiplication needing 20.4 million clock cycles. In 2011, Wenger
and Werner compared ECC scalar multiplications on various 16-bit microcon-
trollers [33]. Their Montgomery-ladder based scalar multiplication needs 23.9
million cycles using a NIST P-256 elliptic curve. Also in 2011, Pendl, Pelnar,
and Hutter presented the �rst ECC implementation running on the WISP UHF
RFID tag [25]. Their 192-bit NIST curve implementation achieves an execution
time of around 10 million clock cycles. They also reported �rst multi-precision
multiplication results for 192 bits needing 2581 cycles. In 2012, Gouvêa, Oliveira,
and López reported new speed records for di�erent MSP430 architectures. They
improved their results from [9], namely, for the MSP architecture (with a 16×16
multiplier) their 160-bit and 256-bit �nite-�eld multiplication implementations
need 1565 and 3563 cycles, respectively.

Also note that there exist recent works to extend the MSP430 with instruction-
set extensions. In 2013, Wenger, Unterluggauer, and Werner [32] presented an
MSP430 clone in hardware that implements a special instruction-set extension.
For a NIST P-256 elliptic curve, their Montgomery ladder implementation re-
quires 9 million clock cycles � without instruction-set extensions (and to put
these numbers in relation), their implementation needs 22.2 million cycles.

There also exist several software libraries for the MSP430 that support ECC.
These libraries mainly target sensor nodes such as the Tmote Sky which are
equipped with an MSP430 microcontroller. Examples are the NanoECC [30],
TinyECC [22], and MIRACL [23] libraries, and the RELIC toolkit [8].

Under the common assumption that the execution time of ECC grows ap-
proximately as a cubic function of the �eld size, our software signi�cantly outper-
forms all presented ECC implementations on MSP430 microcontrollers in speed,
while executing in constant time, thus providing security against timing attacks.

Organization. Section 2 describes speci�cs about the MSP430 architecture im-
portant for our implementation. Section 3 describes general basics about the
implementation of Curve25519, Section 4 presents a detailed description of the
various implementation techniques for modular multiplications that we investi-
gated. Implementation and measurement results are presented in Section 5, and
we conclude our work with Section 6.

2 The MSP430X Microcontroller Architecture

We implemented the modular multiplication operation for MSP430X devices
that feature a 16 × 16-bit hardware multiplier as well as for those that feature
a 32× 32-bit multiplier, and show which implementation technique is preferable
on either platform. We give cycle count estimations for the MSP430F2618 [19],
which has a 16× 16-bit hardware multiplier, and cycle count estimations as well
as execution results for the MSP430FR5969 [28], which has a 32×32-bit hardware
multiplier. But, our results can be generalized to other microcontrollers from the
MSP430 family. This section describes speci�cs about the MSP430X architecture
that are important for the discussion of the implementation techniques. For more
details about the MSP430X architecture, we refer the reader to the MSP430x2xx
user's guide [18].

Processing unit. Both MSP430 microcontrollers that we consider have a 16-
bit RISC CPU, with 27 core instructions and 24 emulated instructions. The
CPU has 16 16-bit registers, of which R0 to R3 are special-purpose registers and
R4 to R15 are freely usable working registers. The execution time of all register
operations is one cycle, but the overall execution time for an instruction depends
on the instruction format and the addressing mode.

Addressing mode. The CPU features 7 addressing modes. Our implementation
uses the register mode, indexed mode, absolute mode, indirect auto-increment
mode, and immediate mode. It is important to note that while indirect auto-
increment mode saves one clock cycle on all operations compared to indexed
mode, only indexed mode can be used to store results back to RAM.

Hardware multiplier. Both devices that we consider feature memory-mapped
hardware multipliers, which work in parallel to the CPU. Four types of multi-
plications, namely signed and unsigned multiply as well as signed and unsigned
multiply-and-accumulate are supported. The multiplier registers are peripheral

registers, which have to be loaded with CPU instructions. The result is stored in
two (in case of 16×16-bit multipliers) or four (in case of 32×32-bit multipliers)
16-bit registers. A register SUMEXT is available, which is similar to the status
register in the main CPU. This register shows for the multiply-and-accumulate
instructions, whether a multiplication has produced a carry bit. It is not possible
to accumulate carries in SUMEXT. The time that is required for the multiplication
is determined by the time it takes to load the multiplier registers.

3 Implementation of Curve25519

Curve25519 is an elliptic curve in Montgomery form. This curve has been care-
fully chosen to provide very high performance for Di�e-Hellman key agreement
at the 128-bit security level. It is de�ned by the equation y2 = x3 +486662x2 +x
over the prime �eld F2255−19. For details about the choice of curve and security
see [2].

The key-agreement scheme computes a 32-byte shared secret Qx from a 32-
byte secret key n and a 32-byte public key Px. Here Qx and Px are x-coordinates
of points on the elliptic curve. At its core, the Curve25519 Di�e-Hellman key-
agreement scheme executes a variable-base-point single-scalar multiplication on
the elliptic curve, multiplying the public key Px with the secret key n, to obtain
the shared secret Qx. Special conditions are given for the secret scalar n, namely
that the 3 least signi�cant bits and the most signi�cant bit are set to zero, and
the second-most signi�cant bit is set to 1 [4].

We follow the suggestions of [2] for implementing the variable-base-point
single-scalar multiplication on the elliptic curve. We used the Montgomery pow-
ering ladder [24] of 255 �ladder steps�. Each ladder step computes a di�erential
point addition and a point doubling. Starting with the points R1 and R2, in each
ladder step either R2 is added to R1 (R1 ← R1 + R2) and then R2 is doubled
(R2 ← 2 · R2), or R1 is added to R2 (R2 ← R2 + R1) and then R1 is doubled
(R1← 2 · R1). To avoid conditional load addresses that can lead to cache-timing
attacks, we execute the same operations (R1← R1+ R2 and R2← 2 · R2) in each
iteration, and swap the contents of R1 and R2 depending on the scalar bit b.

Note that for the conditional swap we do not use branch instructions. Instead,
this operation is implemented as follows: An unsigned variable b̂ is cleared. Then
b is subtracted from b̂ leading to b̂ being 0 or 0x��, depending on whether b is
0 or 1. To swap the contents of x and y, an auxiliary variable is used to store
tswp = x⊕ y. tswp is anded with the value stored in b̂, resulting in tswp = x⊕ y
for b = 1 and tswp = 0 otherwise. Then tswp is xored with x and y leading to
either the original values being stored in x and y for b = 0, or the swapped values
for the case of b = 1. Together with the constant-time �eld arithmetic we thus
obtain a fully timing-attack protected constant-time implementation.

In [24] Montgomery presented x-coordinate-only doubling and di�erential-
addition formulas for points on a curve de�ned by an equation of the form
By2 = x3 + Ax2 + x. He showed the correctness of those formulas, which rely
on standard-projective-coordinate representation of the points, for the case of

Algorithm 1: x-coordinate-only variable base-point single-scalar point
multiplication on Curve25519 based on the Montgomery powering lad-
der [2,7].

Input : n ∈ Z, Px, x-coordinate of point P .
Output: Qx, x-coordinate of point Q← n · P .

1 X1 ← Px;X2 ← 1;Z2 ← 0;X3 ← Px;Z3 ← 1

2 for i = 254 downto 0 do
3 if ni 6= ni−1 then
4 swap(X2, X3) /* This conditional swapping is implemented */

5 swap(Z2, Z3) /* in constant time (see Section 3). */

6 end
7 t1 ← X2 + Z2

8 t2 ← X2 − Z2

9 t3 ← X3 + Z3

10 t4 ← X3 − Z3

11 t6 ← t21
12 t7 ← t22
13 t5 ← t6 − t7
14 t8 ← t4 · t1
15 t9 ← t3 · t2
16 X3 ← (t8 + t9)

2

17 Z3 ← X1(t8 − t9)
2

18 X2 ← t6 · t7
19 Z2 ← t5(t7 + 121666t5)

2

20 end

21 if n0 == 1 then
22 swap(X2, X3) /* This conditional swapping is implemented */

23 swap(Z2, Z3) /* in constant time (see Section 3). */

24 end

25 Z2 ← 1/Z2

26 return (X2 · Z2)

inputs not being equal to the point at in�nity. In [2] Bernstein extended the
proof of correctness to the case of an input being equal to the point at in�n-
ity. Using these formulas, a di�erential addition of two points requires 4 multi-
plications and 2 squarings. Point doubling requires 2 multiplications, 2 squar-
ings, and one multiplication by the constant (486662 + 2)/4 = 121666. The
di�erential-addition formula requires as input the di�erence of the input points.
If the Z-coordinate of this di�erence point is one, the addition formula can be
reduced to require only 3 multiplications and 2 squarings. Algorithm 1 summa-
rizes the x-coordinate-only variable-base-point single-scalar point multiplication
on Curve25519 requiring 255 di�erential additions and doublings (ladder steps),
255 conditional swaps, and one inversion at the end to transform the result back
to a�ne coordinates [2,7].

4 Implementation of Modular Multiplication in F2255−19

Many techniques have been proposed to improve the performance of multi-
precision multiplication implementations, especially for constrained devices. In
the following we describe which techniques we implemented for the MSP430X ar-
chitecture. To have a fair comparison, all methods were implemented in assembly
and were fully unrolled.

Representation of big integers. We use an unsigned radix-216 representa-
tion for the operand-caching [15] and the Karatsuba multiplication [14,21], and
a signed radix-2d255/26e representation for the carry-save implementation. In
unsigned radix-216 representation, an n-bit integer A is represented as an ar-
ray of m = dn/16e words in little-endian order as (a0, a1, . . . am−1), such that

A =
∑m−1

i=0 ai2
16i where ai ∈ {0, . . . , 216 − 1}. In the radix-2d255/26e representa-

tion an n-bit integer B is represented as an array of ` = d26n/255e 16-bit words

in little-endian order as (b0, b1, . . . b`−1), such that B =
∑`−1

j=0 bj2
d255j/26e, where

bj ∈ {−215, . . . , 215−1}. Hence, in the radix-2d255/26e representation an element
in F2255−19 is represented using 26 16-bit words. Since inputs and outputs to
the scalar multiplication on Curve25519 are 32-byte arrays, conversions to and
from the used representations are executed at the beginning and the end of the
complete scalar multiplication.

4.1 Multiplication Using Carry-save Representation

This implementation follows the fast arithmetic implementation presented in [2].
An integer is represented using the signed radix-2d255/26e representation. Bene-
�cial of this representation is that an addition or subtraction can be executed
without having to consider carry bits. It only requires pairwise addition or sub-
traction of the respective coe�cients, as long as the result of coe�cient additions
or subtractions does not exceed the word-length. An element in this representa-
tion looks as follows:

B = b0+b1210+b2220+b3230+b4240+b5250+b6259+b7269+b8279+· · ·+b252246.

Figure 4.1 presents the steps executed to compute the �rst 8 coe�cients ri
of the multiplication r ← f × g. After transforming an integer to radix-2d255/26e

representation, each coe�cient bi of B is within (−29, 29) or (−210, 210). We
precompute 2f and 19g to easily realize constant multiplication with factors 2,
19, and 38. We use the product-scanning technique to compute the coe�cients
ri, interleaving the multiplication with the reduction, i.e., we compute a coe�-
cient and reduce it right away. For the computation of each ri, 26 products of
coe�cients have to be added.

This type of implementation has two disadvantages on the MSP430X archi-
tecture. First of all the MSP430 has very few general-purpose registers, while the
inputs have to be loaded from four di�erent arrays f, g, 2f and 19g. This makes

… r7 r6 r5 r4 r3 r2 r1 r0

… f7 g0 f6 g0 f5 g0 f4 g0 f3 g0 f2 g0 f1 g0 f0 g0

… f6 g1 2 f5 g1 f4 g1 f3 g1 f2 g1 f1 g1 f0 g1 38 f24 g2

… 2 f5 g2 2 f4 g2 f3 g2 f2 g2 f1 g2 f0 g2 38 f25 g2 38 f23 g3

… 2 f4 g3 2 f3 g3 f2 g3 f1 g3 f0 g3 38 f25 g3 38 f24 g3 38 f22 g4

… 2 f3 g4 2 f2 g4 f1 g4 f0 g4 38 f25 g4 38 f24 g4 38 f23 g4 38 f21 g5

… 2 f2 g5 2 f1 g5 f0 g5 38 f25 g5 38 f24 g5 38 f23 g5 38 f22 g5 38 f20 g6

… f1 g6 f0 g6 19 f25 g6 19 f24 g6 19 f23 g6 19 f22 g6 19 f21 g6 38 f19 g7

… f0 g7 19 f25 g7 19 f24 g7 19 f23 g7 19 f22 g7 19 f21 g7 38 f20 g7 38 f18 g8

… ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

Fig. 1. Visualisation computation of coe�cients for carry-save multiplication.

storing inputs in registers di�cult, as di�erent operands are loaded for compu-
tation of the various coe�cients. Further, while we use indirect auto-increment
mode to access g and 19g, there is no indirect auto-decrement mode on the
MSP430 and we need to access the other inputs using the costly indexed mode.
The other disadvantage is the highly complex reduction of a coe�cient, requiring
several shift operations, which are expensive on MSP430 devices.

Since we could not achieve good performance results with this type of imple-
mentation, we tried to speed things up relying on the re�ned Karatsuba formulas
presented in [3]. A problem occurs when trying to add the low and the high part
of B in signed radix-2d255/26e representation. For example computing the coef-
�cient of 240 cannot be done by adding b4 and b16 as b16 would be input to
exponent 239. Our solution to this was to represent elements using signed radix-
2d256/26e representation and rely on computations modulo 2256 − 38. Yet still,
the disadvantages of this type of implementation on the MSP430 architecture
dominate the advantages.

4.2 Operand-caching Multiplication

Operand-caching was proposed by Hutter and Wenger in 2011 [15]. The idea
of this method is to reduce the number of load instructions by organizing the
operations in a way that allows the same input operands to be used for multiple
computations.

Figure 4.2 shows a toy-size example of the operand-caching multiplication.
Here the execution of computations is divided into the light gray and the dark
gray area. First the light gray block is computed followed by the dark gray area.
The empty dark gray and light gray boxes represent space that is required for
carry-bits.

As we have 8 general-purpose registers available for storing operands during
the execution of the multiplication, we chose the row size to be 4. Since each
input array has 16 elements, 16/4 = 4 rows have to be computed. Many loads to
the hardware multiplier can be saved when loading operands in a special order.
For each operation of the hardware multiplier OP2 has to be loaded to start
execution. Yet, MAC does not have to be loaded each time. If it is not loaded, it
uses the value that had been loaded to MAC in the previous use of the hardware

r15 r14 r13 r12 r11 r10 r9 r8 r7 r6 r5 r4 r3 r2 r1 r0

f7 g0 f6 g0 f5 g0 f4 g0 f3 g0 f2 g0 f1 g0 f0 g0

f7 g1 f6 g1 f5 g1 f4 g1 f3 g1 f2 g1 f1 g1 f0 g1

f7 g2 f6 g2 f5 g2 f4 g2 f3 g2 f2 g2 f1 g2 f0 g2

f7 g3 f6 g3 f5 g3 f4 g3 f3 g3 f2 g3 f1 g3 f0 g3

f7 g4 f6 g4 f5 g4 f4 g4 f3 g4 f2 g4 f1 g4 f0 g4

f7 g5 f6 g5 f5 g5 f4 g5 f3 g5 f2 g5 f1 g5 f0 g5

f7 g6 f6 g6 f5 g6 f4 g6 f3 g6 f2 g6 f1 g6 f0 g6

f7 g7 f6 g7 f5 g7 f4 g7 f3 g7 f2 g7 f1 g7 f0 g7

Fig. 2. Visualisation of the operand-caching method for 2 elements consisting of 8
words.

multiplier. For example, if for the computation of r1, as the �nal step f0 was
loaded to MAC and g1 to OP2, then we start the computation of r2 by loading g2
to OP2.

In this multiplication we �rst multiply both inputs f and g, resulting in a
double-sized array and then reduce this result. Since reducing mod 2255− 19 re-
quires bit shifts, we chose to reduce intermediate results mod 2256− 38 and only
reduce the �nal result mod 2255− 19. We implemented two versions of operand-
caching multiplication, one making use of the 32×32-bit hardware multiplier (in
the following called 32-bit operand-caching) and the other only loading 16-bit
inputs to the multiplier (in the following called 16-bit operand-caching). Natu-
rally the implementation that makes use of the 32×32-bit hardware multiplier is
faster and also requires less code space, since fewer loads to the multiplier have
to be performed.

4.3 Karatsuba Multiplication

This section is based on a very recent paper on the implementation of multi-
precision multiplication on AVR microcontrollers [14]. Karatsuba presented a
sub-quadratic multiplication method that reduces the number of required word
multiplications for multi-precision multiplications [21]. The implementation by
Hutter and Schwabe [14] is based on this idea and �rst demonstrates that this
method is more advisable on AVRs even for very small input sizes starting from
48 bits. They implemented what they call subtractive Karatsuba. This method
avoids having to take extra carry bits into account by computing |Fl − Fh| and
|Gl − Gh| instead of Fl + Fh and Gl + Gh, which makes it easier to obtain a
constant-time implementation. In the following we report the method, as it was
presented in [14], adapting it to the case of a 16-bit architecture. The steps
for multiplying two n-byte numbers, where in our case n = 32, are described
in detail. Using a 16-bit architecture, we have to process arrays of n/2 = 16
elements. We split those arrays at k = 16/2 = 8.

� Write F = F` + 216kFh and G = G` + 216kGh

� compute L = F` ·G`

� compute H = Fh ·Gh

� compute M = |F` − Fh| · |G` −Gh| and
� set t = 0, if M = (F` − Fh) · (G` −Gh); t = 1 otherwise;
� compute M̂ = (−1)tM ; and
� obtain the result as FG = L+ 216k(L+H − M̂) + 216n/2H.

We use operand-caching multiplication for all multi-precision multiplications
within the Karatsuba multiplication, i.e., the computations of L, H, and M .
|F` − Fh| is computed as follows: �rst we subtract with borrow all elements in
Fh from those in F` and subtract with borrow from a register bF that was cleared
before. This results in bF = 0 for F` > Fh and bF = 0x�� otherwise. We XOR
bF with F`−Fh resulting in the ones-complement of F`−Fh. We then compute
tF = bF AND 1 add this to the ones-complement of F`−Fh and ripple the carry
through, resulting in the two's complement of F`−Fh, which is equal to |F`−Fh|.
|G`−Gh| is computed similarly. The value t required for the computation of M̂
is obtained as t = tF ⊕ tG. The same technique that was used to compute the
absolute di�erence above is used for the computation of M̂ from M , leaving out
the initial subtraction part.

Again we computed the product of the inputs resulting in a double-sized
array and reduced the result mod 2256 − 38. Only at the end of the Curve25519
computation we reduced results mod 2255 − 19. In the following we will refer to
the implementation making use of the 32×32-bit multiplier as 32-bit Karatsuba
and the one for 16 × 16-bit multiplier as 16-bit Karatsuba. We further imple-
mented this method for 2-level Karatsuba, i.e. using subtractive Karatsuba for
the computation of L, H, and M . We will refer to those implementations as
2-Level 32-bit Karatsuba and 2-Level 16-bit Karatsuba, for using 32 × 32-bit
multiplier and 16× 16-bit multiplier respectively.

5 Performance and Power Consumption Results

We used IAR Embedded Workbench for MSP430 IDE version 5.60.3 to develop
our code and compiled all source code by setting the compiler options to �low�.
This causes dead code, redundant labels and redundant branches to be elimi-
nated and achieves that variables live only as long as they are needed. It further
avoids common subexpression elimination, loop unrolling, function inlining, code
motion and type-based alias analysis [17]. Note that all functions implement-
ing arithmetic in F2255−19 were implemented in assembly, while the higher level
functions are implemented in C. This section describes our implementation and
measurement results.

We �rst present cycle-count estimates for the modular multiplication imple-
mentations given by IAR Embedded Workbench IDE. We compare these results
for two devices, namely MSP430FR5969 and MSP430F2618 having a 32×32-bit
and a 16× 16-bit hardware multiplier, respectively. We further present numbers
for the required code space for the multiplication implementations.

For a device that has a 32 × 32-bit hardware multiplier (MSP430FR5969)
we executed the code and measured the execution time using the debugging

Table 1. Simulated cycle count for modular multiplication (including reduction) on
MSP430F2618 and MSP430FR5969, given by IAR Embedded Workbench IDE version
5.60.3

MSP430FR5969 MSP430F2618

1 16-bit Operand-caching 3968 3949
2 32-bit Operand-caching 2505 -
3 16-bit Carry-save 7231 7228
4 16-bit Karatsuba 3666 3623
5 32-bit Karatsuba 2501 -
6 16-bit 2-level Karatsuba 3595 3554
7 32-bit 2-level Karatsuba 2705 -

Table 2. Code space (in bytes) required for modular multiplication implementations
(including reduction) on MSP430s.

Code Space
(in bytes)

1 16-bit Operand-caching 4762
2 32-bit Operand-caching 2878
3 16-bit Carry-save 8448
4 16-bit Karatsuba 4316
5 32-bit Karatsuba 2826
6 16-bit 2-level Karatsuba 4270
7 32-bit 2-level Karatsuba 3144

functionality of IAR Embedded Workbench IDE. We present the cycle count for
an execution of the Curve25519 variable-base-point single-scalar multiplication
on the MSP430FR5969 for the cases of having a 32 × 32-bit or a 16 × 16-bit
hardware multiplier on this target. Finally, we present our power measurement
results of the execution of di�erent multiplication implementations and the scalar
multiplication on the MSP-EXP430FR5969 Launchpad Evaluation Kit.

5.1 Performance

First we simulated the cycle count and measured the required code space of
the di�erent variants of implementation of the modular multiplication that we
implemented in IAR Embedded Workbench IDE. Table 1 presents the simulated
execution times for the two aforementioned microcontrollers, while Table 2 shows
the required code space for each implementation. It seems quite natural that
the version making use of the 32 × 32-bit hardware multiplier is faster and
requires less code space since fewer load (and store) operations to (and from)
the dedicated registers of the multiplier have to be executed.

We then measured the execution time of all multiplication implementations
on the MSP430FR5969 using the debugging functionality of IAR Embedded
Workbench IDE (Table 3). During this step we realized that wait cycles must
be included when the MSP430FR5969 runs at the frequency of 16 MHz. It is

Table 3. Execution time (i.e., cycle count) on MSP-EXP430FR5969 Launchpad Eval-
uation Kit, optimizations set to �low� when running the microcontroller at di�erent
frequencies.

8 MHz 16 MHz

1 16-bit operand-caching 4045 4599
2 32-bit operand-caching 2529 2864
3 16-bit Carry-save 7230 8289
4 16-bit Karatsuba 3696 4203
5 32-bit Karatsuba 2488 2824
6 16-bit 2-level Karatsuba 3606 4119
7 32-bit 2-level Karatsuba 2684 3069

due to the limited access frequency of FRAM, i.e., 8 MHz. So, the speed of
the implementation is not doubled by increasing the operation frequency from
8 MHz to 16 MHz. Table 3 displays these results. While in simulation the 32-bit
operand-caching multiplication seems to perform similar to the 32-bit Karatsuba
implementation, it turns out that, when executing the implementations on the
board the 32-bit Karatsuba implementation performs a bit better compared to
32-bit operand-caching (cf. Table 3). This is due to the fact that IAR Embedded
Workbench IDE does not correctly simulate the execution time of the hardware
multiplier, i.e. the time it takes until the CPU can read out results from the hard-
ware multiplier. Interestingly, the improvement of using 2-level Karatsuba is only
given when making use of the 16× 16-bit hardware multiplier (MSP430F2618).
When making use of the 32 × 32-bit multiplier, the overhead required for the
implementation of 2-level Karatsuba seems to dominate over the improvements
in timings. The lowest code space is achieved with 32-bit Karatsuba, but not far
from 32-bit operand-caching (Table 2).

Further we implemented the variable-basepoint single-scalar multiplication
for the cases of having a 32×32-bit and having a 16×16-bit hardware multiplier.
For the implementation that makes use of the 32×32-bit hardware multiplier we
used 32-bit Karatsuba and for the implementation that only requires a 16× 16-
bit hardware multiplier we used 2-level 16-bit Karatsuba, as those are the fastest
implementations for those cases according to Table 3. On the MSP430FR5969 the
x-coordinate-only variable-basepoint single-scalar multiplication, which makes
use of the 32 × 32-bit hardware multiplier, executes in 6,513,011 clock cycles
and requires 9.1 kB of code space, whereas the 16× 16-bit hardware multiplier
version, executes in 9,139,739 clock cycles and requires 11.6 kB of code space.

Since there are no implementation results of the plain ECC point multi-
plication on an MSP430X with a 32 × 32-bit hardware multiplier given in the
literature, we compare the results given in the literature to our result for the
16× 16-bit hardware multiplier (Table 4). Note that Gouvêa et al. obtain better
performance results for a 128-bit-secure elliptic-curve scalar multiplication on
an MSP430X microcontroller with a 32 × 32-bit hardware multiplier, albeit on
a di�erent curve [10], but do not report performance results for the plain scalar
multiplication, but instead for the execution of several ECC-based protocols.

Table 4. Execution time (i.e., cycle count) of variable base-point single-scalar multipli-
cations on an elliptic curve providing a security level comparable to 128-bit symmetric
security on MSP430 microcontrollers.

Architecture Cycle count

Wenger et al. [33] MSP 23,973,000
Wenger et al. [32] MSP Clone w/o ISE 22,170,000
Gouvêa et al. [9] MSP 20,476,234
Our implementation MSPX 9,139,739

5.2 Power Consumption

We further examined our code in terms of power consumption on the MSP-
EXP430FR5969 Launchpad Evaluation Kit. We have implemented all multipli-
cations (e.g., listed in Table 1) in such a way that �rst two random operands
are selected then multiplied together by all multiplication algorithms one after
another. We also used an I/O pin of the MSP-EXP430FR5969 Launchpad Eval-
uation Kit to indicate the start and the end of each algorithm thereby being able
to identify at which period of time each algorithm is executed.

For the power measurements we made use of a LeCroyWaveRunner HRO66Zi
digital sampling oscilloscope. As the MSP-EXP430FR5969 Launchpad Evalua-
tion Kit has been developed to facilitate power measurements, we could easily
place a 2.2Ω shunt resistor at the Vdd path of the MSP430FR5969 microcon-
troller while no stabilizing capacitor was placed between the measurement point
and the microcontroller. We powered the Evaluation Kit by an external stable
power supply and monitored the current passing through the shunt resistor by
means of a LeCroy AP033 di�erential probe at a sampling rate of 1GS/s.

Figure 3(a) shows a sample power trace where the parts dedicated to each
multiplication are marked. In Figure 3(b) we also provide a zoomed view of this
trace to highlight several�non-periodic�high peaks which we have observed.
We have observed the same peaks (but periodic) for a couple of NOP operations
as well. The pattern of these high peaks actually di�ers for di�erent sequence of
operations. The source of this high power consumption peaks are not certainly
clear to us, but it seems that they are relevant to FRAM accesses. That is
because fetching the instructions from the code memory also needs to access the
FRAM.

For 1 000 random operand pairs we collected 1 000 traces, each of which cov-
ers the execution of all 7 multiplications with the same operands. Corresponding
to each multiplication, each trace is divided into 7 parts and the voltage observed
by the di�erential probe at each sample point is turned into instantaneous power
as P = V 2/R, where R = 2.2 Ω. Average of instantaneous power values over the
period of time corresponding to each multiplication gives us the power consump-
tion of the device for that operation. We also can turn this value to amount of
energy the device consumed by P · t, where t stands for the duration of the mul-
tiplication. Figure 4 depicts the average of power and energy consumption of the
microcontroller for each multiplication. Note that since the MSP430FR5969 mi-

0.5 1 1.5 2 2.5 3 3.5

3

5

7

9

11

Time [ms]

V
ol

ta
ge

 [m
v]

 Op_caching_16 Carry_save_16 Karatsuba_32 2-L Kara_32
Op_caching_32 Karatsuba_16 2-L Kara_16

(a) full trace

2.19 2.195 2.2 2.205 2.21 2.22 2.225 2.23 2.235 2.24

3

5

7

9

11

2.215
Time [ms]

V
ol

ta
ge

 [m
v]

(b) zoomed view

Fig. 3. A sample power trace measured from MSP-EXP430FR5969 Launchpad Eval-
uation Kit when running 7 di�erent multiplications

crocontroller on the Evaluation Kit operates by the internal oscillator (8 MHz),
the duration of each multiplication was not completely the same for all 1000
measurements due to the small jitter of the oscillator.

As shown by the graphics, 32-bit operand-caching has the lowest power con-
sumption. However, 32-bit Karatsuba consumes less energy as it is the fastest
one (see Table 1). As mentioned above, the debugging functionality of IAR Em-
bedded Workbench IDE reports 6,513,011 clock cycles for the execution of a
scalar multiplication on Curve25519 on the board having a MSP430FR5969. We
veri�ed this result measuring the length of the power trace. Based on our practi-
cal measurements one full execution of the algorithm takes around 821ms with
operation frequency of 8 MHz. This con�rms the cycle count measured with IAR
debugging functionality. To measure its power consumption we had to decrease
the sampling rate to 200MS/s due to the length of the trace (825ms). Based
on 100 measurements for random operands, in average the corresponding power
consumption and energy consumption is 14.046µW and 11.623µJ respectively.

6 Conclusion

This paper is the �rst that presents a full constant-time implementation of
Curve25519 on di�erent MSP430 microcontrollers. In order to evaluate and im-

1 2 3 4 5 6 7
13

13.5

14

14.5

15

Multiplication Algorithm

Po
w

er
 [μ

W
]

(a)

1 2 3 4 5 6 7
0

3

6

9

12

Multiplication Algorithm

En
er

gy
 [n

J]

(b)

Fig. 4. Average of (a) power and (b) energy consumption of di�erent multiplications
(the indices for the algorithms �t to the same order shown in Table 1.)

prove the e�ciency, we implemented and analyzed di�erent �nite-�eld multipli-
cation techniques and compared them in terms of speed, code size, and power
consumption. Amongst all considered multiplication techniques, the subtractive
Karatsuba implementation proposed in [14] performs the best. It turned out that
2-level Karatsuba performs better than 1-level Karatsuba in case a 16 × 16-bit
hardware multiplier is available. This is however not the case if the MSP430 has
a 32×32-bit hardware multiplier. We further analyzed our implementation with
the MSP-EXP430FR5969 Launchpad Evaluation Kit. We presented numbers for
the average power and the energy consumption of Curve25519 on this platform.
We showed that with an energy consumption of 11.623µJ the execution of high-
security ECC is feasible on devices operated with battery or harvested power,
such as medical implants.

References

1. O. Aciiçmez, B. B. Brumley, and P. Grabher. New results on instruction cache at-
tacks. In Cryptographic Hardware and Embedded Systems - CHES 2010, pages 110�
124, 2010. http://www.iacr.org/archive/ches2010/62250105/62250105.pdf. 2

2. D. J. Bernstein. Curve25519: new Di�e-Hellman speed records. In M. Yung,
Y. Dodis, A. Kiayias, and T. Malkin, editors, Public Key Cryptography � PKC

2006, volume 3958 of Lecture Notes in Computer Science, pages 207�228. Springer,
2006. http://cr.yp.to/papers.html#curve25519. 2, 3, 5, 6, 7

3. D. J. Bernstein. Batch binary Edwards. In S. Halevi, editor, Advances in Cryptology
� CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science, pages 317�
336. Springer, 2009. http://cr.yp.to/papers.html#bbe. 8

4. D. J. Bernstein. Cryptography in NaCl, 2009. http://cr.yp.to/highspeed/

naclcrypto-20090310.pdf. 5
5. D. J. Bernstein and P. Schwabe. Neon crypto. In Cryptographic Hardware and

Embedded Systems - CHES 2012, pages 320�339, 2012. http://cryptosith.org/
papers/neoncrypto-20120320.pdf. 3

6. D. J. Bernstein, B. van Gastel, W. Janssen, T. Lange, P. Schwabe, and
S. Smetsers. TweetNaCl: A crypto library in 100 tweets, to appear. Docu-
ment ID: c74b5bbf605ba02ad8d9e49f04aca9a2, http://cryptojedi.org/papers/
#tweetnacl. 3

http://www.iacr.org/archive/ches2010/62250105/62250105.pdf
http://cr.yp.to/papers.html#curve25519
http://cr.yp.to/papers.html#bbe
http://cr.yp.to/highspeed/naclcrypto-20090310.pdf
http://cr.yp.to/highspeed/naclcrypto-20090310.pdf
http://cryptosith.org/papers/neoncrypto-20120320.pdf
http://cryptosith.org/papers/neoncrypto-20120320.pdf
http://cryptojedi.org/papers/#tweetnacl
http://cryptojedi.org/papers/#tweetnacl

7. N. Costigan and P. Schwabe. Fast Elliptic-Curve Cryptography on the Cell Broad-
band Engine. In Progress in Cryptology � AFRICACRYPT 2009, pages 368�385,
2009. 3, 6

8. Diego F. Aranha and Conrado P. L. Gouvêa. RELIC is an E�cient LIbrary for
Cryptography. http://code.google.com/p/relic-toolkit/ (accessed 2014-09-
06), 2014. 4

9. C. P. L. Gouvêa and J. López. Software implementation of Pairing-Based Cryp-
tography on sensor networks using the MSP430 microcontroller. In Progress

in Cryptology - INDOCRYPT 2009, pages 248�262, 2009. http://conradoplg.

cryptoland.net/files/2010/12/indocrypt09.pdf. 3, 13

10. C. P. L. Gouvêa, L. B. Oliveira, and J. López. E�cient software implemen-
tation of public-key cryptography on sensor networks using the MSP430X mi-
crocontroller. Journal of Cryptographic Engineering, 2(1):19�29, 2012. http:

//conradoplg.cryptoland.net/files/2010/12/jcen12.pdf. 12

11. J. Guajardo, R. Blümel, U. Krieger, and C. Paar. E�cient implementation of
elliptic curve cryptosystems on the TI MSP430x33x family of microcontrollers. In
K. Kim, editor, Public Key Cryptography � PKC 2001, volume 1992 of Lecture
Notes in Computer Science, pages 365�382. Springer, 2001. 3

12. D. Halperin, T. S. Heydt-Benjamin, B. Ransford, S. S. Clark, B. Defend, W. Mor-
gan, K. Fu, T. Kohno, and W. H. Maisel. Pacemakers and implantable cardiac de-
�brillators: Software radio attacks and zero-power defenses. In IEEE Symposium on

Security and Privacy � IEEE S&P 2008d, pages 129�142. IEEE Computer Society,
2008. http://www.secure-medicine.org/public/publications/icd-study.pdf.
2

13. M. Hutter and P. Schwabe. NaCl on 8-bit AVR microcontrollers. In A. Youssef,
A. Nitaj, and A. E. Hassanien, editors, Progress in Cryptology � AFRICACRYPT

2013, volume 7918 of Lecture Notes in Computer Science, pages 156�172. Springer,
2013. http://cryptojedi.org/papers/avrnacl-20130220.pdf. 3

14. M. Hutter and P. Schwabe. Multiprecision multiplication on AVR revisited, 2014.
http://cryptojedi.org/papers/#avrmul. 7, 9, 15

15. M. Hutter and E. Wenger. Fast multi-precision multiplication for public-key cryp-
tography on embedded microprocessors. In Cryptographic Hardware and Embedded
Systems - CHES 2011, pages 459�474, 2011. https://online.tugraz.at/tug_

online/voe_main2.getvolltext?pCurrPk=58138. 7, 8

16. T. I. Incorporated. Enabling secure portable medical devices with TI's MSP430
MCU and wireless technologies, 2012. http://www.ti.com/lit/wp/slay027/

slay027.pdf. 2

17. T. I. Incorporated. MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and
MSP430FR69xx family user's guide, 2012. 10

18. T. I. Incorporated. MSP430x2xx family � user's guide (july 2013), 2013. http:

//www.ti.com/lit/ug/slau144j/slau144j.pdf. 4

19. T. I. Incorporated. MSP430F261x datasheet (rev. K), 2014. http://www.ti.com/
lit/ds/symlink/msp430f2618.pdf. 4

20. W. Janssen. Curve25519 in 18 tweets. Bachelor's thesis, Radboud Univer-
sity Nijmegen, 2014. http://www.cs.ru.nl/bachelorscripties/2014/Wesley_

Janssen___4037332___Curve25519_in_18_tweets.pdf. 3

21. A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on automata.
Soviet Physics Doklady, 7:595�596, 1963. Translated from Doklady Akademii Nauk
SSSR, Vol. 145, No. 2, pp. 293�294, July 1962. 7, 9

http://code.google.com/p/relic-toolkit/
http://conradoplg.cryptoland.net/files/2010/12/indocrypt09.pdf
http://conradoplg.cryptoland.net/files/2010/12/indocrypt09.pdf
http://conradoplg.cryptoland.net/files/2010/12/jcen12.pdf
http://conradoplg.cryptoland.net/files/2010/12/jcen12.pdf
http://www.secure-medicine.org/public/publications/icd-study.pdf
http://cryptojedi.org/papers/avrnacl-20130220.pdf
http://cryptojedi.org/papers/#avrmul
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=58138
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=58138
http://www.ti.com/lit/wp/slay027/slay027.pdf
http://www.ti.com/lit/wp/slay027/slay027.pdf
http://www.ti.com/lit/ug/slau144j/slau144j.pdf
http://www.ti.com/lit/ug/slau144j/slau144j.pdf
http://www.ti.com/lit/ds/symlink/msp430f2618.pdf
http://www.ti.com/lit/ds/symlink/msp430f2618.pdf
http://www.cs.ru.nl/bachelorscripties/2014/Wesley_Janssen___4037332___Curve25519_in_18_tweets.pdf
http://www.cs.ru.nl/bachelorscripties/2014/Wesley_Janssen___4037332___Curve25519_in_18_tweets.pdf

22. A. Liu and P. Ning. TinyECC: a con�gurable library for elliptic curve cryptography
in wireless sensor networks. In International Conference on Information Processing

in Sensor Networks � IPSN 2008, pages 245�256. IEEE, 2008. discovery.csc.

ncsu.edu/pubs/ipsn08-TinyECC-IEEE.pdf. 4
23. C. U. Ltd. MIRACL cryptographic SDK. http://www.certivox.com/miracl/

(accessed 2014-09-06), 2011. 4
24. P. L. Montgomery. Speeding the pollard and Elliptic Curve methods of factoriza-

tion. Mathematics of Computation, 48(177):243�264, 1987. 2, 5
25. C. Pendl, M. Pelnar, and M. Hutter. Elliptic Curve Cryptography on the WISP

UHF RFID tag. In A. Juels and C. Paar, editors, 8th Workshop on RFID Security

and Privacy � RFIDsec 2012, volume 7055 of Lecture Notes in Computer Science,
pages 32�47. Springer, 2012. 3

26. P. Sasdrich and T. Güneysu. E�cient Elliptic-Curve Cryptography using
Curve25519 on recon�gurable devices. In D. Goehringer, M. D. Santambro-
gio, J. M. P. Cardoso, and K. Bertels, editors, Recon�gurable Computing: Ar-

chitectures, Tools, and Applications, volume 8405 of Lecture Notes in Com-

puter Science, pages 25�36. Springer, 2014. https://www.hgi.rub.de/media/sh/
veroeffentlichungen/2014/03/25/paper_arc14_curve25519.pdf. 3

27. M. Scott and P. Szczechowiak. Optimizing multiprecision multiplication for public
key cryptography. Cryptology ePrint Archive, Report 2007/299, 2007. http:

//eprint.iacr.org/2007/299/. 3
28. I. Systems. IAR C/C++ Compiler reference guide for texas instruments' msp430

microcontroller family, 2011. 2, 4
29. P. Szczechowiak, A. Kargl, M. Scott, and M. Collier. On the application of pairing

based cryptography to wireless sensor networks. In D. A. Basin, S. Capkun, and
W. Lee, editors, Proceedings of the second ACM conference on Wireless network

security � WiSec 2009, pages 1�12. ACM, 2009. 3
30. P. Szczechowiak, L. B. Oliveira, M. Scott, M. Collier, and R. Dahab. NanoECC:

testing the limits of elliptic curve cryptography in sensor networks. In R. Ver-
done, editor, Wireless Sensor Networks, volume 4913 of Lecture Notes in Com-

puter Science, pages 305�320. Springer, 2008. http://www.ic.unicamp.br/~leob/
publications/ewsn/NanoECC.pdf. 4

31. E. Tromer, D. A. Osvik, and A. Shamir. E�cient cache attacks on AES, and
countermeasures. Journal of Cryptology, 23(1):37�71, 2010. http://www.tau.ac.
il/~tromer/papers/cache-joc-20090619.pdf. 2

32. E. Wenger, T. Unterluggauer, and M.Werner. 8/16/32 shades of elliptic curve cryp-
tography on embedded processors. In G. Paul and S. Vaudenay, editors, Progress
in Cryptology � INDOCRYPT 2013, volume 8250 of Lecture Notes in Computer

Science, pages 244�261. Springer, 2013. 3, 13
33. E. Wenger and M. Werner. Evaluating 16-bit processors for elliptic curve cryp-

tography. In E. Prou�, editor, Smart Card Research and Advanced Applications �

CARDIS 2011, volume 7079 of Lecture Notes in Computer Science, pages 166�181.
Springer, 2011. 3, 13

discovery.csc.ncsu.edu/pubs/ipsn08-TinyECC-IEEE.pdf
discovery.csc.ncsu.edu/pubs/ipsn08-TinyECC-IEEE.pdf
http://www.certivox.com/miracl/
https://www.hgi.rub.de/media/sh/veroeffentlichungen/2014/03/25/paper_arc14_curve25519.pdf
https://www.hgi.rub.de/media/sh/veroeffentlichungen/2014/03/25/paper_arc14_curve25519.pdf
http://eprint.iacr.org/2007/299/
http://eprint.iacr.org/2007/299/
http://www.ic.unicamp.br/~leob/publications/ewsn/NanoECC.pdf
http://www.ic.unicamp.br/~leob/publications/ewsn/NanoECC.pdf
http://www.tau.ac.il/~tromer/papers/cache-joc-20090619.pdf
http://www.tau.ac.il/~tromer/papers/cache-joc-20090619.pdf

	Full-Size High-Security ECC Implementation on MSP430 Microcontrollers

